Theory Comput Syst Mark
DOI 10.1007/500224-016-9744-7 CrossMar

Geometric Hitting Set for Segments of Few Orientations

Sandor P. Fekete! - Kan Huang? -
Joseph S. B. Mitchell®> © . Ojas Parekh? .
Cynthia A. Phillips®

© Sandia Corporation 2017

Abstract We study several natural instances of the geometric hitting set problem
for input consisting of sets of line segments (and rays, lines) having a small number
of distinct slopes. These problems model path monitoring (e.g., on road networks)
using the fewest sensors (the “hitting points”). We give approximation algorithms
for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal
segments, (iii) pairs of horizontal/vertical segments. We give hardness and hardness
of approximation results for these problems. We prove that the hitting set problem
for vertical lines and horizontal rays is polynomially solvable.

Keywords Set cover - Hitting set - Approximation algorithms

P4 Joseph S. B. Mitchell
joseph.mitchell @ stonybrook.edu

Sandor P. Fekete
s.fekete @tu-bs.de

Kan Huang
khuang @ams.stonybrook.edu

Ojas Parekh
odparek @sandia.gov

Cynthia A. Phillips
caphill @sandia.gov

TU Braunschweig, Braunschweig, Germany
2 Stony Brook University, Stony Brook, NY, USA

3 Sandia National Labs, Albuquerque, NM, USA

Published online: 06 February 2017 A Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-016-9744-7&domain=pdf
http://orcid.org/0000-0002-0152-2279
mailto:joseph.mitchell@stonybrook.edu
mailto:s.fekete@tu-bs.de
mailto:khuang@ams.stonybrook.edu
mailto:odparek@sandia.gov
mailto:caphill@sandia.gov

Theory Comput Syst

1 Introduction

A fundamental problem in combinatorial optimization is the set cover problem, in
which we are given a collection, C, of subsets of a set U, of elements, and our goal
is to find a minimum-cardinality subset of C whose union covers U. The set cover
problem is NP-hard and has an O (logn)-approximation algorithm, which is best
possible in the worst case (unless P = N P, [17]). Equivalently, set cover can be cast
as a hitting set problem: given a collection, C, of subsets of set U, find a smallest
cardinality set H € U such that every set in C contains at least one element of H.
Numerous special instances of set cover/hitting set have been studied. Our focus in
this paper is on geometric instances that arise in covering (hitting) sets of (possibly
overlapping) line segments using the fewest points (“hit points”). A closely related
problem is the “Guarding a Set of Segments” (GSS) problem [7, 9, 10, 29], in which
the segments may cross arbitrarily, but do not overlap. Since this problem is strongly
NP-complete [9] in general, our focus is on special cases, primarily those in which
the segments come from a small number of orientations (e.g., horizontal, vertical).
We provide several new results on hardness and approximation algorithms.

We are motivated by the path monitoring problem: given a set of trajectories, each
a path of line segments in the plane, place the fewest sensors (points) to observe (hit)
all trajectories. To gain theoretical insight into this challenging problem, we exam-
ine cleaner, but progressively harder, versions of hitting trajectory/line-like objects
with points. If the trajectories are on a Manhattan road network, the paths are (pos-
sibly overlapping) horizontal/vertical segments. Alternatively, one wishes to place
the fewest vendors or service stations in a road network to service a set of customer
trajectories.

Our results We give complexity and approximation results for several geometric
hitting set problems on inputs S of line “segments” of special classes, mostly of fixed
orientations. The segments are allowed to overlap arbitrarily. We consider various
cases of “segments” that may be bounded (line segments), semi-infinite (rays), or
unbounded in both directions (lines). Our results are:

(1) Hitting lines of 3 slopes in the plane is NP-hard (greedy is optimal for 2 slopes).
For set cover with set size at most 3, standard analysis of the greedy algorithm
gives an approximation factor of H(3) = 14+ (1/2)+(1/3) = (11/6), and there
is a 4/3-approximation based on semi-local optimization [19]. We prove that the
greedy algorithm in this special geometric case is a (7/5)-approximation.

(2) Hitting vertical lines and horizontal rays is polytime solvable.

(3) Hitting vertical lines and horizontal (even unit-length) segments is NP-hard.
Our proof shows hitting horizontal and vertical unit-length segments is also
NP-hard. We prove APX-hardness for hitting horizontal and vertical segments.

(4) Hitting vertical lines and horizontal segments has a (5/3)-approximation
algorithm. (This problem has a straightforward 2-approximation.)

(5) Hitting pairs of horizontal/vertical segments has a 4-approximation. Hitting
pairs having one vertical and one horizontal segment has a (10/3)-approx-
imation. These results are based on LP-rounding. More generally, hitting sets
of k segments from r orientations has a (k - r)-approximation algorithm.

@ Springer

Theory Comput Syst

(6) We give a linear-time combinatorial 3-approximation algorithm for hit-
ting triangle-free sets of (non-overlapping) segments. Recently Joshi and
Narayanaswamy [29] gave a 3-approximation for this version of GSS using
linear programming.

Related Work There is a wealth of related work on geometric set cover and hit-
ting set problems; we do not attempt here to give an exhaustive survey. The point
line cover (PLC) problem (see [27, 31]) asks for a smallest set of lines to cover a
given set of points; it is equivalent, via point-line duality, to the hitting problem for
a set of lines. The PLC (and thus the hitting problem for lines) was shown to be NP-
hard [34]; in fact, it is APX-hard [11] and Max-SNP Hard [32]. The problem has
an O(log O PT)-approximation (e.g., greedy — see [30]); in fact, the greedy algo-
rithm for PLC has worst-case performance ratio €2 (logn) [20]. Afshani et al. [1] have
studied exact and parameterized algorithms, giving an O*(2") time algorithm that
uses polynomial space, and an O*((Ck/log k)@~1k) time algorithm to hit » lines
with the minimum number of points or at most k points. (Here, O*(-) indicates that
polynomial factors of n are hidden.)

Hassin and Megiddo [26] considered hitting geometric objects with the fewest
lines having a small number of distinct slopes. They observed that, even for cov-
ering with axis-parallel lines, the greedy algorithm has an approximation ratio that
grows logarithmically. They gave approximations for the problem of hitting horizon-
tal/vertical segments with the fewest axis-parallel lines (and, more generally, with
lines of a few slopes). Gaur and Bhattacharya [23] consider covering points with axis-
parallel lines in d-dimensions. They give a (d — 1)-approximation based on rounding
the corresponding linear program (LP). Many other stabbing problems (find a small
set of lines that stab a given set of objects) have been studied; see, e.g., [18, 21, 24,
25, 30, 33].

A recent paper [29] gives a 3-approximation for hitting sets of “triangle-
free”segments. Brimkov et al. [7, 9, 10] have studied the hitting set problem on line
segments, including various special cases; they refer to the problem as “Guarding a
Set of Segments,” or GSS. GSS is a special case of the “art gallery problem:” place a
small number of “guards” (e.g., points) so that every point within a geometric domain
is “seen” by at least one guard [36, 38]. Brimkov et al. [8] provide experimental
results for three GSS heuristics, including two variants of “greedy,” showing that in
practice the algorithms perform well and are often optimal or very close to optimal.
They prove, however, that, in theory, the methods do not provide worst-case constant-
factor approximation bounds. For the special case that the segments are “almost tree
(1)” (a connected graph is an almost tree (k) if each biconnected component has at
most k edges not in a spanning tree of the component), a (2 — ¢)-approximation is
known [7].

An important distinction between GSS and our problems is that we allow over-
lapping (or partially overlapping) segments (rays, and lines), while, in GSS, each
line segment is maximal in the input set of line segments (the union of two distinct
input segments is not a segment). A special case of our problem is interval stabbing
on a line: Given a set of segments (intervals), arbitrarily overlapping on a line, find
a smallest hitting set of points that hit all segments. A simple sweep along the line

@ Springer

Theory Comput Syst

solves this problem optimally: when a segment ends, place a point and remove all
segments covered by that point.

If no point lies within three or more objects, then the hitting set problem is an
edge cover problem in the intersection graph of the objects. In particular, if no three
segments pass through a common point, the problem can be solved optimally in poly-
nomial time. (This implies that in an arrangement of “random” segments, the GSS
problem is almost surely polynomially solvable; see [7].)

Hitting axis-aligned rectangles is related to hitting horizontal and vertical seg-
ments. Aronov, Ezra, and Sharir [3] provide an O (loglog O PT)-approximation for
hitting set for axis-aligned rectangles (and axis-aligned boxes in 3D), by proving a
bound of O (¢! loglog(e~")) on the &-net size of the corresponding range space. The
connection between hitting sets and e-nets [12, 15, 16, 22] implies a c-approximation
for hitting set if one can compute an e-net of size c/e; recent major advances [2,
37] on lower bounds on e-nets imply that associated range spaces (rectangles and
points, lines and points, points and rectangles) have e-nets of size superlinear in 1/¢.
Remarkably, improved (1 + ¢)-approximation algorithms (i.e., PTASs) for certain
geometric hitting set and set cover problems are possible with simple local search.
For example, Mustafa and Ray [35] give a local search PTAS for computing a small-
est subset, of a given set of disks, that covers a given set of points. Hochbaum and
Maas [28] used grid shifting to obtain a much earlier PTAS for the minimum unit
disk cover problem when disks can be placed anywhere in the plane, not restricted to
a discrete input set.

2 Hitting Segments

Suppose S is a set of n line segments in the plane. If all segments are horizontal,
then we can compute an optimal hitting set by independently solving the inter-
val stabbing problem along each of the horizontal lines determined by the input.
The time required is O(nlogn), used to sort the segment endpoints along their
containing line(s).

If the segments are of two different orientations (slopes), then the problem
becomes significantly harder. By applying an affine transformation to the segments
S if necessary, we can, without loss of generality, assume the segments are horizontal
and vertical. We show the problem is hard even if the axis-parallel segments are all
the same length. This result (Corollary 1) is a consequence of an even stronger result,
Theorem 6, which we establish in Section 5.

By solving optimally each of the two (or k) orientations, and using the union of
the hitting points for both (or all k), we obtain:

Theorem 1 For a set S of n line segments having k different orientations (slopes)

in the plane, we can compute, in time O(nlogn), a k-approximation for the optimal
hitting set.

@ Springer

Theory Comput Syst

3 Hitting Lines

When S is a set of n lines in the plane, greedy gives an O (log O PT') approximation
factor; any approximation factor better than logarithmic would be quite interesting.
(See [20, 31].) If the lines have only 2 slopes, then an optimal algorithm is given
by the greedy selection of hitting points: Add to the hitting set (initially empty) any
point at the intersection of two unhit lines; if no such point exists, and there are still
unhit lines, then add to the hitting set a point on an unhit line. (For, say, n;, horizontal
lines and n, > nj horizontal lines, the greedy algorithm uses n, hitting points, first
selecting ny, points that each hit two previously unhit lines (one horizontal, one verti-
cal), in any order, then selecting n,, — nj, additional hitting points, in any order, each
hitting a single unhit vertical line.)

3.1 Hardness of Hitting Lines of 3 Slopes in 2D

We prove that the hitting set problem is NP-hard when the set S of input lines have
more than two slopes. In particular, we show below that the problem, 3-SLOPE-
LINE-COVER (3SLC), of computing a minimum-cardinality hitting set for a set S of
lines having three distinct slopes is NP-hard. (The corresponding decision problem
is NP-complete.)

Theorem 2 The problem 3SLC is NP-complete.

Proof For convenience, we recast the 3SLC problem into its equivalent dual formu-
lation: Find a minimum-cardinality set of non-vertical lines to cover a set P of points
(duals to the set S of lines), which are known to lie on three vertical lines. Here, we
are using the notion of “point-line” duality, in which a point p = (a, b) in the “pri-
mal plane” has a corresponding (non-vertical) line, p* : y = ax — b, in the “dual
plane,” and a non-vertical line L : y = mx + b in the “primal plane” has a corre-
sponding point, L* = (m, —b), in the “dual plane.” Point-line duality is a one-to-one
mapping between points and non-vertical lines, preserving incidence and order; any
statement about points and lines is mapped, via duality, to an equivalent statement
about lines and points. Since the lines of S in our 3SLC instance have three slopes,
their dual points P have x-coordinates among three possible values and thus lie on
three vertical lines. (See [6] for background and applications of point-line duality in
computational geometry.) Our reduction is from 3SAT. Let n and m denote the num-
bers of variables and clauses respectively. From an instance of 3SAT we create an
instance, P, of the (dual formulation) of a 3SLC problem, as follows. The points P
are distributed on three vertical lines, denoted /1, /> and I3, from left to right.

We use the following terminology. If a line / covers i points, we say that / is an
i-line. Let P; denote the set of points of P that are covered by line /. If P, N P, = ¥,
then we say that lines /1 and I, are independent. A set L of lines is independent if

@ Springer

Theory Comput Syst

the lines are pairwise independent; i.e., [; € L and /; € L are independent for every
li #1;.

A variable gadget for a variable u has m points (a[l], a[2], ..., a[m]) on line
1, m points (b[1], b[2], ..., b[m]) on line I, and 2m points (u[1], u[2], ..., u[m],
u[l], u[2], ..., u[m]), corresponding to the variables and their negations, on line /3.
The points are placed so that through each point b[i] on line I, there are exactly two
3-lines, a “red” line passing through b[i] and u[i] and one of the points a[j] on line
I1, and a “blue” line passing through b[i] and u[i] and one of the points a[j] on line
I1. Figure 1 shows a variable gadget for variable u in a 4-clause (m = 4) instance.
Points on the two lines /; and /> can be hit by either of two sets of independent lines,
the set of red lines or the set of blue lines. These represent the “True” or “False”
setting of the variable u respectively. We add the variable gadgets one by one onto
the three lines /1, [, and /3 so that all 3-lines are within variable gadgets (there are no
other triples of of collinear points, with one per vertical line).

Fig. 1 A variable gadget

@ Springer

Theory Comput Syst

The clause gadgets link variable gadgets. The ith clause has a single point c[i] on
line /1. Point c[i] is connected by three “green” line segments to the negations of the
literals in its clause on line /3. Figure 2 shows the gadget for clause c[i] = u VvV w.
We then include three additional points in the clause gadget, namely the three points,
dli, 1], d[i, 2], and d[i, 3], where these three line segments incident on c[i] cross
line /. We pick the locations of the points c[i] so that the addition of these four new
points (c[i], d[i, 1], d[i, 2], d[i, 3]) create no new 3-lines other than the “green” lines
associated with the clause gadget. (This is easily done, since the creation of a new 3-
line would require that c[i] be placed at one of a discrete set of possible locations on
I1; since there is a continuum of possible locations on [, the discrete locations can
be avoided.)

To complete the construction, we place nm + m points on line /1 such that these
new points are not on any 3-line. Thus, by construction, each 3-line is in a variable
gadget or a clause gadget. There are 2nm + 2m points on line /1, nm + 3m points on
line /5, and 2nm points on line /3 for a total of Snm + Sm points on all three lines.

We now argue that the 3SAT formula is satisfiable if and only if the corresponding
(dual formulation) 3SLC instance can be covered by 2nm + 2m non-vertical lines.

If the 3SAT formula is satisfiable, there is an independent set of 3-lines in the
variable and clause gadgets of size nm + m. Specfically, there are nm independent 3-
lines corresponding to the truth assignment for the n variables. Since the formula is
satisfiable, for each clause, the 3-line corresponding to the negation of one correctly
set variable is independent of the variable truth assignment points, and can be part
of an independent set. This gives the other m members of the independent set. There
are then nm + m points on /1, 2m points on [, and nm — m points on /3 not part

Fig. 2 A clause gadget A Iy l

3
l l y uli
l v dli, 1] l
l | y Ol
o] * dli.2 T
CM g [[Z’] [
l v dli, 3] l
l l + wli]

@ Springer

Theory Comput Syst

of this maximum independent set. Each of the nm 4 m remaining points on line /;
can be paired with one of the remaining nm 4 m points on either line /> or /3. Thus,
all points are covered with (nm + m) 3-lines and (nm + m) 2-lines for a total of
2nm + 2m lines.

If the instance can be covered with 2nm +2m lines, then, by construction, nm +m
of these lines must be 2-lines involving the points on line /; that are not in any clause
or variable gadgets. These 2-lines can cover 2nm + 2m points, leaving 3nm + 3m
total points to be covered by the remaining nm + m lines. Thus, the remaining lines
must all be independent 3-lines. nm of these correspond to a truth assignment for
the variables. The remaining m must come from clause gadgets. Thus, each clause
gadget has a 3-line compatible with the truth assignment and the 3SAT instance is
satisfiable. U

3.2 Analysis of the Greedy Hitting Set Algorithm for Lines of 3 Slopes in 2D

If no point lies in more than k sets, the greedy algorithm’s approximation factor is
H(k) = Zf:] (1/i) [14]. This property holds for lines of 3 slopes with k = 3, giving
a greedy approximation factor H(3) = 11/6. We give a new analysis, exploiting the
special geometric structure of the hitting set problem for lines of 3 slopes, to obtain
an approximation factor of 7/5.

Let x, y and z be the number of lines in each of the three slopes in the plane.
Without loss of generality, we assume that x > y > z > 0.

We call a point where at least two lines meet a vertex. A vertex is a 3-intersection
if three lines, one from each orientation, meet at that point. Otherwise it is a 2-
intersection. If there are no 3-intersections, then all vertices are 2-intersections. We
claim then that the greedy algorithm is optimal, with the following specification of
how to break ties: As long as there is a vertex hitting two unhit lines, pick any one
of them that hits the two sets (slopes) of unhit lines that have the highest cardinali-
ties, remove the newly hit lines, and repeat. Since, in our notation, we assume that
x >y > z > 0, this means that, with the selection of the next vertex, x and y each
go down by exactly one; we then update the labels x, y, and z (since it could be that
the cardinality, z, of the third slope category is now greater than one or both of the
updated cardinalities, x — 1 and y — 1), and repeat the process. Once there are lines
of at most one slope (i.e., x > 0, y = z = 0), the greedy algorithm is forced to place
one hit point along each of the x lines. Let O PT>(x, y, z) denote the minimum num-
ber of hit points for a 3-slope instance with no 3-intersections, and x > y > z lines
of each of the three distinct slopes.

Lemma 1 The above greedy algorithm yields an optimal hitting set when applied
to an input set of lines of 3 slopes no three of which pass through a common point.
Further, the optimal number of hit points is given by

| x fx=y+z;
OPT)(x,y,2) = {x—|— |’y+§7x‘| _ [x+%'+z'| ifx <y+z.

@ Springer

Theory Comput Syst

Proof First, note that an optimal hitting set must use at least x hit points, since each
of the x lines in the maximum cardinality slope class must be hit by a distinct hit
point. Also, since no point hits more than two lines, we know that an optimal hitting
set must use at least [(x + y + z)/27 hit points.

If x > y + z, then x hit points suffice and are optimal: simply place one hit point
on each of the x lines of the first slope class: for the first y + z (of the x) lines in the
class, place the hit points at y 4z vertices where the lines of the first slope class cross
lines of the second and third slope classes, thereby hitting all y 4 z such lines; once
there are only lines of the first slope class left, place exactly one hit point on each of
the remaining x — (y+z) lines of the first slope class. This results in an optimal hitting
set with x hit points. The greedy algorithm will produce an optimal such set, since it
will continue to place hit points at crossing points of the first and second slope class,
until the cardinality of the second class drops to one below that of the third (at which
point the class labels swap), and then continues (with the cardinalities of the second
and third slope classes alternating in which one is “y”), always able to hit a new line
of the first slope class, together with a new line of one of the other slope classes. The
greedy algorithm continues in this way, placing hit points at 2-intersections, until the
second and third slope classes are empty, and the remaining x — (y + z) hit points
must all go on unhit lines of the first slope class.

If x > y+ z, then [(x 4+ y + z)/2] hit points suffice and are optimal: one can
always place a hit point at a 2-intersection where two unhit lines cross, and we
claim that this is, in fact, what the greedy algorithm does. We argue that at the first
moment when there are no 2-intersections that hit two unhit lines, the cardinality vec-
tor (x, y, z) must be either (1,0,0) or (0,0,0). To see this, consider the three stages of
the greedy algorithm:

(i) x and y each go down by 1, z is unchanged; this stage continues until the
cardinality y drops to the value z — 1, causing the class labels to swap, since
now there are fewer lines in the second slope class than in the third slope class;
stage (ii) takes over.

(i) x and y each go down by 1, z is unchanged, but now, since y and z are within
1 of each other, the class labels swap back and forth between the second and
third slope class; this stage continues until the cardinality x drops to within 1
of each of the other two smaller cardinalities, y and z.

(iii) x and y each go down by 1, z is unchanged, but now, since all three cardi-
nalities x, y, and z, are within 1 of each other, class labels swap around and
the cardinalities stay within 1 of each other, until finally we reach cardinality
vector (1,0,0) or (0,0,0), and there are no 2-intersection points of unhit lines.

Itis easy to check that whenx > y+z, [(x +y+2)/21 =x+[(y +z—x)/2]. O
When there are 3-intersections, the greedy algorithm iteratively places hit points
at 3-intersections (in any order), removing the 3 hits lines, until there are no more

3-intersections. The remaining instance, with only 2-intersections, now can now be
solved optimally as described above.

@ Springer

Theory Comput Syst

Theorem 3 The greedy algorithm yields a %—approximation for hitting lines of 3

slopes in 2D.

Proof Consider the graph G whose vertices are the 3-intersections of the input set
of lines, with an edge of G between two vertices if and only if the corresponding 3-
intersections lie on a common input line. Let K denote the cardinality of a maximum
independent set, 4., in G. Let N3 be the number of 3-intersections that the greedy
algorithm selects. These N3 vertices correspond to a maximal independent set in G,
so K > N3. We have, K < 3N3, since (by independence) there is at most one
vertex of I,y along each of the 3Nz lines that the greedy algorithm hits with 3-
intersections.
The optimal solution has O PT hit points, with

OPT=K+O0OPTh(x—K,y—K,z—K) (1)
The greedy solution yields a set of Ny eeqy hit points, with
Ngreedy=N3+OPTz(x_N3,y_N3sZ_N3)~ (2)

First suppose x = K, which means that x = y = z = K. Then, OPT = K and
Ngreedy = N3+ OPTy(K — N3, K — N3, K — N3) = K + (%1 We have three
cases, depending on the value of K, mod 3:

1. K =3I, where [is an integer; thus,

Ngreedy 31 —1 4
L < 4 | —— | /3l = - 3
OPT — +’7 2 —‘/ 3)
2. K = 3l + 1; thus,
Ngreedv (3l 4+1—(1+ 1) 4
—— <1 — /@3l +1 —. 4
OPT = + 7 /GBL+1) < 3 4
3. K = 3l + 2; thus,
Ngreedy (31 4+2—(1+1)7] 7
£ < — /@l +2) < -. 5
OPT = + > /@Bl+2) < 5 Q)

Now, suppose x > K + 1. Then, we have the following three cases:

1. Ifx>y+4+z—N3,thenx—N3>y—N3+z—Nz,andx—K >y—K+z—K.
Thus,

OPT = K+x—K =ux,
Ngreedy = N3+x—N3=ux.

@ Springer

Theory Comput Syst

2. fy+z— K <x <y+z— N3, then
OPT = x,

y+z—x—N3
Ngreedy =X+ ’V——‘ ,

2

N , —x—N K — N 4
M=1+’7w—‘/x51+’7 5 3—‘/(1(_‘_1)53.

Q)

OPT 2

The detailed analysis is similar to the case in which x = K.
3. Ifx <y+z—K,then

—x — K
0PT=X+P+%—‘2K+1+1=K+2, @)
+z—x—N +z—x—-—K K
Ngreedy_OPTS%%-l—nyle?,
Ngreedy -1+ Ngrgedy_OPT <1 1—|—K/3
OPT OPT - K+2'

Thus,

— WhCHKZI,OPTZNgreedy;
— when K =2, 3, 4, using (6) and the first equality in (7), we have Ngyeeqy —
OPT =1, so we have

Ngreedy 1
—— <14 - =1.25; 8
opT ~ T3 ®)
— when K > 5,
Nereeay 1 8 1 381
OPT ~— 21 B
This completes the proof. O

3.3 Axis-Parallel Lines in 3D

While in 2D the hitting set problem for axis-parallel lines is easily solved, in 3D we
prove that the corresponding hitting set problem is NP-hard, using a reduction from
3SAT.

Theorem 4 Hitting set for axis-parallel lines in 3D is NP-complete.

Proof We give a reduction from 3SAT. We say that a line is a d-line if it is parallel to
the d-axis; we say that a plane is an ab-plane if it is parallel to the plane spanned by
the a-axis and the b-axis. A clause is represented by a z-line. A variable is represented
by a loop of axis-parallel lines with the following properties:

1. No two x-lines lie in the same xz-plane. (This ensures that when a clause z-line
meets a vertex of the loop where an x-line meets a y-line, it does not also meet
another such vertex.)

@ Springer

Theory Comput Syst

C

s

f

Fig. 3 An example of a variable loop

2. There are an even number of edges in each loop.

Lines from two different loops do not intersect.

4. A loop intersects a clause z-line if and only if the variable represented by that
loop is in the clause represented by the z-line. The intersection point represents
a literal in the corresponding clause.

5. There are two optimal hitting sets for a loop — the set of odd vertices, and the
set of even vertices. All positive (resp., negative) literals should be in the same
hitting set.

b

Figure 3 shows a portion of an instance in which clause C includes literal x; and
clause C, includes literal x7.

In three dimensions, it is not hard to take detours to avoid unwanted intersections.
The number of vertices in a loop can be adjusted by inserting a detour, as shown
in Fig. 4. Finally, we argue that all clause z-lines can be hit for free by the optimal

UO_ Ugf

Fig. 4 The insertion of the orange detour changes the color of v from red to blue

@ Springer

Theory Comput Syst

hitting sets of variable loops if and only if there is a satisfying truth assignment for
the corresponding 3SAT instance. O

4 Hitting Rays and Lines

Hitting rays is “harder” than hitting lines, since any instance of hitting lines has
a corresponding equivalent instance as a hitting rays problem (place the apices of
the rays far enough away that they are effectively lines). A ray has a unique line,
its containing line, that is a superset of the ray. Two rays having the same contain-
ing line are collinear. While two lines that are collinear are identical, two rays that
are collinear fall into two groups according to the direction they point along the
containing line, £. Because of nesting, we need keep only one of the rays point-
ing in each of the two directions along £. For example, among left-pointing rays,
we keep only the one contained in all other left-pointing rays, i.e., the one with the
left-most apex.

We show that the special case with horizontal rays and vertical lines (abbreviated
HRVL) is exactly solvable in polynomial time:

Theorem 5 The hitting set problem for vertical lines and horizontal rays can be
solved in O(nT) time, where n is the number of entities and T is the time for
computing a maximum matching in a bipartite graph with n nodes.

We begin with a high-level overview of the algorithm. A point can cover at most
3 objects: a vertical line, a left-facing ray, and a right-facing ray. This requires the
two rays to intersect in a segment, and the vertical line to intersect this segment. We
call points at such intersections 3-hitters. We can compute the maximum possible
number of 3-hitters, with no two sharing a line or a segment, via maximum matching
in a bipartite graph, where edges represent intersections between vertical lines and
horizontal segments. We prove there exists an optimal solution with this maximum
number of 3-hitters. The algorithm performs a sweep inward from the left and right,
finding a suitable set of 3-hitters, ensuring the remaining lines have the best possible
chance to share a point with the remaining rays. Once everything that is 3-hit is
removed, the remaining objects intersect in at most pairs. So we can finish the hitting
by solving an edge cover problem. The edge cover problem for a graph G = (V, E)
is to compute a minimum-cardinality set E* C E of edges such that every vertex in
V is incident to at least one edge of E*; the problem is solved in polynomial time,
using maximum cardinality matching, followed by a greedy algorithm. Our edge
cover instance is a graph with a vertex for each object and an edge between each pair
of intersecting objects.

We now give additional algorithmic and proof details. We call a horizontal ray
to the left (resp., right) an /-ray (resp., r-ray). In this section, all lines are vertical.
If two collinear rays are disjoint, we shift one ray slightly up or down, so no two
disjoint rays are collinear. These rays cannot be covered by a single point, so this does
not fundamentally alter the optimal solution. We also assume that no collinear rays

@ Springer

Theory Comput Syst

have the same orientation, since in this case one ray is a subset of the others, which
are redundant.

If aray is not collinear with any other ray, we add a ray to pair with it. For example,
if an r-ray intersects no I-ray, we add an intersecting I-ray whose right endpoint is to
the right of all vertical input lines. This additional ray will not change the optimal
solution. If an l-ray and r-ray intersect, their intersection is a segment. Since each ray
intersects exactly one other ray, we represent each such pair of rays by their segment.

Let H denote the set of segments and V denote the set of lines, and let # and v
denote their cardinalities respectively. A naive feasible solution is to use v points to
cover the lines and /4 points to cover the segments independently. The only way to
improve upon the naive solution is to find points that hit both a line and one or two
rays. The points that hit the lines can help “hit” segments in two possible ways:

(1) The point on a line may be placed on a segment. We call the corresponding line
a 3-hitter and say that the segment is 3-hit by the line.

(2) Points on lines may hit each ray outside its intersecting segment. This requires
two points on two distinct lines. We call the left (resp., right) line an [-hitter
(resp., r-hitter). We say the segment is double-hit by those two lines.

These are the only ways to improve over the naive hitting set. To see this, suppose
a vertical line is an r-hitter, that is, shares a point with a right-pointing ray outside
the shared segment with its left-facing ray. Suppose no vertical line shares a point
with the corresponding left-facing ray. Then that ray requires a separate point. This
is equivalent to putting a point on the segment and hitting the vertical line separately
(two points to hit one segment and one line).

When tallying these improvements for any feasible solution, we allow at most one
point on a vertical line to be involved in any 3-hitter or double-hitter. This is because
once a point on a vertical line is selected, the line is covered, and additional points
no longer help cover the line. More precisely, we say a set of vy 3-hit segments and
vy double-hit segments are independent if the union of the relevant lines (3-hitters,
r-hitters, and 1-hitters) has cardinality v; 4+ 2v;. That is, no vertical line is involved in
3-hitting or double-hitting more than one segment of an independent set.

Consider an instance / = HUYV and a feasible solution S. Let T be some maximal
independent set of 3-hit and double-hit segments with respect to S. Suppose there are
v1 3-hit segments and vy double-hit segments in 7. Then, |S| > h + v — v] — vy,
and there is a feasible solution with precisely & 4+ v — v; — vy points. To see this,
first remove from [the segments in 7' and their corresponding 3-hitters and double-
hitters. Let I’ refer to the resulting instance, whose size is |I| — 2v; — 3v; due to
the independence of T. Likewise let S’ refer to points in S that intersect an object in
I’; since S is a feasible solution for I, S’ is a feasible solution for I’. The instance
I’ cannot contain any 3-hit or double-hit segments, since such a segment would be
independent from those in 7', contradicting the maximality of 7. We observed above
that (1) and (2) are the only ways to improve upon a naive hitting set. Hence a naive
solution is optimal for I’, and |S’| > |I’|. We have that |S \ S’| = v| + 2vy, yielding
S| > |I'| + vi +2v2 = h + v — v — vy. The inequality becomes tight if we
replace S’ with a naive solution for /. In particular if S is an optimal solution for

@ Springer

Theory Comput Syst

I, then the inequality must be tight. Thus, we can think of an optimal solution as
maximizing vj + vy, and our goal is to maximize the number of independent 3-hit and
double-hit segments.

Given an instance of HRVL, we can calculate the maximum number of 3-hitters.
We construct the bipartite graph G in which one set of nodes is the lines and the
other set of nodes is the segments; there is an edge between two nodes if and only if
the line and the segment they represent intersect. We refer to G as the lines-segments
graph. Maximum matching is solvable in polynomial time. A matching in the graph
represents a set of independent intersections in the corresponding HRVL. That is, a
set of M edges in a matching corresponds to a way to hit M segments and M lines
with M points. These are hittings of type (1). The following lemma shows that hitting
points of type (1) are preferred over hitting points of type (2).

Lemma 2 For any instance of HRVL, there is a maximum matching between lines
and segments that can be augmented to be an optimal solution.

Proof The proof is by contradiction. Let v} be the largest vy for any minimum hitting
set. We assume that v} is less than m, the cardinality of the maximum matching
between lines and segments. Thus, there is an augmenting path in the bipartite graph
G; an example of such a path is shown in green in Fig. 5. Because the current solution
is optimal, any augmenting path cannot improve it. This allows us to infer some
properties of the first segment and the last line on the augmenting path. We consider
the augmenting path P with the shortest length (fewest elements) and the shortest
horizontal distance between the last two lines along the path. Then by case analysis
on path P, we argue there exists another augmenting path that increases v} or violates
a minimality condition of P.

Fig. 5 A green augmenting
path: the matching size
increases by replacing blue
circles with red crosses

I3

I ly

. A f

€2

€1

@ Springer

Theory Comput Syst

In more detail, an augmenting path in graph G corresponds to a sequence of alter-
nating segments and lines in the HRVL instance: {e1, /1, €2, 02, ..., ey, [;}. In the
current solution line /;_; is matched with segment e;. In Fig. 5 the green path is an
example of an augmenting path, where n = 3 and blue dots correspond to current 3-
hitter points. Because of the optimality of the current solution, any augmenting path
cannot improve it. The following two properties hold; otherwise, after augmenting,
the sum of v; and v, will stay the same, but v]" would be increased by 1:

— e is double-hit by other lines.
— I, is helping to double-hit another segment.

Without loss of generality, we assume the intersection of e; and [is to the left
of [,,. Also assume that n, the number of lines in the augmenting path, is as small
as possible. Among augmenting paths with smallest n, we pick one with the shortest
horizontal distance between lines [,_; and /,,. We consider the following cases:

1. If line [, is the l-hitter of some segment e;, then the l-hitter of segment e; can
take its job. One can do the augmenting and assign the I-hitter of e; to 1-hit e;.
Therefore the solution is still optimal and v} increases.

2. Suppose line [, is an r-hitter for a segment e;, and let /. be the r-hitter for segment
ey. If line /, is to the right of line /,,, then line /, can take the job of line /,. That
is, line /, can be the r-hitter for segment e;. Again, it is now possible to increase
v} while maintaining an optimal total number of points.

3. Ifline [, is an r-hitter and the r-hitter of ¢ (called /) is to the left of /,,, we know
that line /, will intersect a segment, ¢, (with 1 < g < n) of the augmenting path.
This is because we assume line /,, is to the right of the intersection of e and /;.
In Fig. 5, line /4 is a possible /,. Thus, using I, gives a shorter augmenting path,
{ et,li,....,eq, lr}. This new path either has strictly fewer lines or has a strictly
shorter horizontal distance between the last lines. This contradicts the choice of
the first augmenting path. 0

The following lemma gives additional useful structure for at least one optimal
solution:

Lemma 3 Given an optimal solution S, there is an optimal solution S’ that has the
same set of 3-hitters as S, with its I-hitters all left of its r-hitters.

Proof Let d be the number of double-hit segments in an optimal solution. We will
show that for the 2d lines involved in double-hitting these segments, there exists a
solution &’ where the first d, numbering from left to right, are /-hitters. Thus, the
next (last) d are r-hitters.

The proof is by contradiction. Figure 6 illustrates the following argument. Let S be
an optimal solution with the rightmost first r-hitter, r1. Assume, that there are strictly
fewer than d l-hitters to its left. Thus, there is at least one l-litter to the right of r;.
Let [, be any such l-hitter. Let 51 be the segment r-hit by ry. Its 1-hitter /; must be to
the left of r, since for any given segment, its l-hitter is to the right of the segment

@ Springer

Theory Comput Syst

A A A A
S1
- {
59
-t >
v v v v
1 rr—=ly la—=r1 1

Fig. 6 Segments s; and s are originally double hit using the blue and black points on their rays. They
can also be double hit using the blue and red points on their rays. The middle two lines can swap their
roles because it is always possible to move an r-hitter right or an I-hitter left. In general, the more a line is
to the left, the more flexible it can be as an l-hitter and the more a line is to the right, the more flexible it
is as an r-hitter

and its r-hitter is to the right. Let s, be the segment I-hit by /5. Its r-hitter » must
be to the right of ;. In Fig. 6, for each segment, the black and blue points on their
segments intersect the 1-hitters and r-hitters. We can swap the roles of r| and /; while
still double hitting both segments. Instead of using the blue points in Fig. 6, we use
the red points. The black and red points still hit all four rays associated with segments
s1 and s>. However, now the rightmost first r-hitter in the new solution has moved
further right. This contradicts our choice of solution S. U

Algorithm 1 below gives an optimal solution for HRVL. The algorithm maximizes
the number of 3-intersections and “balances” the remaining lines between the left
and right sides as much as possible. We test the “criticality” of a line / by comput-
ing a maximum cardinality matching in the lines-segments graph, with and without
the line /; if the matching cardinality drops when line / is not part of the graph, then
line [is critical. In the algorithm, we check the criticality of lines: given the previ-
ous choices, if a critical line is not used as a 3-hitter, there is no way to extend the
previous choices to a maximum matching. We add a 3-hitter to our solution if and
only if the line involved is critical. A 3-hitter is matched to the segment crossing
it that ends first in the current sweeping direction. We argue below that this algo-
rithm finds a maximum set of 3-hitters. Non-critical lines are counted as l-hitters
when sweeping from the left and as r-hitters when sweeping from the right. The
algorithm removes each newly-discovered non-critical line from consideration as a
3-hitter, and swaps the sweep direction (from left to right, or from right to left). This
balances the number of presumed l-hitters and r-hitters during the course of the the
algorithm. When the sweep encounters a segment s, this triggers testing of the first
line (in the sweep direction) that intersects s, if any. Subsequent sweep steps con-
tinue to process segment s until it is matched as part of a 3-hitter, or it is removed,
to be double hit at the end of the algorithm. A small illustrative example is shown
in Fig. 7.

@ Springer

Theory Comput Syst

Algorithm 1 Bidirectional sweeping algorithm for HRVL

1 Input: set L of vertical lines, set S of horizontal segments (ray intersections);
2 H <+ [0,0] //H counts 2-hitters at left and right sides;

38 I3« {} //I3 stores 3-intersections of the solution;

4 SD«-0; //SD stands for sweep direction. 0 is from left to right; 1 is reverse;
5 Lo < 0; Sz < 0 // unmatched lines and segments

6 step A: if there are any 3-intersection left then

7
8
9

sweep along the direction indicated by SD;
When a line and segment start at the same time, the segment is seen first.
if the event is a line 1 then

10 // Do not consider the line as a part of a 3-hitter.;

11 // Send to the final edge-cover problem;

12 step B: ;

13 L+ L—-{l};

14 Lo« LoU{l1};

15 H[SD]++;

16 toggle SD;

17 else

18 // the event is a segment e;;

19 if ey crosses some line(s) then

20 | l < the line hitting e; that is closest along SD;

21 else

22 // Do not consider ej as a part of a 3-hitter.;

23 // Send to the final edge-cover problem;

24 S+ S—A{ei};

25 So «+ Sy U{e1};

26 go to step A;

27 end

28 if [is critical then

29 //For example, if SD is 0, look at the right endpoints of segments

30 //crossed by . Pick the one with the leftmost right endpoint

31 e < the segment crossing | with the closest endpoint to [along SD;

32 // put the intersection of ez and ! into I3 ;

33 I3 (7[3U(l,€2) ;

34 S+ S —{e2};

35 L« L—{l};

36 go to step A;

37 else

38 | go to step B;

39 end

40 end

41 else

42 Solve the remaining problem L U Lo and S U S2 optimally using edge cover
problem;

43 end

We argue the correctness of Algorithm 1, beginning with the following lemma.

Lemma 4 Algorithm 1 selects a maximum-cardinality set of 3-hitters.

Proof When the algorithm chooses not to match a line / to a segment as a 3-hitter, it has
determined that this choice is correct: line / can be omitted from the set of 3-hitters
because the remaining lines and segments still have a maximum cardinality matching.
What remains to be shown is that when the algorithm creates a 3-hitter in Line 33,

@ Springer

Theory Comput Syst

l I I3 Iy ls
A

\J v v v v

Fig. 7 Example of the bidirectional sweep Algorithm 1: We begin sweeping from the left. Line /; does
not intersect a segment, so cannot be a 3-hitter. We put it in set Ly and switch to sweeping from the right.
We find segment f, which leads to an examination of line /5. Line /s is not critical, so we put it in Ly and
switch to a left sweep. We find segment b which leads to an examination of line /5. Line [, is critical. It
intersects segments a, b and c. Since the right endpoint of segment ¢ is leftmost, we select the intersection
of ¢ and /. We continue sweeping from the left, find segment b again which leads to line /3. Line /3 is
critical and is matched to segment b, the one that ends soonest in the /eft sweeping direction. Continuing
a sweep from the left, we find segment a. Segment a no longer crosses any lines, so it is added to set S>.
Next we find segment d and e in order, both added to set S,. Finally we find segment f, which leads to
consideration of line /4, which is critical. We match line /4 to segment f, since this is the first segment to
end going left (and the only remaining segment intersecting /4). At this point, we know there are no more
3-hitters, so the remainder of the problem is added to the sets L, and S>. In this case, segment g is added
to set S>. We then solve the remainder of the hitting set problem (lines /; and /5 and segments a, d, e and
g) optimally as an edge cover problem. Any one of the segments is double hit by the pair of lines. The
remaining three segments are hit with a point each

the set of 3-hitters chosen so far plus a maximum cardinality set of 3-hitters in the
remaining problem is a maximum cardinality set for the original problem.

Consider an instance of HRVL. Assume, without loss of generality, that the first
3-hitter the algorithm finds (line /) is while sweeping from the left. Let I be the
active instance when line / is considered. All lines to the left of line / have been
added to set L», i.e., they have been designated as possible I-hitters. Let M be a
maximum-cardinality matching in the line-segment graph for instance /. Because
line / is critical, it is matched to some segment s, in the matching. Let s be the seg-
ment 3-hit by line / (matched to line /) according to Algorithm 1. If s = s,, then we
are done. The 3-hitter is part of M and therefore is part of a maximum-cardinality
matching. Otherwise, if segment s is not part of matching M, then matching / to s
instead of s, gives a matching M’ of the same cardinality as M. Finally, suppose
that segment s is matched to line /,,, # [in matching M. For example, consider the
instance in Fig. 7 ignoring all objects except lines [and /3 and segments a and b. In
this example, [would be [, s would be b, [,,, would be /3 and s, would be a. Because
there are no lines to the left of line / in instance I, line /,, is to the right of line /.

@ Springer

Theory Comput Syst

By the choice of segment s as the segment intersecting / with the leftmost right end-
point, we have that segment s, extends at least as far to the right as s does. Because
line /,, intersects segment s, and segment s, extends at least as far to the right as
segment s does, then we know that line /,,, and segment s,, intersect. Therefore, if we
match line / with segment s, in the remaining problem, line /,, can be matched with
segment s,,. Combined with the rest of matching M, this is a maximum cardinality
matching.

This completes the argument for the first 3-hitter. The same argument holds for
the rest of the 3-hitters, whether scanned from the left or from the right. All verti-
cal lines “behind” the new 3-hitter in the scan direction have either been matched
to segments or have been removed from the problem as potential I-hitters or r-
hitters. Thus, the remaining problem at the time the new line is considered contains
lines on only one side (later in the scan direction). This matches the conditions
used above. O

We now argue that the left-right-balanced approach in Algorithm 1 leaves lines
that are excellent candidates as l-hitters and r-hitters. Let S be the solution given by
Algorithm 1, and let §” be an optimal solution with the maximum cardinality set of
3-hitters. We know that S and S’ have the same number of 3-hitters. Let D and D’
denote the sets of lines left behind (not 3-hitters) in S and S, respectively. We order
lines in D and D’ from left to right. Let k be L%J. Thus, there are at most k pairs of
double-hitters in S and S’. Let [h; (resp., [h}) be the ith line of D (resp., D’).

Given a solution P and a line /, let E(/, P) denote the number of segments on the
left side of / not hit by 3-hitters in P. A line having more segments on its right side is
more likely to be an 1-hitter. We will show that line //; is at least as capable of being
an l-hitter as is line lh;; specifically, we show that

E(lh;, S) < E(R,,S), i=1,2,..k 9)

Before proving inequality (9), we argue that this inequality, the equivalent inequal-
ity with respect to r-hitters and previous arguments suffice to prove the correctness
of Algorithm 1. This also proves Theorem 5. We argued that the optimal solution
maximizes the number of 3-hitters plus the number of double-hit segments. Lemma
2 shows that it suffices to first maximize the number of 3-hitters and then, subject to
that constraint, maximize the number of double-hit segments. Lemma 4 shows that
Algorithm 1 first maximizes the number of 3-hitters. Consider an optimal solution S’
with the maximum number of 3-hitters. Also, using Lemma 3, assume that if there
are d’ segments double hit, then they are hit with the leftmost remaining d’ lines and
the rightmost remaining d’ lines. We now argue that the final edge-cover computation
in Algorithm 1 finds as many double-hittings as solutions S’ has.

Let I’ be the HRVL instance with all the solution S’ 3-hitters and the segments they
3-hit removed. Let I be the corresponding instance after removing the lines and seg-
ments involved in 3-hitters in solution S. The sets of lines and segments left behind
can be different in the two instances. No lines cross any segments in either instance,

@ Springer

Theory Comput Syst

since otherwise the set of 3-hitters would not be maximum. Consider a segment s in
either problem. It can be 1-hit by any line to its left and it can be r-hit by any line to its
right. Thus, if there are ¢ lines to its left and 7 lines to its right, there are gr possible
ways it can be double hit.

As above, let k be the maximum number of double-hitters (the floor of half the
number of lines). Inequality (9) says that, numbering from the left, the ith line in
instance / has more segments to its right than the ith line in instance I’ has for all &
of the leftmost lines. Thus, each of the first k lines in instance I can 1-hit at least as
many segments as their counterparts in instance I’. An argument similar to the proof
of Inequality (9) below shows that each of the rightmost k lines in instance / can r-hit
at least as many segments as its counterpart in instance I’.

Consider a double-hit segment in solution S’ for instance I’. We can represent the
double-hitting as (x, y, z) where x is the index of the l-hitter in the set of l-hitters
(a number between 1 and k), y is the index of the segment numbered from the left,
and z is the index of the r-hitter, numbered from the right (a number between 1 and
k). Let T’ be the set of all such triples representing the double hitting in solution S’.
Then the same set of triples is a feasible double-hitting for instance /. The lines and
segments may be different, but the indices within the instances are the same. This is
feasible because, in this index-based representation, the set of feasible indices for the
I-hitter for the ith segment in instance / is a superset of the set of feasible indices for
the ith segment in instance I’. Similarly the set of feasible indices for the r-hitter in
instance I is a superset of the set of feasible r-hitters in instance I'.

Since the index-based solution for S’ is feasible in S, the final edge cover solution
will give at least as many double hit segments in S as there are in S’.

We now prove inequality (9). We split the proof into one claim and two lemmas.

Because of the criticality test and the choice of intersecting segment e, we have
the following claim:

Claim In § if a 3-hitter is on the left side of an l-hitter, the segment hit by the 3-hitter
will not intersect that 1-hitter.

Proof The proof is by contradiction. Let / be a 3-hitter, matched to segment e. Let I},
be the closest I-hitter to the right of line / and suppose [/, intersects segment e. There
can be j > 0 lines between / and /; which must all be 3-hitters. Let this set of 3-
hitters with their matched segments be (I1, e1), (I2, €2), ..., (I}, e;). Let t be the size
of the maximum matching in G at the time line / is tested for criticality. That is, the
maximum matching size drops to — 1 when line / is removed. When line /j, is tested
for criticality, the size of the maximum matching is t — j — 1 whether [, is included or
not. Let M be a maximum matching when /j, is not included. We can augment M to
a matching of size ¢ that does not include line /: add the j pairings from the 3-hitters
between / and [and then add (I,). Segment e is not part of matching M since e is
removed from the set of active segments in line 34 of Algorithm 1. This contradicts
the criticality of line /. O

@ Springer

Theory Comput Syst

Lemma 5 [h; cannot be on the right side of lh}, i = 1,2, .., k.

Proof The proof is by induction. We prove the base case by contradiction. Figure 8
illustrates the following argument. When i = 1, we assume that /4 is on the right
side of /1. This means that in S, line /7] is a 3-hitter. Suppose e is the corresponding
segment hit by /4 in S. We know in S’ line /1| does not hit e (since line [/ is not
a 3-hitter in §). Thus, e; must be hit by a different 3-hitter in §’, say I3 (otherwise,
[h' can 3-hit e; to increase the number of 3-hitters, contradicting the choice of S).
Again in S, [3 hits e, which means in S/, e; must be hit by another line /4. Claim 4
guarantees that all of the lines /; and the segments e; involved in the tracing process
are on the left side of //. This tracing will stop eventually, because there are only a
finite number of lines to the left of line /4. This gives a contradiction.

Now we assume that i is the smallest integer such that [A; is to the right of [A!.
We again start tracing from /h}. The tracing process can only end at [h; (j < i);
otherwise, a contradiction exists, as in the base case. Let the tracing sequence be
Ih;, e1,13,e2,14,...,1h;. Since lh’j is on the left side of [h}, so is [h;. In §’, we
replace 3-hitters of S’ in the tracing sequence by 3-hitters of S in the sequence. Now,
in §’, Ih; becomes an l-hitter instead of /A}. This modified S" has improved with
the replacement of an I-hitter with a “more capable” (left) I-hitter, while keeping the
number of 3-hitters the same. Now, we start a new trace with the new S’.

In summary, if the tracing ends with an l-hitter in S, we improve S’ and resume
tracing. This process must end in a contradiction because there are only a finite
number of lines, and each revised S’ moves an I-hitter strictly left. O

An immediate result from this lemma is
E(h;, S) < E(lh;, 5. (10)

Given a solution P and a line /, let C(/, P) denote the number of segments on the
left side of / that have been 3-hit in P. Let N () be the total number of segments on

I Ihy

¥

Fig. 8 The tracing sequence for the base case of the proof of Lemma 5. The order items are visited in
the tracing is /Ay, lh’l, ey, I3, €2, l4. The original l-hitter [/ is always blue and the original 1-hitter lh’l is
always red. Then for each step of the tracing, the new line or segment is green, with all older elements
in black

@ Springer

Theory Comput Syst

the left of line /. The following lemma shows that the segments that S leaves to be
double hit are the segments that are easier to double-hit.

Lemma 6 C(h;,S)>C(h;,S),i=1,2,..,k.

Proof We showed in Claim 4 that if a segment is 3-hit to the left of an l-hitter /, then
the segment ends before reaching line [. If C(lh;, S) < C(lh;, S’), then we replace
the part of S that is on the left side of /; with the corresponding part of S’. This gives
us a solution that has more 3-hitters than S has, contradicting the assumption that S
has the maximum set of 3-hitters. O

Therefore we obtain

E(lhi, S)

N(lh;) — C(lh;, S)
< N(hj) — C(h;, S") = E(lh;, S') < E(IR,, §').

S Hitting Lines and Segments
5.1 Hardness

Theorem 6 Hitting set for horizontal unit segments and vertical lines is NP-
complete.

Proof The reduction is from 3SAT. Consider a 3SAT instance with n variables and
m clauses. See Fig. 9.

Each variable is represented by a collinear connected set of 2m + 2 horizontal unit
segments: a start segment, a pair of segments for each clause, and an end segment.
Each clause is represented by a red vertical line that intersects appropriate pairs of
horizontal variable segments (if that variable occurs in a clause) or just single seg-
ments (in case a variable does not occur in a clause). Setting appropriate parities for
the literals in a clause is achieved by appropriate horizontal shifting of the segments,
as shown in the figure. This results in a construction in which the only place where
three of the elements (segments or lines) can be hit involves a vertical line represent-
ing a clause, corresponding to literals occurring in the respective clauses. (These are
indicated by magenta circles in the figure.) There are n black vertical lines intersect-
ing each of the variable start segments and n black vertical lines intersecting each of
the variable end segments. Let Ng = 4mn + 4n be the number of horizontal seg-
ments. This includes the 2m + 2 per variable just described, and 2m + 2 more per
variable at the bottom of the instance as shown in Fig. 9. Let N = Ny + 2n be the
number of horizontal segments plus the black vertical lines.

We show that any feasible hitting set with exactly N /2 points induces a truth
assignment and vice versa. The vertical black lines are parallel, so no point can hit
more than one of them. There is no point that hits more than two of the horizontal
segments at once. There is also no point on a black vertical line that hits more than one
horizontal segment. Therefore, stabbing all N objects requires at least N /2 points,

@ Springer

Theory Comput Syst

Ty

T

€3

T4

¢ T & O 8 T8 O & O & O] q

[S o ms - i o e~ i o o - S o ey - M © g - sl o ny
[S om0 o - S o ey - M o o - sl o my
[S om0 o - S o ey - M o o - sl o my

Fig. 9 A set of horizontal unit segments and vertical lines that represents the 3SAT instance I = (x] V
X2V x3) A (X2 V x3 V X45) A (X V X3 V x4). For better visibility, collinear segments are slightly shifted
vertically, with red and green points indicating overlapping segments. In an optimal hitting set, the point
covering a horizontal segment labeled with a variable name x; induces a truth value for the corresponding
variable: selecting one of its gray points (e.g., in the indicated green manner) assigns a value of “true”;
selecting the red point at the right end of the segment, a value of “false”. Overall, truth assignments for
each variable correspond to a set of green or red points, respectively. (Note that there are several equivalent
choices from the gray points, which all correspond to the same truth assignments). Literals occurring in
clauses are indicated by magenta circles; these are the only places where a point can hit three segments or
lines at once

and any solution consisting of exactly N /2 points must hit each object (horizontal
segment or vertical black line) exactly once and hit two objects. We now argue that
hitting the N objects with exactly N /2 points induces a truth assignment. For ease
of exposition, call a set of collinear horizontal segments a row. There are 2n rows:
n variables rows and n bottom rows. Consider the start segment of a top row. That
segment will be hit in one of two ways. If it shares a hit point with the next horizontal
segment (such as the point colored red on the segment next to x; in Fig. 9), then the
variable is set to false. If it shares a hit point with one of the black vertical lines (such
as the point colored green next to x1), then the variable is set to true. Suppose there
are g variables set to false. Then there are ¢ black vertical lines that were not hit with
variable start segments. They must be hit by bottom row start segments. Arbitrarily
match each false variable row one-to-one with these g bottom rows. Each pair of
variable row and matching bottom row corresponds to a loop where all selected points
are red (in Fig. 9). This leaves n — g true variables. Since they collectively hit n —
q of the left black vertical lines, then there are n — g bottom start segments that
share hit points with the next segment and share no hit point with a black vertical
line. Similarly match the true variables with these n — g bottom rows to form n —
q loops covered only by green points. Thus, any solution of size N /2 hitting the

@ Springer

Theory Comput Syst

variable components must select all red or all green points from each variable’s loop,
corresponding to a truth assignment. We get an overall feasible hitting set if and only
if the points also stab the vertical clause lines, corresponding to a satisfying truth
assignment.

Any satisfying assignment can hit all segments and lines with N /2 points by set-
ting the truth variable loops as described above. A satisfying assignment will also hit
every clause line. O

After appropriate vertical scaling, we can replace the vertical lines by vertical unit
segments, immediately giving the following corollary.

Corollary 1 Deciding if there exists a set of k points in the plane that hit a given set
S of unit-length axis-parallel segments is NP-complete.

We now show APX-hardness for the all-segment case.
Theorem 7 Computing a minimum hitting set of axis-parallel segments is APX-hard.

Proof We give a reduction from MAX-2SAT(3), maximum 2-satisfiability in which
each variable appears in at most three clauses. MAX-2SAT(3) is known to be APX-
hard [4]. In our reduction, a clause is represented by a vertical segment. A variable
gadget is a “loop” consisting of at most 8 horizontal segments and exactly 2 vertical
segments at the far left/right, linking a chain of an odd number (3, 5, or 7, depending
if the variable appears in 1, 2, or 3 clauses) of collinear horizontal segments on the
upper portion of the gadget to a single horizontal segment closing the loop along the
bottom portion of the gadget. Refer to Fig. 10. In total, a variable loop consists of an
even number (6, 8, or 10) of segments, whose intersection graph is an even cycle (no
three of them intersect). We place red and green points, each representing an edge of
the cycle that is the intersection graph, alternating around the cycle. These green/red
points occur at crossings with the left/right vertical segments of the loop, or at over-
lap points along the top chain of horizontal segments of the loop. Membership of a
variable x; in a clause c; is represented by having the clause segment pass through
a green or red point (according to whether the variable or its negation appears in the
clause) along the variable loop for x;, creating a 3-intersection point at the crossing.

C1 Co C3

U1

Fig. 10 In this example, clause c¢; includes the literal vy; clauses ¢, and c3 each include the literal vy

@ Springer

Theory Comput Syst

Let m and n be the numbers of clauses and variables, respectively, in an instance
of MAX-2SAT(3). Then, % <m< 37” Let k be the number of points in an optimal
solution of the corresponding hitting set problem. If the hitting set does not contain
any 3-intersection, we know that k < 5n 4+ m < 11m, since all of the segments in
each variable loop can be hit using at most 5 hit points.

Suppose A is an approximation algorithm for the minimum hitting point problem
on axis-parallel line segments, and that .4 guarantees an approximation factor of 1+e¢.
For any hitting set H (of size |H| < (1 + ¢)k) produced by .4, we obtain a solution
for the corresponding MAX-2SAT(3) instance, as follows.

Consider the variable loop for x;. In H, the number, /;, of 3-intersection hit points
along the variable loop could be 0, 1, 2, or 3.

If h; = 0, then we replace the hit points of H along the loop with an optimal set
of hit points along the loop — either the green or the red points. This sets the truth
value of x; (green is “true”, red is “false”). Further, this exchange has not caused the
number of hit points to go up.

If h; = 1, with one 3-intersection (green or red) point p, we replace the hit points
of H along the loop with the (optimal) set of all green or all red hit points along the
loop. This sets the truth value of x; (green is “true”, red is “false”), and this exchange
has not caused the number of hit points to go up.

If h; = 2, then the two 3-intersection points might “agree” (be the same color) or
“disagree” (be different colors). If they agree, we set the truth value of the variable
accordingly, and use an optimal set of hit points of the appropriate color along the
loop. If they disagree, then we know that the number of hit points of H used in hitting
the variable loop is suboptimal (by at least 1), since H does not use all-red or all-
green hit points. Thus, we set the variable either way (use an optimal hitting set of
all-green or all-red), and we have a leftover point of H, which we use to hit the clause
line that became unhit in the process of setting the hit point set to be monochromatic.
There was no increase in the number of hit points.

If h; = 3, then if the three points all agree (are of the same color), we set the truth
value of x; accordingly. Otherwise, we know that the set of points of H used to hit
segments in this variable loop is suboptimal; we set the truth value of x; according
to the majority color among the three 3-intersections, and use the one saved hit point
to hit the clause that was previously hit by the (minority color) point of H, but now
is not.

In this way, we have now transformed H into a set H, U H,, with |H,UH,| = |H|,
where H, is an optimal hitting set for variable loops (using hit points of a single color
around each loop), plus a (disjoint) set H, of additional points to hit clause segments.
Let alg be the number of clauses satisfied by the variable setting determined by H,,.
Then, we know that alg > m — |H,|.

Given an optimal truth assignment for the MAX-2SAT(3) instance, achieving op?
satisfied clauses, one way to construct a hitting set for all of the segments in the
construction is the following: Optimally place hitting points within each variable
loop, according to the truth assignment (and using exactly | Hy| hit points), and then
hit the remaining m — opt clause lines, not yet hit by 3-intersections within variable

@ Springer

Theory Comput Syst

loops, using m — opt separate hit points. Since k is the optimal number of hit points
for the whole construction, we know that k < |H,| + (m — opt).
Since we are assuming that A is a (1 4 ¢)-approximation, we have that

|H| = |Hy| + |Hc| = (1 + &)k,

which implies that
|He| < (14 &)k — [Hyl.
m

Then, putting these together, and using the facts that opt > 3 and that k£ < 11m,
we have
alg >m — |H.| = m — (1 + &)k + |Hy|

>m—{1+ek+k—m+4opt > (1—33¢)opt.

This implies that our hitting set problem is APX-hard (a PTAS for the minimum
hitting set of axis-parallel segments would imply a PTAS for MAX-2SAT(3)). O

5.2 Approximation

We give a 5/3-approximation for hitting a set V of vertical lines and a set H of
horizontal segments. We start by looking at the lower bounds: v = |V is the number
of vertical lines. It is a lower bound. Let / be the lower bound on hitting horizontal
segments only. We can compute / and a corresponding solution exactly in polynomial
time; it is the minimum number of hit points for the horizontal segments (computed
on each horizontal line). This is equivalent to hitting a collection of intervals with a
minimum number of points and can be solved in polynomial time by a well-known
“folklore” result, as mentioned in Section 2. At any stage of the algorithm, we let &
and v be the current values of these lower bounds for hitting the current (remaining
unhit) sets H and V.
In Stage 1, we place two kinds of points:

(a) We place hitting points on vertical lines that reduce 4 (and v) by one. These
points are “maximally productive” since no single hitting point can do more
than to reduce & and v each by one. As vertical lines are hit, we remove them
from V. Similarly, as horizontal segments are hit, we remove them from H.

(b) Look for pairs (if any) of points, on the same horizontal line and on two vertical
lines (from among the current set V), that decrease & by one.

Let k1 and k, be the number of Type (a) and Type (b) points placed in this stage,
respectively. Therefore, for the remaining instance, the lower bound /# decreases by
k1 + k2/2, and v decreases by kj + k.

In Stage 2, we now have a set of vertical lines V and horizontal segments H such
that no single point at the intersection of a vertical line and a horizontal segment (or
segments) reduces /4, and no pair of points on two distinct vertical lines reduces 4.

Lemma 7 For such sets V and H as in Stage 2, an optimal hitting set has size at
least v + h, where v = |V | and h is the minimum number of points to hit H.

@ Springer

Theory Comput Syst

Proof The hit points we place on V (one per line) might conceivably decrease
h. We claim that this cannot happen. Assume to the contrary that it happens. Let
{q1, 92, - .., gk} be a minimum-cardinality set such that each of them is on some
line of V from left to right and % is decreased after placing the set. Since the set is
minimum, the points in it should be on a horizontal line L.

Since we have found all productive points and pairs of points in stage 1, K should
be at least 3. Consider the hit point g,. The segments on L that are not hit by g, are
either completely left or right of ¢»; let H; and H, be the corresponding sets. Points
to the left of g, do not hit H,, and points to the right of g do not hit H;. If adding
q1 decreases H, that means g and g3 is a productive pair, which should be found
in stage 1; otherwise this means that the point ¢; is unnecessary, contradicting the
minimality of K. O

The above lemma implies that for Stage 2 it suffices to select one point to hit
each unhit vertical line and to independently find an optimal solution for hitting
only the unhit horizontal segments. As mentioned above, the latter can be solved in
polynomial time.

Theorem 8 There is a polynomial-time 5/3-approximation algorithm for geometric
hitting set for a set of vertical lines and horizontal segments.

Proof Let v be the total number of vertical lines in the instance and 4 be the minimum
number of points required to hit only the horizontal segments in the instance. The
total number of points selected by our algorithm is k| + k from the first stage and
h — ki —ky/2 + v — k1 — ko from the second stage. By Lemma 7, the number of
points chosen in Stage 2 is a lower bound on the cost of an optimal solution:

h—ki—ky/24+v—ki —ky <OPT. (11

We alsohave h < OPT and v < OPT. There are two cases:

(1) k1 + k2 < 2/3- OPT: In this case we select at most 2/3 - O PT points in
Stage 1, and we use (11) to bound the number of points selected in Stage 2. We
conclude that our algorithm selects at most 5/3 - O PT points.

(i) k14 k2 > 2/3- O PT: The total number of points selected by our algorithm is
h—ki—ky/24+v <2-OPT — (k1 +k2/2).Since k; +k2/2 > k1/2+k2/2 >
1/3- OPT, we obtain a 5/3-approximation in this case as well. O

Theorem 9 There is a polynomial-time 5/3-approximation algorithm for geometric
hitting set for a set of vertical (downward) rays and horizontal segments.

Proof The 2-stage approximation algorithm described above works for this case as
well. The key observation is that among any set of collinear downward rays, we may

@ Springer

Theory Comput Syst

remove all but the one with the lowest apex from the instance, and we obtain a proof
for this case by replacing “line” with “ray” in the proof above. O

6 Hitting Pairs of Segments

We consider now the hitting set problem for inputs that are unions of two segments,
one horizontal and one vertical. While we are motivated by pairs (and larger sets)
of segments that form paths, our methods apply to general pairs of segments, which
might meet to form an “L” shape, a “+”, or a “T” shape, or they may be disjoint.
This hitting set problem is NP-hard, since it generalizes the case of horizontal and
vertical segments.

Theorem 10 For objects that are unions of a horizontal and a vertical segment, the
hitting set problem has a polynomial-time 4-approximation.

Proof For ease of discussion, we call the union of two segments an “L’. We use a
method similar to those used in [13, 24].

Briefly, we do the following. Solve the natural set-cover linear programming (LP)
relaxation. Create two new problems: one that has only the horizontal piece of some
of the Ls and another that has only the vertical pieces of the remaining Ls. Place an
L into the vertical problem if the LP vertical segment has value at least 1/2, and into
the horizontal problem otherwise. Solve the two new problems in polynomial time
using the combinatorial method for the 1D problem, or solving the LPs, which are
totally unimodular, and thus will return integer solutions. Take all the points selected
by either new problem. We prove that these points are a 4-approximation.

In more detail, suppose we have [unions of segments as described above, and
let P be the set of points serving as our potential hitters. We assume that |P| is
polynomial in / by preprocessing the instance, if necessary, so that we only consider
points at endpoints and crossings of segments. For each such union i, we let S; be
the set of points covering the union, while H; and V; are the sets of points covering
the horizontal segment and vertical segment respectively. We employ the standard set
cover linear program (LP) relaxation specialized to our problem:

min E Xp

peP
DY xg =1L VI<i<l (12)
peH,; qeVi

0<x, <=1, VpePl.

We use an optimal LP solution, x*, to construct a new instance of the problem
in which each union contains either a vertical segment or a horizontal segment, but
not both. This new instance is easier to approximate but no longer provides a lower

@ Springer

Theory Comput Syst

bound on the original optimum value, O PT; however, we show that it provides a
lower bound that is within a constant factor of O PT.
For each union of segments i, we set

[H Y e X = 172
Si = { Vi, otherwise. (a3

Now each S; corresponds to either a horizontal or vertical segment. Let H' = {i |
S; represents a horizontal segment}, and let V' = {1,...,1} \ H'. Our algorithm is
as follows:

1. Solve the LP, and let x* be an optimal solution.
. Construct S/ for each union of segments i as described above.
3. Solve the hitting set problems for all the horizontal segments, H’, and all the
vertical segments, V', independently. Return the union of the points, X selected
by optimal solutions to each instance.

This algorithm returns a feasible solution since it selects some point in S, C §;
for each union of segments. The first two steps run in polynomial time. Hitting
segments of a single orientation is solvable in polynomial time; in fact the corre-
sponding set cover LP relaxation in this case has the consecutive ones property and is
totally unimodular, hence the optimum LP value equals the optimum integer solution
value.

To see that it is a 4-approximation, let y; = min{2x1”;, 1} for all p. By (12) and
(13) we see that the fractional vector y* is feasible for the LP instance defined by the
segments corresponding to the S;. Now we modify the latter LP instance by taking
each point p and replacing the variable x, with variables x, ; and x, ,, where x ;
appears only in horizontal segment constraints where x,, formerly appeared, and x, ,
appears only in such vertical segment constraints. The resulting LP decouples the
horizontal and vertical segments and captures precisely the problem from Step 3 of
the algorithm. Since this LP is totally unimodular, we have that the number of chosen
points, | X|, is at most the cost of any feasible fractional solution. In particular we see
that the fractional vector z* with 27, , = 23, ,, = yj; is feasible for the decoupled LP,
and so:

X1 <Y =2y (14)
q p

To obtain our desired result we note that) » y;'; <2y » x;‘, by the definition of y*,
yielding [X| <4, x% <4- OPT by (14). O

The above idea naturally extends to a 4-approximation for the weighted version of
the problem. For unions consisting of at most k segments drawn from r orientations,
the approach yields a (k - r)-approximation.

The LP-rounding technique in the proof above was introduced by Carr et al. [13]
to obtain a 2.1-approximation for the weighted edge-dominating set problem. A simi-
lar idea was introduced independently by Gaur et al. [24] to obtain a 2-approximation

@ Springer

Theory Comput Syst

for stabbing axis-aligned rectangles with horizontal and vertical lines. By using
the approach above in conjunction with our approximation algorithm for Theorem
8, we obtain an improved approximation factor in the case that the vertical seg-
ments are lines. Before describing this result, we need a slightly stronger version of
Theorem 8:

Lemma 8 There is a polynomial-time 5/3-approximation algorithm for hitting a set
of vertical lines and horizontal segments that always returns a solution of cost within
5/3 that of an optimal solution to the natural set cover LP relaxation.

Proof Given an instance of geometric hitting set over vertical lines and horizon-
tal segments, let L P* be the optimum value achieved by the natural set cover LP
relaxation. We show that the algorithm used to establish Theorem 8§ satisfies stronger
versions of the bounds used in the proof of Theorem 8:

h<LP* v<LP* andh —ky —ky/2+v—k —ky < LP*.

Since the vertical lines are disjoint, by summing the corresponding LP constraints,
we see that) pXp = v for any feasible x. Taking x to be an optimal solution,
x*, we have that LP* =) » x; > v. As noted before, the natural set cover LP
relaxation is totally unimodular in the case of hitting only horizontal segments. Thus,
by dropping the constraints corresponding to the lines from the LP, we conclude that
LP* > h.

For the final bound, we need to show that for the type of instance obtained by our
5/3-approximation in Stage 2, L P* is equal to O PT’, the optimum size of a hitting
set. Lemma 7 shows that for such instances, OPT’ = v’ + h’, where v’ and h’ are
the individual vertical and horizontal lower bounds for the instance.

Consider a collection of collinear horizontal segments from a Stage-2 instance, and
remove all points that lie on some vertical line along with all the horizontal segments
hit by such points. The proof of Lemma 7 shows that such a deletion does not increase
the optimal number of points required to hit such an instance. Hence, appealing to
the integrality of such LP instances when dropping the vertical line constraints, we
have that) peP\P, Xp Z n’, where P’ is the set of points of a Stage-2 instance, and

Py, is the set of points that lie on some vertical line. Considering only the vertical line
constraints, as above, gives us y pePl, Xp > v'. Together, these inequalities yield the

desired bound, Zpep, xp = h +0.
We substitute these bounds in the proof of Theorem 8 to conclude that our
algorithm selects at most 5/3 - L P* points instead of 5/3 - O PT points. O

Using similar methods and the above lemma, we also have the following:

Theorem 11 For objects that are unions of a horizontal segment and a vertical line,
the hitting set problem has a polynomial-time 10/3-approximation.

Proof Our algorithm is essentially the same as the 4-approximation of Theorem 10,
with a different last step:

@ Springer

Theory Comput Syst

1. Solve the LP, and let x* be an optimal solution.

Construct S; for each union i of a horizontal segment and a vertical line.

3. Now each S is either a horizontal segment or a vertical line, and we find a
feasible solution X for this instance using our 5/3-approximation.

»

We construct y* just as in the proof of our 4-approximation; however, now we
observe that y* is feasible for the set cover LP relaxation for the instance defined
by the S!. This is just an instance of hitting horizontal segments and vertical lines,
and so:

* *k
IX| <5/3-LP*<5/3-> v
p

Since Zl’ y;‘, < ZZP x;‘, as before, we have that | X| < 10/3- Zp x; <10/3-OPT
as desired. O]

7 Hitting Triangle-Free Sets of Segments

We consider now the problem in which the n input segments S are allowed to cross or
to share endpoints, but not to overlap (i.e., the intersection of any two input segments
is not a non-zero length segment — it is either empty or a single point).

Let G = (V, E) denote the (planar) arrangement graph, G(S), induced by the
segments S; thus, G has vertex set V equal to the set of all endpoints or crossing
points of S and has edge set E of m = |E| edges joining each pair of vertices that
appear consecutively along a segment of S.

We assume that G is triangle-free, meaning that it has no cycle of length 3 (i.e.,
its girth is at least 4). It is well known that a planar triangle-free graphs must have a
vertex of degree at most 3. (For completeness, we provide the proof: In a triangle-free
planar graph (having n nodes, e edges, and f faces), each face has at least 4 edges
bounding it. The sum of the number of edges bounding each of the faces is simply 2e,
and in a triangle-free graph must be at least 4 f; thus, 2e > 4 f. By Euler’s formula
(f —e+n = 1+c, for c > 1 connected components), we get 2e > 4(1+c+e—n) >
4(2 4+ e — n), implying that e < 2n — 4. The sum of the vertex degrees is exactly 2e
and is thus at most 4n — 8; thus, not all vertices have degree 4 or more — there must
be a vertex of degree at most 3.)

In this section we give a linear-time 3-approximation algorithm for computing a
hitting set of points that hit all of the segments of S, assuming that the arrangement
graph G (S) is triangle-free and given. (If G(S) is not given, we can compute G(S)
from S in time O (m+-nlogn), using, e.g., the algorithm of Balaban [5].) Our approx-
imation factor of 3 matches that obtained recently by Joshi and Narayanaswamy
[29]; however, their algorithm employs linear programming, while ours is a simple,
combinatorial linear-time (O (m)) algorithm.

Our algorithm is the following clipping/shortening process:

(i) Pick a vertex v € V of degree at most 3 (it will necessarily be a segment
endpoint); such a vertex must exist, by the triangle-free property.

@ Springer

Theory Comput Syst

(ii)) Remove the vertex v, and shrink the incident segments with endpoint v to
the next adjacent vertex. (In particular, if v is a T-junction, where two of the
edges incident to v lie on a common segment, then only the one segment with
endpoint at v is shrunk, leaving the other two edges connected.)

(iii)) When shortening a segment s results in segment s becoming a single point
(vertex), u, establish a hitting point at # and remove all segments that pass
through u.

The following invariants hold at any stage of the process:

(1) There is at most one remaining subsegment of an input segment (i.e., the portion
of an original segment s that remains is connected).

(2) All segments that have been removed are hit by the hitting points that have been
established.

(3) Any hitting set of the remaining segments, together with the established hitting
points already found, forms a hitting set for the original set of input segments.

(4) The graph G remains triangle-free during the process.

The invariants imply that the set of points computed by the algorithm is a valid
hitting set. The following lemma establishes the approximation factor:

Lemma 9 The number of hitting points established by the algorithm is at most 3
times the number, |H |, of points in any hitting set H for S.

Proof Place tokens on the vertices H and consider running the clipping/shortening
process on G, with the following actions on the tokens.

When there is a token on the vertex v that is about to be clipped, replace the token
with at most 3 clones of it, one on each of the segments that meet at v, allowing
each clone to slide along with the endpoint of a clipped segment s as the segment is
shrunk, leaving the clone at a new vertex u, the new endpoint of segment s. (There
might also be a token at u already; we allow two or more tokens/clones to accumulate
at a vertex.) We never clone a clone; if a clone associated with a segment s exists
at a vertex v that is being clipped, it remains on segment s, and slides along it as it
shrinks. Thus, associated with each point of H there is either a single token or up to
3 clones of the token (but not both).

This ensures that the tokens/clones continue to hit all segments, at all stages of the
clipping/shortening process. (Here, we are using the degree-3 property, which allows
us to make sure that two edges incident on v that lie on the same segment s are not
cut apart at v in our process; thus, a point of H that lies on s continues to hit the
shrunk version of segment s. If we had split s at v, with no point of H at v, then no
clones are generated at v, and the point(s) of H on segment s may no longer be a
valid hitting set for the new arrangement after splitting s at v.) In particular, when a
segment shrinks to a point u, there is at least one token/clone present there. Thus, the
number of hitting points established by our algorithm is at most 3| H|, for any hitting
set H of S. Letting H be an optimal hitting set, we get that the number of hitting
points produced by the algorithm is at most 3 times optimal. [

@ Springer

Theory Comput Syst

Theorem 12 The algorithm yields a 3-approximation and runs in time O(m), where
m is the number of edges in the original (planar) arrangement graph G.

Proof Immediate, since we only have to maintain the graph G in a standard planar
network data structure (e.g., the Doubly Connected Edge List (DCEL) [6]) that allows
us to know vertex degrees and perform elementary operations in constant time. [

8 Conclusion

We have given a variety of new hardness and approximation results for geomet-
ric hitting sets involving lines, rays, and segments from a small number of discrete
orientations. We have also given a linear-time combinatorial algorithm that yields
a 3-approximation for hitting triangle-free sets of non-overlapping segments in the
plane, matching the approximation factor recently obtained by [29] using linear
programming methods.

We note that our methods apply as well to yield the same results (lower bounds,
approximation bounds) for the more general setting in which “segments,” “rays,”
and “lines” are given as subsets of families of disjoint pseudoline curves, with each
disjoint family playing the role of an “orientation” of lines. (The pseudoline property
requires that any two pseudoline curves that intersect (are not “parallel””) do so in a
single point of intersection, where they cross.)

Natural open questions ask if any of these approximation bounds can be improved.
Notably, we believe that the trivial 2-approximation for hitting segments of two ori-
entations can be improved. Another direction for future research is fixed parameter
tractable (FPT) algorithms; for some recent related work, see [1]. Finally, we are
interested in optimal coverage versions of these problems in which, e.g., one desires
a smallest cardinality set of line segments, rays, or lines, from a small number of
orientations, in order to cover a given set of points.

Acknowledgments This work is supported by the Laboratory Directed Research and Development
program at Sandia National Laboratories, a multi-program laboratory managed and operated by San-
dia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department
of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000. J. Mitchell
acknowledges support from the US-Israel Binational Science Foundation (grant 2010074) and the National
Science Foundation (CCF-1018388, CCF-1526400).

References

1. Afshani, P., Berglin, E., van Duijn, L., Nielsen, J.S.: Applications of incidence bounds in point covering
problems. In: Proceedings 32nd International Symposium on Computational Geometry, LIPIcs, 51,
60:1-60:15, Schloss Dagstuhl - Leibniz-Zentrum Fuer Informatik (2016)

2. Alon, N.: A non-linear lower bound for planar epsilon-nets. Discrete Comput Geom 47(2), 235-244
(2012)

3. Aronov, B., Ezra, E., Sharir, M.: Small-size e-nets for axis-parallel rectangles and boxes. SIAM J.
Comput. 39(7), 3248-3282 (2010)

@ Springer

Theory Comput Syst

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

. Ausiello, G., Crescenzi, P., Gambosi, G., Kann, V., Marchetti-Spaccamela, A., Protasi, M.: Complex-

ity and approximation: Combinatorial optimization problems and their approximability properties,
Springer Science & Business Media (2012)

. Balaban, 1.J.: An optimal algorithm for finding segment intersections. In: Proceedings of 11th

Symposium on Computational Geometry 211-219, ACM (1995)

. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M. Computational Geometry: Algorithms and

Applications, 3rd edn. Springer, Berlin (2008)

. Brimkov, V.E.: Approximability issues of guarding a set of segments. Int. J. Comput. Math. 90(8),

1653-1667 (2013)

. Brimkov, V.E., Leach, A., Mastroianni, M., Wu, J.: Experimental study on approximation algorithms

for guarding sets of line segments. In: Advances in Visual Computing, 592-601, Springer (2010)

. Brimkov, V.E., Leach, A., Mastroianni, M., Wu, J.: Guarding a set of line segments in the plane.

Theor. Comput. Sci. 412(15), 1313-1324 (2011)

. Brimkov, V.E., Leach, A., Wu, J., Mastroianni, M.: Approximation algorithms for a geometric set

cover problem. Discrete Applied Math 160, 1039-1052 (2012)

Brodén, B., Hammar, M., Nilsson, B.J.: Guarding Lines and 2-Link Polygons is APX-Hard. In:
Proceedings of 13th Canadian Conference on Computational Geometry, 4548 (2001)

Bronnimann, H., Goodrich, M.T.: Almost optimal set covers in finite VC-dimension. Discrete
Comput. Geom. 14, 263-279 (1995)

Carr, R.D., Fujito, T., Konjevod, G., Parekh, O.: A 2 1/10-approximation algorithm for a generaliza-
tion of the weighted edge-dominating set problem. In: European Symposium on Algorithms, 132-142,
Springer (2000)

Chvital, V.: A greedy heuristic for the set-covering problem. Math. Oper. Res. 4(3), 233-235 (1979)
Clarkson, K.L.: Algorithms for polytope covering and approximation. In: Algorithms and Data
Structures, 246-252, Springer (1993)

Clarkson, K.L., Varadarajan, K.: Improved approximation algorithms for geometric set cover. Discrete
Comput. Geom. 37(1), 43-58 (2007)

Dinur, I., Steurer, D.: Analytical Approach to Parallel Repetition. In: Proceedings of 46th Symposium
on Theory of Computing, 624-633, ACM (2014)

Dom, M., Fellows, M.R., Rosamond, F.A.: Parameterized complexity of stabbing rectangles and
squares in the plane. In: WALCOM: Algorithms and Computation, 298-309, Springer (2009)

Duh, R.C., Fiirer, M.: Approximation of k-set cover by semi-local optimization. In: Proceedings of
29th Symposium on Theory of Computing, 256-264, ACM (1997)

Dumitrescu, A., Jiang, M.: On the approximability of covering points by lines and related problems.
Computational Geometry: Theory and Applications 48(9), 703-717 (2015)

Even, G., Levi, R., Rawitz, D., Schieber, B., Shahar, S.M., Sviridenko, M.: Algorithms for capacitated
rectangle stabbing and lot sizing with joint set-up costs. ACM Transactions on Algorithms 4(3), 34:1—
34:17 (2008)

Even, G., Rawitz, D., Shahar, S.M.: Hitting sets when the VC-dimension is small. Inf. Process. Lett.
95(2), 358-362 (2005)

Gaur, D.R., Bhattacharya, B.: Covering points by axis parallel lines. In: Proceedings 23rd European
Workshop on Computational Geometry, 42-45 (2007)

Gaur, D.R., Ibaraki, T., Krishnamurti, R.: Constant Ratio Approximation Algorithms for the Rectangle
Stabbing Problem and the Rectilinear Partitioning Problem. In: Proceedings of European Symposium
on Algorithms, 211-219, Springer (2000)

Giannopoulos, P., Knauer, C., Rote, G., Werner, D.: Fixed-parameter tractability and lower bounds
for stabbing problems. Computational Geometry: Theory and Applications 46, 839-860 (2013)
Hassin, R., Megiddo, N.: Approximation algorithms for hitting objects with straight lines. Discret.
Appl. Math. 30(1), 29-42 (1991)

Heednacram, A.: The NP-Hardness of Covering Points with Lines, Paths and Tours and their
Tractability with FPT-Algorithms, Ph.D. thesis, Griffith University (2010)

Hochbaum, D.S., Maas, W.: Approximation schemes for covering and packing problems in image
processing and VLSI. J. ACM 32, 130-136 (1985)

Joshi, A., Narayanaswamy, N.: Approximation algorithms for hitting triangle-free sets of line seg-
ments. In: Proceedings of 14th Scandinavian Symposium and Workshops on Algorithm Theory,
357-367, Springer (2014)

@ Springer

Theory Comput Syst

30.

31.

32.

33.

34.

35.

36.

37.

38.

Kovaleva, S., Spieksma, F.C.: Approximation algorithms for rectangle stabbing and interval stabbing
problems. SIAM J. Discret. Math. 20(3), 748-768 (2006)

Kratsch, S., Philip, G., Ray, S.: Point line cover: the easy kernel is essentially tight. In: Proceedings
of 25th ACM-SIAM Symposium on Discrete Algorithms, 1596-1606 (2014)

Kumar, V.A., Arya, S., Ramesh, H.: Hardness of set cover with intersection 1. In: Proceedings of 27th
International Colloquium on Automata, Languages and Programming, 624-635 (2000)

Langerman, S., Morin, P.: Covering things with things. Discrete Comput. Geom. 33(4), 717-729
(2005)

Megiddo, N., Tamir, A.: On the complexity of locating linear facilities in the plane. Oper. Res. Lett.
1(5), 194-197 (1982)

Mustafa, N.H., Ray, S.: Improved results on geometric hitting set problems. Discrete Comput. Geom.
44(4), 883-895 (2010)

O’Rourke, J.: Art gallery theorems and algorithms. The international series of monographs on
computer science. Oxford University Press, New York (1987)

Pach, J., Tardos, G.: Tight lower bounds for the size of epsilon-nets. J. Am. Math. Soc. 26(3), 645—
658 (2013)

Urrutia, J. et al.: Art gallery and illumination problems. Handbook of Computational Geometry 1(1),
973-1027 (2000)

@ Springer

	Geometric Hitting Set for Segments of Few Orientations
	Abstract
	Introduction
	Our results
	Related Work

	Hitting Segments
	Hitting Lines
	Hardness of Hitting Lines of 3 Slopes in 2D
	Analysis of the Greedy Hitting Set Algorithm for Lines of 3 Slopes in 2D
	Axis-Parallel Lines in 3D

	Hitting Rays and Lines
	Hitting Lines and Segments
	Hardness
	Approximation

	Hitting Pairs of Segments
	Hitting Triangle-Free Sets of Segments
	Conclusion
	Acknowledgments
	References

