

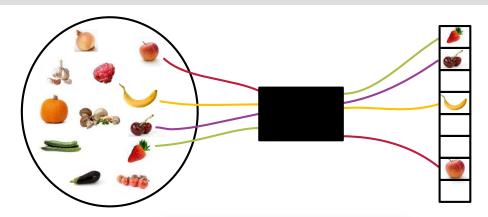
Algorithmen und Datenstrukturen 2 – Übung #6

Hashing, Modulo, Wiederholung

Arne Schmidt 11.07.2019

Heute

- Hashing
- Modulo
- Fragen/Wiederholung
 - Dynamische Programmierung
 - Approximation
 - Reduktionen



Hashing

Hashing

Jedes Objekt besitzt einen Schlüssel Black-Box wandelt Schlüssel in eine Position in der Hashtablle um. Black-Box Universum Hashfunktion Hashtabelle

Hashing - Kollision

Jedes Objekt besitzt einen Schlüssel Black-Box wandelt Schlüssel in eine Position in der Hashtablle um. Black-Box Universum Hashtabelle Hashfunktion

Hashing - Listen

Jedes Objekt besitzt einen Schlüssel Black-Box wandelt Schlüssel in eine Position in der Hashtablle um. Black-Box Kollisionsvermeidung: Objekte werden in eine Liste gespeichert Universum Hashtabelle Hashfunktion

Hashing – Offenes Hashverfahren

Jedes Objekt besitzt einen Schlüssel Black-Box wandelt Schlüssel in eine Position in der Hashtablle um. Black-Box Bei Kollision: Es wird ein anderer Platz gesucht. Universum

Hashfunktion

Hashtabelle

Hashfunktion – Offenes Hashverfahren

Es sind

$$m \in \mathbb{N},$$

$$h_1: \mathbb{N} \to \{0, \dots, m-1\},$$

$$h_2: \mathbb{N} \to \{1, \dots, m-1\}$$

und

$$f: \mathbb{N} \to \{0, \dots, m-1\}$$

Offenes Hashing benutzt eine Hashfunktion der Form

$$t(i,x) \coloneqq (h_1(x) + f(i) \cdot h_2(x)) \bmod m$$

Beispiel für $f(i) := (a \cdot i + b) \mod m$ in rekursiver Schreibweise:

$$t(i,x) \coloneqq \begin{cases} \left(h_1(x) + bh_2(x)\right) \bmod m &, \text{ falls } i = 0\\ \left(t(i-1,x) + a \cdot h_2(x)\right) \bmod m &, \text{ falls } i > 0 \end{cases}$$

Hashfunktionen – Offenes Hashverfahren

$$t(i,x) \coloneqq (h_1(x) + f(i) \cdot h_2(x)) \mod m$$

t(i,x) nutzt

- Lineares Sondieren, falls $f(i) \in \Theta(i)$ und $h_2(x) \in \Theta(1)$
- Quadratisches Sondieren, falls $f(i) \in \Theta(i^2)$ und $h_2(x) \in \Theta(1)$
- Doppeltes Hashing, andernfalls

Hashing Ohne Kollisionen

Sei
$$P[h(x) = j] = \frac{1}{m}$$
.

Wahrscheinlichkeit, dass *k* Elemente ohne Kollisionen eingefügt werden können:

$$P[k \text{ Elemente kollisionsfrei einfügen}] = \prod_{i=1}^{k} \frac{\text{\#freie Felder}}{\text{Größe Tabelle}} = \prod_{i=1}^{k} \frac{m-i+1}{m}$$

Wahrscheinlichkeit, dass das nächste Element kollisionsfrei eingefügt wird, wenn *n* Elemente eingefügt wurden:

$$P[\text{nächstes kollisionsfrei}] = \frac{m-n}{m} = 1 - \frac{n}{m} = 1 - \beta$$

 β bezeichnet den *Belegungsfaktor*.

Modulo

Modulo - Restdivision

Für
$$m \in \mathbb{N}, x \in \mathbb{Z}$$
 und $r \in \{0, ..., m-1\}$ ist
$$x \bmod m = r,$$

falls eine Zahl $q \in \mathbb{Z}$ existiert, sodass gilt

$$x = q \cdot m + r$$

Damit ist auch für beliebiges $i \in \mathbb{Z}$

$$(x + i \cdot m) \mod m = x \mod m$$

Beispiel:

$$27 \mod 7 = 6$$

$$31 \mod 9 = 4$$

Man kann zeigen:

$$(a+b) \bmod m = ((a \bmod m) + (b \bmod m)) \bmod m$$
$$(a \cdot b) \bmod m = ((a \bmod m) \cdot (b \bmod m)) \bmod m$$

Wiederholung I Dynamische Programmierung

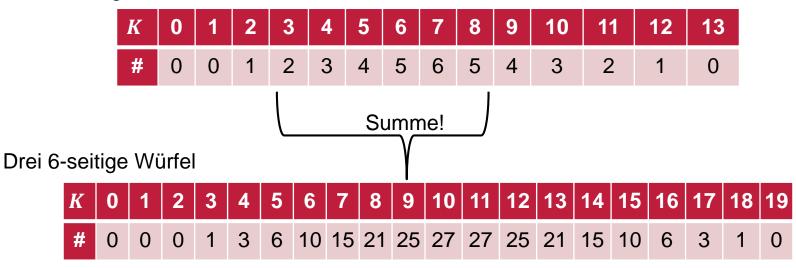
Gegeben: n Würfel mit je m Seiten (und Werten 1, ..., m) und eine Zahl K.

Gesucht: Anzahl Möglichkeiten den Wert *K* mit den Würfeln zu erzeugen.

Ein 6-seitiger Würfel:

K	0	1	2	3	4	5	6	7
#	0	1	1	1	1	1	1	0

Zwei 6-seitige Würfel



Sei $\mathcal{A}(i,j)$ die Anzahl der Möglichkeiten den Wert i mit j m-seitigen Würfeln zu erzeugen. Dann ist

$$\mathcal{A}(i,j) \coloneqq \begin{cases} 0 & \text{, falls } j = 0, i > 0 \\ 1 & \text{, falls } j = i = 0 \\ 0 & \text{, falls } i < j \\ 0 & \text{, falls } i > mj \end{cases}$$

$$\sum_{\ell=1}^{\min(i,m)} \mathcal{A}(i-\ell,j-1) \quad \text{, sonst}$$

K	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
$\mathcal{A}(K,3)$	0	0	0	1	3	6	10	15	21	25	27	27	25	21	15	10	6	3	1	0

Welchen Wert besitzt $\mathcal{A}(14,4)$? Antwort: 21 + 25 + 27 + 27 + 25 + 21 = 146


```
Function A(K, n)
  A[0..nm][0..n] //2D Array
  A[0][0] := 1
  for i = 1 to K do
      A[i][0] := 0
  for j = 1 to n do
      for i = 0 to j - 1 do
         A[i][j] := 0
      for i = j to jm do
         k := \min(i, m)
         A[i][j] := \sum_{\ell=1}^{k} A[i-\ell][j-1]
      for i = jm + 1 to nm do
         A[i][j] := 0
   return A[K][n]
```

$$\mathcal{A}(i,j) \coloneqq \begin{cases} 0 & \text{, falls } j = 0, i > 0 \\ 1 & \text{, falls } j = i = 0 \\ 0 & \text{, falls } i < j \\ 0 & \text{, falls } i > mj \\ \sum_{\ell=1}^{\min(i,m)} \mathcal{A}(i-\ell,j-1) & \text{, sonst} \end{cases}$$

Wiederholung II Approximation

Approximation – Probleme mit Parameter

Manchmal besitzt man Informationen über die Instanzen. Beispiele:

MAXIMUM KNAPSACK mit $\alpha \in \mathbb{N}$

Für alle $i \in \{1, ..., n\}$ gilt $z_i \leq \frac{Z}{\alpha}$

 \rightarrow GREEDY₀ ist eine $\frac{\alpha-1}{\alpha}$ - Approx.

BIN PACKING mit $\alpha \in \mathbb{N}$

Für alle $i \in \{1, ..., n\}$ gilt $z_i \leq \frac{Z}{\alpha}$

 \rightarrow FIRST FIT ist eine $\frac{\alpha}{\alpha-1}$ - Approx.

Für k = 2 ist das VERTEX COVER.

SET COVER mit $k \in \mathbb{N}$

Jedes Element $u \in U$ kommt in maximal k Teilmengen in \mathcal{F} vor.

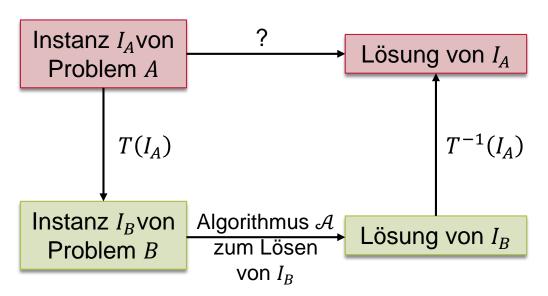
 \rightarrow Es gibt eine k - Approx.

Wiederholung III Reduktion

Reduktionen

 $T(I_A)$ und $T^{-1}(I_A)$ besitzen polynomielle Laufzeit.

Daher: Besitzt \mathcal{A} polynomielle Laufzeit, dann können wir die Lösung von I_A in polynomieller Zeit bestimmen.



3SAT-3

Gegeben: Formel wie bei 3SAT, aber jede Variable kommt in maximal drei Klauseln vor.

Frage: Lässt sich die Formel erfüllen?

Dieses Problem ist NP-schwer!

Wir zeigen: $3SAT \leq_p 3SAT-3$

Problematisch nur Variablen, die öfter als drei Mal vorkommen.

Wie können wir das auflösen?

3SAT-3

$$(x_i) \lor x_j \lor x_k)$$

$$(\bar{x_i} \lor \bar{x_o} \lor x_q)$$

$$(x_i) \lor \bar{x}_p \lor x_j)$$

$$(x_i \lor x_j \lor x_k)$$
 $(\bar{x}_i \lor \bar{x}_o \lor x_q)$ $(x_i \lor \bar{x}_p \lor x_j)$ $(x_i \lor x_p \lor \bar{x}_o)$

Für jedes der n_i Literale von Variable x_i :

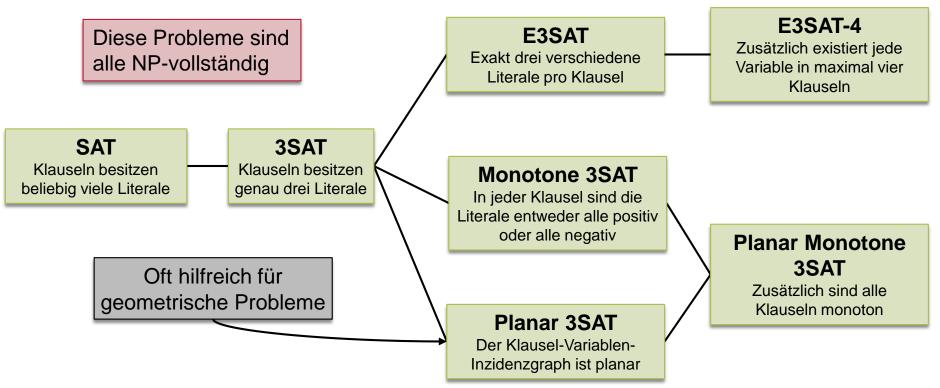
- Erzeuge Variablen $x_{1,i}, \dots, x_{n_{i,i}}$.
- Ersetze das c-te Literale von x_i mit einem Literal der Variablen $x_{c,i}$.
- Füge Klauseln der folgenden Form hinzu.

$$(x_{1,i}, \bar{x}_{2,i}) \land (x_{2,i}, \bar{x}_{3,i}) \land \cdots \land (x_{n_i,i}, \bar{x}_{1,i})$$

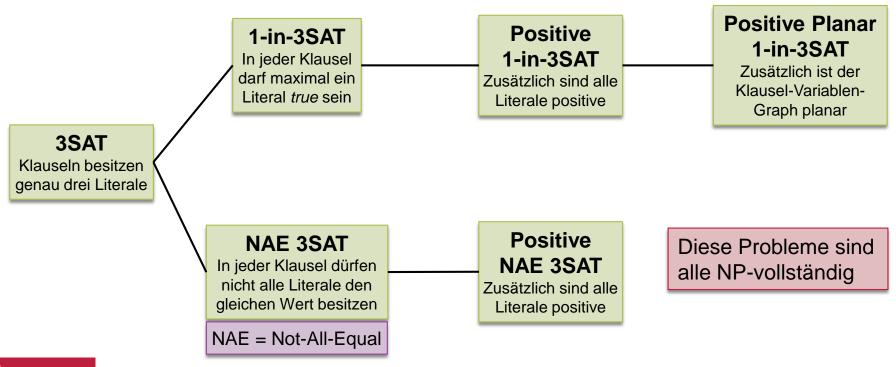
Beobachtungen:

- Die neuen Variablen tauchen genau drei Mal auf.
- Ist eine Variable auf *true* gesetzt, sind alle *true*. (Repräsentieren die gleiche Variable!)
- Die alte Variable taucht nicht mehr auf.

Weitere 3SAT-Varianten



Noch mehr 3SAT Varianten



Klausur

Klausurinfos

- Klausur: Die Klausur findet am 09.08.2019 von 8:30 Uhr bis 10:30 Uhr statt. Bitte seid 15 Minuten vorher anwesend. Raumaufteilung wird einen Tag vor der Klausur bekanntgegeben. Mitzubringen sind:
 - Ein gültiger Studentenausweis (plus gültiger Lichtbildausweis, falls kein Foto auf dem Studentenausweis vorhanden ist)
 - Ein dokumentenechter Stift (kein Rot!)
 - Ein Wörterbuch, falls nötig (auf Papier, ohne Notizen)

Andere Hilfsmittel sind nicht erlaubt; eigenes Papier wird nicht benötigt.

Was man wissen sollte:

- Alles aus der Vorlesung
- Übersicht über die Übungen/Hausaufgaben

