Redner Info | Ordinarius Experimentalphysik, Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg |
Beginn | 31.10.2014, 15:00 Uhr |
Ort | TU Braunschweig, Informatikzentrum, Mühlenpfordtstraße 23, 1. OG, Hörsaal M 161 |
Eingeladen durch | Institut für Betriebssysteme und Rechnerverbund |
Notiz | Alle Zuhörer sind eingeladen, sich bereits 20 Minuten vor dem Vortrag zu gemeinsamem Kaffee und Kuchen einzufinden |
The brain is characterized by extreme power efficiency, fault tolerance, compactness and the ability to develop and to learn. It can make predictions from noisy and unexpected input data. Any artificial system implementing all or some of those features is likely to have a large impact on the way we process information. With the increasingly detailed data from neuroscience and the availability of advanced VLSI process nodes the dream of building physical models of neural circuits on a meaningful scale of complexity is coming closer to realization. Such models deviate strongly from classical processor-memory based numerical machines as the two functions merge into a massively parallel network of almost identical cells. The lecture will introduce current projects worldwide and the approach proposed by the EU Human Brain Project to establish a systematic path from biological data, simulations on supercomputers and systematic reduction of cell complexity to derived neuromorphic hardware implementations with a very high degree of configurability |
Technische Universität Braunschweig
Universitätsplatz 2
38106 Braunschweig
Postfach: 38092 Braunschweig
Telefon: +49 (0) 531 391-0