Evolution of Open Source SNMP Tools

Jurgen Scbhnwalder — University of Osnahick, Germany

April 29, 2002

Abstract

This paper reviews the evolution of some major open source SNMP tools
over the last decade. It focusses on open source packages that are widely
used and which have shaped some of the SNMP technology. The paper
identifies some lessons that can be learned.

1 Introduction

The Simple Network Management Protocol (SNMBE)) as defined in the late
1980s to address the management needs of the evolving Internet. The traditional
SNMP architecture introduces two entities: SNMP managers and SNMP agents.
SNMP managers execute management applications while SNMP agents provide
access to typed MIB variables which are either simple scalars or conceptually or-
ganized into tables. SNMP agents can also send asynchronous event notifications
to SNMP managers in order to report events. The scalars and conceptual tables
communicated with SNMP are formally defined by using a data definition lan-
guage called the Structure of Management Information (SMI). Data definitions
written in the SMI are called Management Information Base (MIB) modules.

The SNMP protocol has been designed to operate in lossy networks and to
minimize the resource requirements of the SNMP agents. As a consequence,
SNMP agents are generally stateless and the default transport for SNMP messages
is the User Datagram Protocol (UDP).

The first version of SNMP (SNMPv1) went through the standards-process
quickly and became an Internet Standard in 1980 [The first version of the
data definition language (SMIv1) was also published in 13)@ipd a more fo-
malized version in 19914 5]. Both, SMIv1l and SNMPv1 were quickly adopted
by the manufacturers of networking devices and vendors of management software.
SNMP is supported by almost all network devices and in wide-spread use today.

This paper describes how some major open source SNMP tools evolved over
time and it tries to identify some lessons learned. The paper is organized as fol-
lows: Section? briefly summarizes the evolution of the SNMP technology. Sec-
tion 3 discusses the evolution of various open source SNMP tools. Note that the
selection of the open source tools is subjective and does not try to cover all impor-
tant packages available. Some lessons learned are discussed in 8duione
the paper concludes in Sectibn

2 Evolution of the SNMP Technology

The SNMP technology had an interesting evolution during the last decade — not
all proposed improvements have been a success story nor was the process within
the SNMP community always a nice example of good engineering practice. But
despite all the bad press SNMP had over the years, it is widely deployed and used
very extensively for gathering statistics and detecting network failures.

1.0 20 22 23 24 2526
CORBA (OMG) } } } } } } }
M.30
TMN (ITU) | M.3010 M.3100 M.3400
| | |
[[[
OSIRM.4 CMIP CMIS GDMO
CMIP (ISO) } } } }
SNMPV1 SNMPv2p SNMPv2c SNMPV3 SNMPV3 SNMPV3
SNMP (IETF) } [S] } [P] } [D/E] } [P] } (D] %[S]
SMivi SMIv2 SMiv2 SMiv2
SMI (IETF) } [s] } [P] } D] } [s]
SPPIVL
SPPI (IETF) 1Pl
COPS-PRV1
COPS-PR (IETF) [P]
Legend: 1.0 20 20s
[P] Proposed Standard DMI (DMTF) | | |
[D] Draft Standard f f f
[S] Standard 10 20 22 2324 25
[E] Experimental CIM (DMTF) | | | [l |
[[[[[
LDAP LDAPv2 LDAPV3
LDAP (IETF) | [P] | 0] | [Pl
| | | | | | | | | | | | | | | | | | | |
[[[[[[[[[[[[[[[[[[[[
1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002

Figure 1: Historical Perspective on Network Management Technologies

Figure 1 shows the evolution of various protocols and data definition lan-
guages that have been used for managing communication network. The Internet

Engineering Task Force (IETF) finalized SNMPv1 in the early 1990s and soon
started efforts to introduce SNMP version 2 together with a second version of
the data definition language (SMI). This process turned out to be difficult and
the result was SNMP version 2c (SNMPv2c). SNMPv2c is relatively widely de-
ployed today, although it is not a complete IETF standard as it lacks strong secu-
rity (which was one of the main goals of SNMPv2). The second version of the
SMI (SMIv2) was more successful and was published as an Internet Standard in
1999 [, 7, 8], eight years after the publication of SMIv1 as an Internet Standard.

Since SNMPv2c did not reach its goals, an attempt was started in 1997 to
define SNMP version 3 (SNMPv3) which provides strong secyrigmote ad-
ministration capabilities and probably most important an architectural framework
[9]. SNMPv3 is gaining deployment and the revised documents are waiting for
the publication as full Internet Standard which will then replace SNMPv1 and
SNMPv2c. It thus took 12 years from SNMPv1 to SNMPv3 with an intermediate
version of SNMPv2c which was never an official SNMP standard. More details
on the documents that define the various versions of SNMP can be fouild in [

Figurel shows that SNMP has many competitors. The International Telecom-
munication Union (ITU) has defined the Telecommunications Management Net-
work (TMN) series of standards for managing telecommunication networks. The
specifications were at some point closely aligned with the Common Management
Information Protocol (CMIP) defined by the International Organization for Stan-
dardization (ISO). Currently, the ITU is more moving towards CORBA as the
communication middleware. The Distributed Management Task Force (DMTF,
formerly known as the Desktop Management Task Force) developed the Desk-
top Management Interface (DMI) until 1998. Since then, the DMTF is widely
know for its work on the Common Information Model (CIM). Figuteshows
the Lightweight Directory Access Protocol (LDAP) standards because LDAP was
proposed as part of the Directory Enabled Networks (DEN) initiative.

Just recently, one of the competitors started within the IETF itself: The Com-
mon Open Policy Service for Provisioning (COPS-PR(][and the associated
Structure of Policy Provisioning Information (SPPI) data definition languatje [
There is an ongoing debate whether this competition is a good or a bad sign for
people who have to run networks.

The current SNMPvV3 specifications provide strong authentication but only relatively weak
privacy since the default encryption algorithm is single DES. Work is underway to support AES
in addition to DES.

3 Evolution of Open Source SNMP Tools

Open source implementations are crucial for making new technologies or sig-
nificant revisions of existing technologies successful. The IETF standardization
process requires at least two independent implementations in order to move a
specification forward. In the early days, these implementations were often cre-
ated in research environments and freely available. This has also been true for
SNMP. The classic SNMP implementations were done at the Massachusetts Insti-
tute of Technology (MIT), the Carnegie Mellon University (CMU) and the ISODE
consortium. Other free implementations followed later and there are now several
second generation open source implementations in widespread use.

3.1 CMU-SNMP- UCD-SNMP- NET-SNMP

In the early days, there were three open source SNMP implementations. The MIT
implementation was pretty small and solid. However, it never got widely used
since further development stopped pretty soon at the MIT. The ISODE implemen-
tation made heavy use of thi8ODE infrastructure. Porting the whol&SODE
distribution in order to use it often turned out to be a major effort, especially in
cases where the Unix version was not one of the versions the developers used. In
addition, since the implementation used lots of compiler generated code, it took
quite some time to understand the code. The CMU implementation was easier to
understand and extend. Many people started with the CMU version to develop
their own SNMP agents and managers.

One of the branches that emerged from the CMU implementation was the
Univerisity of California at Davis (UCD) SNMP distribution calléCD-SNMP
It was created in 1995 because there was a need for an extensible monitoring
system at the UCD. Initiallyl CD-SNMPwas just a set of patches against one
of the CMU releases which supported one of the attempts to support security in
SNMPv2. TheUCD-SNMRlistribution became quite popular since it was easier
to port and provides many new features. TW&D-SNMHmMplementation also
was the first open source SNMP implemenation with full SNMPv3 support.

In 2000, a decision was made to renat€D-SNMRo NET-SNMP to re-
flect the fact that the development had become a community effort over the years.
Furthermore, one of the lead developers left the UCD so that the UCD was no
longer attachted to the project. There is currently work underway towards the
5.0 release oNET-SNMR which is a major cleanup of the implementation and
provides many new features.

2http://www.net-snmp.org/

http://www.net-snmp.org/

3.2 MIB Parser and Compiler

Most SNMP implementations are able to parse MIB modules - if only to convert
the binary object identifier names used by the protocol into human friendly names.
Some implementations also use code generating MIB compilers.

Many parser implementations (most notably the original CMU MIB parser and
parsers derived from it) however do a poor job in validating the input.mbsy
MIB parser (originally part of théSODE package) was for a long time the only
freely available MIB parser which was written using compiler construction tools
(lex/yacc) and which did syntax and semantic error checking. Altheughy
was in principle a good MIB parser implementation, it became hard to maintain it
since it was implemented as part of #8DE package which was not trivial to
port to new platforms or to integrate into other software packages.

The SMI compilerSMIC, later calledSMICng, is another syntax and seman-
tic checking parser implementation which performs much more semantic checks
thanmosy. However,SMICng is not freely available and thus many implemen-
tors derived code from free parsers that do a poor job in validating input. As a
consequence, many MIB authors were not forced to use strict MIB parsers in or-
der to use their favorite SNMP tools with the effect that we have many published
MIB modules which contain sometimes serious syntactic and semantic errors.

Of course, it is quite a bit of programming work to create and maintain a good
solid MIB parser. Since this is not cost effective for each little project where one
must process information contained in MIB modules, the idea was born in 1998
to create an open source MIB parser library which can be easily embedded into
applications. This parser library was also designed to allow researchers to experi-
ment with future versions of the SMI. The result of these efforts idibseni 3
package 12]. The software package contains a program caladint which
is probably today the most widely used MIB validator nextS@lICng. Many
code generators and applications (open source and commercial) exist today that
are based otibsmi . Since thesmidump utility of the libsmi package is
capable to producmosy style output, there is no need anymore to maintain the
original mosy implementation.

The currentibsmi release supports several code generating backends (Perl,
Python, CORBA IDL, XML, XML Schema, Java AgentX stubs, SCLI stubs) and
some experimental algorithms to reverse engineer MIB modules into UML dia-
grams [L3].

3hittp://www.ibr.cs.tu-bs.de/projects/libsmi/

http://www.ibr.cs.tu-bs.de/projects/libsmi/

3.3 SNMP and Scripting Languages

SNMP basically provides a simplistic mechanism to manipulate lists of simple
typed variables that are conceptually organized in tables. It is obvious that real-
world complex systems must be represented by collections of related variables
and that there is a need to have control structures to automate the manipulation of
related MIB variables. Since SNMP is purely data-driven and does not provide
any control structures to “program” procedures on MIB variables, people started
pretty early to adopt existing scripting languages for SNMP.

3.3.1 SNMP Query Language

An early and almost forgotten example was the SNMP query langBagaPql

[14] which realizes an SQL-like query language to retrieve MIB variables. An
implementation oSNMPqgl which does interesting optimizations was released to
the public in 1990 and could be compiled using MIT’s SNMP implementation.

select i.ifindex a.ipAdEntAddr i.ifOperStatus
from ipAddrTable a ifTable i
where a.ipAdEntlfindex = i.ifindex.

Figure 2:SNMPql query to retrieve interface details for each IP address

The example query shown in Figu2eshows howSNMPq|l can be used to re-
trieve for each IP address of a multi-homed host the associated interface number,
the IP address and the operational status of the interface. Other query languages
similar to SNMPql were later developed in various other projects. All these lan-
guages are nice for interactive use. However, they require some knowledge and
understanding of the relevant MIB objects in order to formulate useful queries.

3.3.2 SNMP and AWK

Another early experiment was an SNMP extension for Gnu AVIK] [called
sgawk which was distributed with théSODE package. It allowed to access
and manipulate MIB variables very easily within an AWK script.

Figure3 shows an SNMP AWK script which displays information about the
network interfaces and the associated IP addresses. It is important to note that
AWK variables whose names match MIB variables or conceptual MIB tables will
be retrieved from the agent automatically whenever they are accessed. This makes
the script rather short — but it requires either an efficient and intelligent caching

BEGIN {
printf "%-4s %-4s %-14s %-15s %-7s %-5s %-7s %-5s %-4s %-5s\n",
"Name", "Mtu", "Net/Dest", "Address", "Ipkts", "lerrs",
"Opkts", "Oerrs", "Drop", "Queue";

didone = 0;

for (i in iflndex) {
didone = 1;
dest = ™
addr = ™

for (j in ipAdENntAddr) {
if (ipAdEntlfindex == ifindex) {

split(addr = ipAdEntAddr, a, ".");

split(ipAdEntNetMask, b, ".");

dest = bit_and(a[1],b[1]) " \
bit_and(a[2],b[2]) "." \
bit_and(a[3],b[3]) "." \
bit_and(a[4],b[4]);

break;

}

printf (length(ifDescr) <= 4 ? "%-4s " : "%s\n "), ifDescr;
printf "%-4d %-14s %-15s %-7d %-5d %-7d %-5d %-4d %-5d\n",
ifMtu, dest, addr, iflnUcastPkts+iflnNUcastPkts,
iflnErrors, ifOutUcastPkts+ifOutNUcastPkts,
ifOutErrors, ifOutDiscards, ifOutQLen;

}
if (!didone && DIAGNOSTIC)
printf “ifTable: %s\n", DIAGNOSTIC;

Figure 3:sgawk script to display interfaces and associated IP addresses

scheme or it requires that programmers use these magic AWK variables very care-
fully. Otherwise, even short scripts can turn out to be very inefficient. Another
problem with this implicit approach is error handling. It should also be noted that
from todays point of view, the script shown in Figu8és problematic. Many sys-
tems have multiple IP addresses assigned to an interface which this script fails to
handle and some of the statistics may not be present for all the interface types in
use today.

It turned out that AWK was not the ideal language for scripting SNMP since
it was primarily designed for pattern scanning and processing. People therefore
started to develop SNMP extension for other scripting languages that seemed to
provide a better fit.

3.3.3 SNMP and Tcl

The Tool Command Language (Tcl)g] became very popular in the early 1990s.
Since Tcl was designed as an extensible embedable command language, it was no

package require Tnm 3.0

proc walkproc {s stat vbl} {
if {$stat == "noError'} {
set i [Tnm:mib unpack [Tnm:snmp oid $vbl O]
set o [Tnm::snmp value $vbl 0]
set a [Tnm:snmp value $vbl 1]
puts "[$s cget -address]\tbitso\tSa”

}

puts "ADDRESS\t\tIFACEtOPERADMIN"
foreach host $argv {
set s [Tnm::snmp generator -address $host]
$s walk {ifOperStatus ifAdminStatus} { walkproc %S %E "%V" }

}
Tnm::snmp wait
exit

Figure 4:Tnmasynchronous walk to retrieve the interface status information

surprise that several people started to use Tcl as a base language.

Probably the first SNMP extension for Tcl was written by Poul-Henning Kamp,
originally based on the CMU SNMP implementation. It was first released in Jan-
uar 1992. In 1993, a draft Tcl API was circulated which was written by Glenn
Trewitt and Poul-Henning Kamp — but there were no open implementations of
this API. In 1994, thescotty # package 17, 18] was released which includes
an SNMP extension for Tcl which was derived from Poul-Henning Kamp’s previ-
ous work but largely re-implemented. In the same year, Marshall Rose and Keith
McCloghrie announced their SNMP Tcl API together with an implementation de-
rived from thelSODE package 19].

Tcl itself is a simplistic language. It's strength comes from the fact that one
can easily introduce new control structures and that there was reasonable support
for general purpose event-driven programming. Figushows a simple script
which retrieves MIB variables by doing a so called MIB walk. After loading the
Tnmextension (which is part of thecotty package), a procedurealkproc
is defined which gets three arguments: a session name, a status code and a list of
variables together with their values (varbind list).

The body of thavalkproc procedure checks the status code and outputs the
address associated with the session and the varbind list. The rest of the script
iterates through the command line arguments and creates an SNMP command

4http://wwwsnmp.cs.utwente.rlschoenw/scotty/

http://wwwsnmp.cs.utwente.nl/$sim $schoenw/scotty/

generator session for each host. For each session, an asynchronous walk for the
ifTable defined in thdF-MIB module is started. The code in the curly braces
is the callback code fragment which is executed whenever a response has been re-
ceived. Thefnm::snmp wait command forces the program to process events
until there are no outstanding asynchronous SNMP requests for all SNMP ses-
sions. Thus, the control flow in this example is quite different from what one
might conclude when first looking at the code. But the power here is the sim-
plicity and efficiency with which this can be implemented. FurthermoreTtira
implementation provides mechanisms to shape the outgoing SNMP traffic in or-
der to protect the network from bursty SNMP traffic patterns that can be easily
generated by scripts like the one shown in Figlire

One of the motivations for starting tlseotty project was to create an open
network management platform which people and especially researchers could ex-
tend by writing new or modifying existing Tcl scripts. However, this goal was
only marginally reached. Instead, the most common usage Gicibiey pack-
age today is probably testing. Several network device vendors use the package
to drive test suites. In addition, there are commercial SNMP test tools based on
Tcl which in addition provide an environment to define and manage test cases and
results.

3.3.4 SNMP and Perl

Perl [20] became the most popular scripting language for system administrators
in the 1990s. There are several SNMP extensions for Perl. One of the Perl SNMP
extensionsgNMPSession.pm °) was created in 1995 and is written entirely in
Perl which makes the code highly portable. It currently supports SNMPv1 and
SNMPv2c and provides a pattern oriented parser to read MIB modules in order to
map human friendly names to the numbers used by the protocol.

The second widely used Perl SNMP API is based onNBE-SNMPimple-
mentation and thus supports SNMPv1, SNMPv2c and SNMPv3. The Perl script
shown in Figures is based on th&lET-SNMPPerl extension and retrieves infor-
mation from the routing table defined in tR&C1213-MIB module and displays
them in a human readable format.

3.4 SNMP Command Line Interface 6cli)

Many network operators today configure at least the static aspects of their network
devices through a command line interface (CLI). This either happens interactively
or it is driven by scripts that automate the otherwise interactive configuration pro-

Shittp://www.switch.ch/misc/leinen/snmp/perl/

http://www.switch.ch/misc/leinen/snmp/perl/

use SNMP;
$SNMP::use_enums = 1;

my $host = shift;
my $comm = shift;
$sess = new SNMP::Session(DestHost => $host, Community => $comm);

$vars = new SNMP::VarList(['ipRoutelfindex’], ['ipRouteTypeT],
['ipRouteProto’], ['ipRouteMask],
[ipRouteNextHop’], ['ipRouteAge,
[ipRouteMetricl17);

format STDOUT_TOP =
Destination Next Hop Mask Proto Age Metric

format STDOUT =
@<<<KLKLKLLLLLLLL. @<L LKL @<<<<<<<<<<<<< @||||I| @]l @Il

$dest, $nhop, $mask, $proto, $age, $metric

for (($index,$type,$proto,$mask,$nhop,$age,$metric) = $sess->getnext($vars);
$$vars[0]->tag eq 'ipRoutelfindex’ and not $sess->{ErrorStr};
($index, $type,$proto, $mask,$nhop,$age,$metric) = $sess->getnext($vars)) {
$dest = $$vars[0]->iid;
write;

}

print "$sess->{ErrorStrj\n";

Figure 5: Perl SNMP script to retrieve and display iiplRouteTable

cess. Network management tools are sometimes not used to configure devices as
they are either too expensive, they lack important features, are hard to automate,
do not scale to large numbers of devices or simply do not support the required
features on the set of heterogenous devices that exist in a network. However, us-
ing command line interfaces is also problematic since they differ between vendors
and sometimes even within a single product line.

In 2001, a project was started to realize a command line interface to browse,
monitor and configure manageable devices via SNFIF. [The motivations for
this SNMP command line interfacesdli ©) were twofold: First, by running
the command line interpreter locally and using SNMP and standardized MIBs,
it should be possible to manage devices from different vendors in a uniform and
convenient way. Second, such a command line interface should provide meaning-
ful data to human operators in a comprehensive way — which is quite different
from what most generic SNMP tools do.

Some examples might be useful to make this point clearer. Lets assume that
one is interested in monitoring the disk usage across several systems. There are

Shttp://www.ibr.cs.tu-bs.de/projects/scli/

http://www.ibr.cs.tu-bs.de/projects/scli/

different ways to retrieve the required information. A relatively efficient and low
overhead mechanism is the use of SNMP. However, in order to use SNMP for
this purpose, one has to find, read and understand the relevant MIBS@Q&&-
RESOURCES-MIBn this case) and one needs to write some code which com-
putes the actual disk usage from some MIB objects. In order to make this code
robust, the implementation should do data validation before processing it and it
should be smart to deal with so called “holes” in SNMP tables and other oddities
that might happen during the SNMP interactions. Of course, some knowledge of
an SNMP API such as thReéET-SNMPC API or an SNMP extension for a script-

ing language is needed. It turns out that only few people have the skills and the
time available to actually make a good and robust implementation.

(xxxx) scli > show system storage

INDEX DESCRIPTION TYPE SIZE USED FREE USE%
1/ fixed disk 10G 2401M 8492M 22
2 [dev/pts fixed disk 0K 0K ----- 0
3 /win fixed disk 7983M 2155M 5828M 26
101 Real Memory ram 123M 75M 47M 61
102 Swap Space virtual memory 0K 0K ----- 0

103 Memory Buffers other

Figure 6:scli listing of all storage areas

With scli , you can simply retrieve information about the current disk us-
age by using theshow system storage command as shown in Figu@
Thisscli command handles missing data for the memory buffers, provides hu-
man readable storage type names, scales values to keep the output compact and
readable, and computes derived values where appropriate. Of course, someone
who understands the relevant MIBs has invested time to implement this com-
mand. However, compared to other approaches, this is relatively easy and straight-
forward since no knowledge about low-level SNMP APIs is needed. This is
possible sincescli command implementations use compiler generated MIB
stubs which do all the low-level SNMP serialization/deserialization and which
also perform automated type/range/size checking. Programmers use some nice
MIB-specific programmatic interfaces to retrieve and manipulate the MIB data
structures in C. In general, tiseli provides an infrastructure which hopefully
increases the number of people who write additional commands for those things
not yet covered by the existing commands.

In order to allow more complex management systems to be built on top of
scli , support for a second XML-based output format was added. The XML-
based format is easy to parse by programs and scripts and allows the default format

to be optimized for human readability. Furthermore, care has been taken to make
the scli implementation efficient and to avoid for example expensive startup
times. Callingscli in scripts frequently does not cause a performance penalty.

(xxxx) scli > show interface details "Gi

Interface: 3 Name: Gil/0

OperStatus: up Address: 00:03:FD:32:E4:1C
AdminStatus: up Type: ethernetCsmacd
Traps: enabled MTU: 1500 byte

Connector: true Speed: 1g bps
Promiscuous: false Change: 2002-03-12 15:32:52 +01:00
IP Address: 134.169.246.1 Prefix: /24

Description: GigabitEthernet1/0

Alias: Link to the LAN of the Technical University Braunschweig
Port: WISEMAN

Module: GiagbitEthernet

Container: Chassis Slot

Chassis: 7206VXR chassis, Hw Serial#: 21275454, Hw Revision: D

Figure 7:scli description of all Gigabit Ethernet interfaces

Figure 7 show the detailed description of an Ethernet interface. Note that
scli lists the IP address(es) assigned to that interface and also describes the
physical hardware on which the interface is implemented. Additisclal com-
mands are available to browse the entire containment structure of the physical
components that make up a device. Figheso demonstrates that interfaces can
be selected by regular expressions. The command argu@ens a regular ex-
pression that is matched against interface descriptions, which selects all Gigabit
Ethernet interfaces on this particular router.

(xxxx) scli > monitor interface stats

Agent: xxxx:161 up 58 days 00:57:06 15:42:26
Descr: Cisco Internetwork Operating System Software I0S (tm) 7200 Software

IPv4: 7614 pps in 7580 pps out 7558 pps fwd 0 pps rasm 0 pps frag
UDP: 29 pps in 24 pps out

TCP: 0 sps in 0 sps out 0 con est 0 con aopn 0 con popn

Command: monitor interface stats

INTERFACE STATUS I-BPS O-BPS I-PPS O-PPS I-ERR O-ERR DESCRIPTION

1 UUCN 3m 2m 5010 4498 0 0 POS2/0

2 UUCN 49 0 0 0 0 0 FastEthernet0/0
3 UUCN 2m 3m 4551 5026 0 0 GigabitEthernetl1/0
4 UDCN 0 0 0 0 0 0 ATM4/0

5 UDNN sememm e e eeee —- ATMA4/O-atm layer

6 UDNN “em - e - - ATMA4/0.0-atm subif

7 UDNN 0 0 0 0 - ATM4/0-aal5 layer
8 UDNN 0 0 0 0 ATM4/0.0-aal5 layer
9 UUNN 0 68 0 1 0 0 Nullo

10 UDC- smemmem eeee eee - - E1 5/0

11 UDC- s emem meee e - - E1 5/1

12 UUNN 0 0 0 0 0 0 LoopbackO

Figure 8:scli monitoring interface statistics

scli can also be used to do ad-hoc monitoring in order to track down prob-
lems. The monitoring display has the same look and feel as the well known Unix
top command. Figur® showsscli displaying interface statistics. Some cells
in the table are dashed out since no values are available due to the interface layer-
ing and the interface types.

3.5 MRTG — RRDTool

The Multi Router Traffic Grapher (MRTG was originally written to monitor and
visualize traffic statistics on a relatively slow and constantly overloaded Internet
link [22]. Version 1.0 of MRTG, which was released in 1995, was entirely written

in Perl and used several external programs to collect data and to create graphics.
MRTG quickly became popular since the generated graphics turned out to be very
useful to inform network users and the management people who decide about the
money for upgrading networks. MRTG was very user friendly — every standard
Web-browser was able to retrieve and display the router statistics.

However, the first version of MRTG did not scale very well and the depen-
dencies on other tools such as the Citimpget command made it difficult to
install. These two problems were solved by rewriting critical parts in C and by
using an SNMP extension for Perl which was entirely written in Perl and thus
very portable. The result of these improvements were released as MRTG 2.0 in

"http://people.ee.ethz.chbetiker/webtools/mrtg/

http://people.ee.ethz.ch/$sim $oetiker/webtools/mrtg/

1997. This version also included a program cattéggmaker to generate skele-
ton configuation files for those users who did not want to dive into the SNMP
details.

MRTG 2.0 became one of the most widely used SNMP-based monitoring sys-
tems. And while it was significantly faster than MRTG 1.0, some people tried
to run it in environments that again hit performance limits or they were trying to
use MRTG for data sources it was not really designed to handle. This lead to the
development of RRDTool, a system to efficiently update and consolidate round
robin databases (RRDs) for time-series data. Scripting language interfaces for
Perl or Tcl can be used to update RRDs efficiently from scripts.

MRTG 3.0 will be based on RRDTool. Since RRDTool is now very efficient,
the data collection itself becomes the critical part. MRTG 3.0 will therefore pro-
vide improvements in the SNMP data gathering by allowing multiple simultane-
ous requests to reduce overall latency.

4 Lessons Learned

Looking back at the evolution of some major open source SNMP tools, it is pos-
sible to identify some lessons that could be learned.

4.1 Scripting

There is an important need for scripting capabilities since the invention of SNMP.
Scripting is not only important on the manager side, but also on the agent side and
sometimes on the tools side as well. This is well reflected history of SNMP tools.
There are SNMP APIs available for all major scripting languages.

However, one of the question this paper raises is whether the scripting APIs
should be focussed on the SNMP protocol or the information defined in MIB
modules, which immediately leads to the next lesson learned.

4.2 Generic vs. Specific Tools

SNMP is a pretty generic protocol. The basic SNMP operationgdad and

write variables and tmotify applications about the occurance of events are
the basic primitives needed to manage devices and netivoilke specifics of

how to use SNMP for solving certain management problems are contained in the
MIB definitions. And since SNMP was designed with a small set of protocol
operations in mind, it is not surprising that MIBs sometimes tend to be complex
in order to map complex management interactions to the protocol operations.

8SNMP is therefore sometimes called the ‘turing machine for network management’.

The fact that SNMP protocol operations are rather simplistic obviously mo-
tivates people to design tools that focus more on the SNMP protocol itself than
on the semantics of the data structures described in MIBs. In other words, many
existing tools try to be generic instead of doing something very specific. Typical
examples are so called MIB browsers which help users to browse and manipulate
raw MIB data. Such tools usually only understand the machine parseable parts
of a MIB module - which is just good enough to shield users from the many ar-
cane numbers used in the protocol. Other examples are scripting language APIs
which basically just provide a programmer friendly view on the SNMP protocol.
However, in order to realize more useful management application, it is neces-
sary to understand the semantics of and the relationships between MIB variables.
Generic tools require that the users have this knowledge - which is however not
always the case.

Specific tools focus on implementing a certain specific function and they con-
tain the knowledge about the semantics of the MIB variables which must be ma-
nipulated to realize the function. Users of specific tools therefore do not need to
understand MIBs in order to use the functions realized by a specific tool. Only
the people who develop and debug specific tools need to be aware of the MIB
details. Of course, it requires some efforts to obtain the MIB knowledge and to
design useful management functions for a certain subject domain. Usually some
experimentation is required to identify which of several alternatives works best.

Thescli is an attempt to create the infrastructure for a specific and extensible
SNMP tool. The software has been designed to allow programmers to focus on the
management functions rather than the underlying SNMP operations. However, in
order to makescli even more useful, many more specific commands should be
added.

4.3 Firstvs. Second Generation Tools

Most open source implementations are second generation tools these days where
almost all of the original code has been rewritten. This shows that software re-
quires redesign as the technologies around it evolve. The original CMU package
is a good example. Several branches were created from the original CMU release.
Many of them died out over time and only those branches remained which got
enough attention to actually implement necessary redesigns.

The NET-SNMPproject is currently working on release 5.0 which will again
include major changes to keep the package maintainable in the future. Another
good example is the MRTG tool which started as a simple Perl script and which
turned over time into an efficient tool to maintain time-series data plus a frontend
for collecting statistics via SNMP.

Other open source SNMP tools were less successfulmidsy MIB compiler

is an example of a tool which turned out to be too difficult to maintain/evolve. It
was cheaper to design and implement a new MIB compiler from scratch which
incorporates among many other new things the functionalityady. Implemen-
tations which are easy to understand and which allow for redesigns might have a
longer lifetime than implementations which are perhaps more powerful but diffi-
cult to adapt over time.

4.4 Software Quality

The quality of the original SNMP implementations was not very high consider-
ing today’s expectations on software stability. The stability generally improved
with the movement from K&R C to ANSI C and with the availability of C com-
pilers which produce helpful warnings. However, some problems of the original
implementations are still present. In February 2002, the Computer Emergency
Response Team (CERT) issued an advisory because many SNMP implementa-
tions have been found to suffer from buffer overflow problems in the ASN.1/BER
decoders/encoders. Of course, most of these problems can be fixed easily - but
widespread deployment of these fixes will take time.

Another problem which is still present are invalid MIB modules which people
have published over time. Commercial SNMP toolkit and application vendors still
prefer to accept invalid MIB modules rather than doing strict syntax and semantic
checks. This is motivated by the need of end users to work with the many invalid
MIB modules they have collected over time. The unfortunate consequence of this
is that MIB authors who do not use validating MIB parsers can go a long way
without even noticing that the MIB module they have produced is invalid. Things
have improved somewhat in recent years with the availabilignofint — but
it will take many more years until the majority of MIB modules will have gotton
fixed.

5 Conclusions

This paper provided an overview over the evolution of some major open source
SNMP packages. There are of course many more open source SNMP package
available than could be reasonably handled in this paper and the selection is cer-
tainly subjective. For example, this paper completely ignores SNMP extensions
for languages such as Java or more exotic languages such as E23ang [

Most of the open source SNMP packages are already second generation tools
where major or even all parts of the original code base have been redesigned and
rewritten. The overall software quality has become more important and recent
CERT advisories will force even more programmers to pay attention to detect and

handle malicious SNMP messages. This will lead to tools that do perform better
data validation before data is passed to any critical devices or applications.

The paper also discussed the need for specific rather than generic open source
SNMP tools which do not require that users have knowledge about the seman-
tics and relationships between MIB variables.The SNMP command line interface
scli is an attempt to create such a specific tool.

Acknowledgements

The author likes to thank Wes Hardaker and Tobias Oetiker for their useful com-
ments on a draft version of this paper. Frank Stral3 provided feedback which
improved the presentation.

References

[1] J. Case, R. Mundy, D. Partain, and B. Stewart. Introduction to Version 3 of
the Internet-standard Network Management Framework. RFC 2570, SNMP
Research, TIS Labs at Network Associates, Ericsson, Cisco Systems, April
1999.

[2] J. Case, M. Fedor, M. Schoffstall, and J. Davin. A Simple Network Manage-
ment Protocol. RFC 1157, SNMP Research, PSI, MIT, May 1990.

[3] M. Rose and K. McCloghrie. Structure and Identification of Management
Information for TCP/IP-based Internets. RFC 1155, Performance Systems
International, Hughes LAN Systems, May 1990.

[4] M. Rose and K. McCloghrie. Concise MIB Definitions. RFC 1212, Perfor-
mance Systems International, Hughes LAN Systems, March 1991.

[5] M. Rose. A Convention for Defining Traps for use with the SNMP. RFC
1215, Performance Systems International, March 1991.

[6] K. McCloghrie, D. Perkins, J. Sémwalder, J. Case, M. Rose, and S. Wald-
busser. Structure of Management Information Version 2 (SMiv2). RFC
2578, Cisco Systems, SNMPinfo, TU Braunschweig, SNMP Research, First
Virtual Holdings, International Network Services, April 1999.

[7] K. McCloghrie, D. Perkins, J. Sémwalder, J. Case, M. Rose, and S. Wald-
busser. Textual Conventions for SMIv2. RFC 2579, Cisco Systems, SNMP-
info, TU Braunschweig, SNMP Research, First Virtual Holdings, Interna-
tional Network Services, April 1999.

[8] K. McCloghrie, D. Perkins, J. Sémwalder, J. Case, M. Rose, and S. Wald-
busser. Conformance Statements for SMIv2. RFC 2580, Cisco Systems, SN-
MPinfo, TU Braunschweig, SNMP Research, First Virtual Holdings, SNMP
Research, International Network Services, April 1999.

[9] D. Harrington, R. Presuhn, and B. Wijnen. An Architecture for Describing
SNMP Management Frameworks. RFC 2571, Cabletron Systems, BMC
Software, IBM T. J. Watson Research, April 1999.

[10] K. Chan, J. Seligson, D. Durham, S. Gai, K. McCloghrie, S. Herzog, F. Re-
ichmeyer, R. Yavatkar, and A. Smith. COPS Usage for Policy Provisioning
(COPS-PR). RFC 3084, Nortel Networks, Intel, Cisco, IPHighway, PFN,
Allegro Networks, March 2001.

[11] K. McCloghrie, M. Fine, J. Seligson, K. Chan, S. Hahn, R. Sahita, A. Smith,
and F. Reichmeyer. Structure of Policy Provisioning Information (SPPI).
RFC 3159, Cisco Systems, Nortel Networks, Intel, Allegro Networks, PFN,
August 2001.

[12] J. Scldnwalder and F. Straul3. Next Generation Structure of Management In-
formation for the Internet. IRroc. 10th IFIP/IEEE Workshop on Distributed
Systems: Operations and Managemeaiges 93—-106. Springer Verlag, Oc-
tober 1999.

[13] J. Sclonwalder and A. Miller. Reverse Engineering Internet MIBs.Rnoc.
7th IFIP/IEEE International Symposium on Integrated Network Manage-
ment Seattle, May 2001.

[14] W. Yeong. SNMP Query Language. Technical Report 90-03-31-1, Perfor-
mance Systems International, March 1990.

[15] A. V. Aho, B. W. Kernighan, and P. J. Weinberg@ihe AWK Programming
Language Addison Wesley, 1988.

[16] J. K. OusterhoutTcl and the Tk ToolkitAddison-Wesley, April 1994.

[17] J. Sclonwalder and H. Langeratfer. Tcl Extensions for Network Manage-
ment Applications. IrProc. 3rd Tcl/Tk Workshqppages 279-288, Toronto,
July 1995.

[18] J. Sclonwalder. Married with Tcl. IrProc. 1st European Tcl/Tk User Meet-
ing, Hamburg, June 2000.

[19] M. T. Rose and K. McCloghrigdow to Manage Your Network Using SNMP
Prentice Hall, 1995.

[20] L. Wall, T. Christiansen, and J. OrwanProgramming Perl O’Reilly, 3
edition, July 2000.

[21] J Sclonwalder. Specific Simple Network Management ToolsPmc. LISA
2001, December 2001.

[22] T. Oetiker. MRTG - Multi Router Traffic Grapher. Rroc. 12th Conference
on Large Installation System Administration (LISA XBpston, December
1998.

[23] J. Armstrong, R. Virding, C. Wikstrm, and M. Williams.Concurrent Pro-
gramming in Erlang Prentice Hall, 2 edition, 1996.

	Introduction
	Evolution of the SNMP Technology
	Evolution of Open Source SNMP Tools
	CMU-SNMP UCD-SNMP NET-SNMP
	MIB Parser and Compiler
	SNMP and Scripting Languages
	SNMP Query Language
	SNMP and AWK
	SNMP and Tcl
	SNMP and Perl

	SNMP Command Line Interface (scli)
	MRTG RRDTool

	Lessons Learned
	Scripting
	Generic vs. Specific Tools
	First vs. Second Generation Tools
	Software Quality

	Conclusions

