Article:

Silvano Martello and Michele Monaci and Daniele Vigo. An exact approach to the strip-packing problem. INFORMS Journal on Computing, 15:310-319, 2003

Instances defined:

-

Instances used:

HT1-HT9
CGCUT1-CGCUT3
GCUT1-GCUT4
NGCUT1-NGCUT12
BENG1-BENG10

Results:

Martello, Monaci and Vigo propose a new relaxation that produces good lower bounds and gives information to obtain effective heuristic algorithms. These results are used in a branch-and-bound algorithm, which was able to solve test instances involving up to 200 items.
The algorithms were coded in FORTRAN 77 and run on a Pentium III 800 MHz.

The instances CGCUT, GCUT, NGCUT and BENG were transformed into strip-packing instances by using the items sizes and bin width.

UBl best value found, at the root node, by a heuristic from the literature
UB best heuristic value found at the root node
troot CPU time, spent at the root node
z best solution value found by branch-and-bound within 3600 CPU seconds
%gap percentage gap (100(z-L4)/z)
tb&b CPU time, spent by branch -and-bound after the root node


Problem Container Size Box Types # Boxes UBl UB troot z %gap tb&b
HT1
(20, )
 
16
22
20
10.84 s
20
0.00
0.00 s
HT2
(20, )
 
17
23
21
623.53 s
20
0.00
2419.72 s
HT3
(20, )
 
16
22
20
500.75 s
20
0.00
0.00 s
HT4
(40, )
 
25
16
15
8.26 s
15
0.00
0.00 s
HT5
(40, )
 
25
16
15
20.29 s
15
0.00
0.00 s
HT6
(40, )
 
25
16
15
16.94 s
15
0.00
0.00 s
HT7
(60, )
 
28
33
31
643.96 s
31
3.23
T.L
HT8
(60, )
 
29
32
31
630.17 s
31
3.23
T.L.
HT9
(60, )
 
28
33
30
0.00 s
30
0.00
0.00 s
CGCUT1
( , 10)
7
16
25
23
11.48 s
23
0.00 s
0.00 s
CGCUT2
( , 70)
10
23
77
68
2178.39 s
67
5.97
T.L.
CGCUT3
( , 70)
20
62
676
670
2996.11 s
670
5.07
T.L.
GCUT1
( , 250)
10
10
1016
1016
0.00 s
1016
0.00
0.00 s
GCUT2
( , 250)
20
20
1348
1348
3393.61 s
1208
6.21
T.L.
GCUT3
( , 250)
30
30
1803
1803
0.00 s
1803
0.00
0.00 s
GCUT4
( , 250)
50
50
3189
3077
3944.81 s
3077
6.64
T.L.
NGCUT1
( , 10)
5
10
23
23
0.05 s
23
0.00
0.00 s
NGCUT2
( , 10)
7
17
31
30
11.31 s
30
0.00
0.00 s
NGCUT3
( , 10)
10
21
32
28
27.01
28
0.00
0.00
NGCUT4
( , 10)
5
7
20
20
0.00 s
20
0.00
0.00 s
NGCUT5
( , 10)
7
14
36
36
0.00 s
36
0.00
0.00 s
NGCUT6
( , 10)
10
15
36
31
727.20 s
31
0.00
0.00 s
NGCUT7
( , 20)
5
8
20
20
0.00 s
20
0.00
0.00 s
NGCUT8
( , 20)
7
13
38
33
53.09 s
33
0.00
0.00 s
NGCUT9
( , 20)
10
18
56
50
1129.01
50
2.00
T.L.
NGCUT10
( , 30)
5
13
82
80
0.18 s
80
0.00
0.00 s
NGCUT11
( , 30)
7
15
57
52
483.01 s
52
0.00
0.00 s
NGCUT12
( ,30)
10
22
87
87
0.00 s
87
0.00
0.00 s
Beng1
(25 ,)
 
20
33
31
511.58 s
30
0.00
399.79 s
Beng2
(25 ,)
 
40
59
58
627.34 s
58
1.72
T.L.
Beng3
(25 ,)
 
60
86
85
620.37 s
85
1.18
T.L.
Beng4
(25 ,)
 
80
109
108
1120.61 s
108
0.93
T.L.
Beng5
(25 ,)
 
100
135
134
500.62 s
134
0.00
0.00 s
Beng6
(40 ,)
 
40
37
37
620.28 s
37
2.7
T.L.
Beng7
(40 ,)
 
80
68
67
0.56 s
67
0.00
0.00 s
Beng8
(40 ,)
 
120
102
101
500.54 s
101
0.00
0.00 s
Beng9
(40 ,)
 
160
126
126
0.03 s
126
0.00
0.00 s
Beng10
(40 ,)
 
200
156
156
0.03 s
156
0.00
0.00 s