Didier Fayard and Mhand Hifi and Vassilis Zissimopoulos. An efficient approach for large-scale two-dimensional guillotine cutting stock problems. Journal of the Operations Research Society, 49:1270-1277, 1998
CU1-CU11
CW1-CW11
UU1-UU11
UW1-UW11
CGCUT2 and CGCUT3
GCUT13
Herz
HZ1
HZ2
M1-M5
OF1-OF2
STS
WANG20
The algorithm is coded in C and tested on a Sparc-Sverver20 (module 712 MP). We present the results for the GBSC algorithm. The problems CHW1 and CHW2 are usually known as cgcut2 and cgcut3, while TH1 and TH2 are known as STS2 and STS4, B known as GCUT13, H as Herz and W as WANG20.
Problem | Container Size | Box Types | # Boxes | Optimal Value | Solution Value | Time |
B | ( 3000, 3000) |
32 |
∞ |
8997780 |
8997780 |
461.07 s |
CHW1 | ( 40, 70) |
10 |
23 |
2892 |
2731 |
1.05 s |
CHW2 | ( 40, 70) |
20 |
62 |
1860 |
1740 |
2.37 s |
CU1 | ( 100, 125) |
25 |
82 |
12330 |
12312 |
7.09 s |
CU2 | ( 150, 175) |
35 |
90 |
26100 |
25806 |
19.83 s |
CU3 | ( 134, 125) |
45 |
158 |
16723 |
16608 |
30.47 s |
CU4 | ( 285, 354) |
45 |
113 |
99495 |
98190 |
55.75 s |
CU5 | ( 456, 385) |
50 |
120 |
173364 |
171651 |
89.57 s |
CU6 | ( 356, 447) |
45 |
124 |
158572 |
158572 |
29.84 s |
CU7 | ( 563, 458) |
45 |
56 |
247150 |
246860 |
26.72 s |
CU8 | ( 587, 756) |
35 |
78 |
433331 |
432198 |
68.83 s |
CU9 | ( 856, 785) |
25 |
76 |
657055 |
627884 |
47.28 s |
CU10 | ( 794, 985) |
40 |
129 |
773772 |
764696 |
123.85 s |
CU11 | ( 977, 953) |
50 |
134 |
924696 |
913387 |
219.62 s |
CW1 | ( 125, 105) |
25 |
67 |
6402 |
6402 |
5.31 s |
CW2 | ( 145, 165) |
35 |
63 |
5354 |
5354 |
6.83 s |
CW3 | ( 267, 207) |
40 |
96 |
5689 |
5148 |
17.32 s |
CW4 | ( 465, 387) |
39 |
86 |
6175 |
6168 |
30.84 s |
CW5 | ( 524, 678) |
35 |
91 |
11659 |
11550 |
19.84 s |
CW6 | ( 781, 657) |
55 |
149 |
12923 |
12403 |
78.97 s |
CW7 | ( 376, 374) |
45 |
123 |
9898 |
9484 |
61.39 s |
CW8 | ( 305, 287) |
60 |
168 |
4605 |
4504 |
107.42 s |
CW9 | ( 405, 362) |
50 |
131 |
10748 |
10748 |
125.30 s |
CW10 | ( 992, 970) |
60 |
130 |
6515 |
6116 |
281.08 s |
CW11 | ( 982, 967) |
60 |
114 |
6321 |
6084 |
197.54 s |
H | ( 127, 98) |
5 |
∞ |
12348 |
12192 |
0.26 s |
HZ1 | ( 78, 67) |
6 |
∞ |
5226 |
5226 |
0.08 s |
HZ2 | ( 99, 80) |
5 |
∞ |
8226 |
8046 |
0.12 s |
M1 | ( 100, 156) |
10 |
∞ |
15024 |
15024 |
0.34 s |
M2 | ( 253, 294) |
10 |
∞ |
73176 |
72564 |
1.15 s |
M3 | ( 318, 473) |
10 |
∞ |
142817 |
142817 |
0.84 s |
M4 | ( 501, 556) |
10 |
∞ |
265768 |
265768 |
1.34 s |
M5 | ( 750, 806) |
10 |
∞ |
577882 |
577882 |
1.93 s |
OF1 | ( 70, 40) |
10 |
23 |
2737 |
2713 |
0.87 s |
OF2 | ( 70, 40) |
10 |
24 |
2690 |
2586 |
0.80 s |
TH1 | ( 55, 85) |
30 |
78 |
4620 |
4620 |
4.59 s |
TH2 | ( 99, 99) |
20 |
50 |
9700 |
9529 |
6.27 s |
UU1 | ( 500, 500) |
25 |
∞ |
242919 |
241260 |
2.79 s |
UU2 | ( 750, 800) |
30 |
∞ |
595288 |
595288 |
7.15 s |
UU3 | ( 1100, 1000) |
25 |
∞ |
1072764 |
1072764 |
6.84 s |
UU4 | ( 1000, 1200) |
38 |
∞ |
1179050 |
1178295 |
18.37 s |
UU5 | ( 1450, 1300) |
50 |
∞ |
1868999 |
1868985 |
43.37 s |
UU6 | ( 2050, 1457) |
38 |
∞ |
2950760 |
2950760 |
20.13 s |
UU7 | ( 1465, 2024) |
50 |
∞ |
2930654 |
2930654 |
71.06 s |
UU8 | ( 2000, 2000) |
55 |
∞ |
3959352 |
3959352 |
56.83 s |
UU9 | ( 2500, 2460) |
60 |
∞ |
6100692 |
6100692 |
89.98 s |
UU10 | ( 3500, 3450) |
55 |
∞ |
11955852 |
11955852 |
191.05 s |
UU11 | ( 3500, 3765) |
25 |
∞ |
13157811 |
13141175 |
286.87 s |
UW1 | ( 500, 500) |
25 |
∞ |
6036 |
6036 |
2.98 s |
UW2 | ( 560, 750) |
35 |
∞ |
8468 |
8468 |
10.37 s |
UW3 | ( 700, 650) |
35 |
∞ |
6302 |
6226 |
8.21 s |
UW4 | ( 1245, 1015) |
45 |
∞ |
8326 |
8326 |
33.75 s |
UW5 | ( 1100, 1450) |
34 |
∞ |
7780 |
7780 |
16.41 s |
UW6 | ( 1750, 1542) |
47 |
∞ |
6615 |
6615 |
41.38 s |
UW7 | ( 2250, 1875) |
50 |
∞ |
10464 |
10464 |
65.84 s |
UW8 | ( 2645, 2763) |
55 |
∞ |
7692 |
7692 |
118.86 s |
UW9 | ( 3000, 3250) |
45 |
∞ |
7038 |
7038 |
69.83 s |
UW10 | ( 3500, 3650) |
60 |
∞ |
7507 |
7507 |
214.39 s |
UW11 | ( 555, 632) |
25 |
∞ |
15747 |
15747 |
15.32 s |
W | ( 70, 40) |
20 |
42 |
2721 |
2721 |
2.18 s |