
Algorithms Group
Department of Computer Science - IBR
TU Braunschweig

Summer 2020

Prof. Dr. Sándor P. Fekete
Phillip Keldenich

Online Algorithms
Exercise 1

May 5, 2020

Hand in your solutions as PDF file until May 20, 2020, 11:30 AM via e-mail to
v.sack@tu-bs.de, with CC to keldenich@ibr.cs.tu-bs.de. If you cannot turn your
solution into a PDF file (for example by writing it in LaTeX or Word), you can also
submit photographs or scans. In that case, be careful to keep the file size acceptable
(about 3 MB per page) by using appropriate compression and resolution; however, make
sure that your solutions are still readable.

Exercise 1 (Memory):
In this exercise, we consider a single-player version of the card game Memory. There
is a deck of n pairs of cards lying face down on the table in front of the player. The
player has to remove the cards by uncovering matching pairs of cards in as few moves as
possible.
In each move, the player selects a first card and turns it around to see its face. After
that, he selects and uncovers a second card. If the two cards match, they are removed.
Otherwise, the cards are turned face down and remain on the table.
Knowing all cards’ positions, the optimal offline algorithm removes the cards in n moves.

(a) Design an online algorithm for Memory that requires at most 2n− 1 moves.

(b) Prove that there is no online algorithm that requires at most 2n− 2 moves.

(c) In the two-player game, a player gets another free move after uncovering a matching
pair of cards. In the single player variant, this corresponds to reducing the costs
of a move to 0 if that move successfully removes a matching pair of cards. Give a
c-competitive online algorithm for some constant c > 1 for this version of Memory,
or prove that no such algorithm exists.

(5+10+5 pts.)

Exercise 2 (Potential Functions and Amortized Analysis):
Consider an abstract online problem where an online algorithm A faces an online sequence
r = r1r2 . . . rn of requests. As a response to each request ri, A has to perform an action
A(i) without knowing the next request ri+1. Each such action incurs a cost cA(i) ∈ R.
Analogously, the optimal offline algorithm OPT performs actions as response to requests
with costs cOPT(i).

In the analysis of online algorithms, it is often impossible to bound the cost of an online
algorithm by proving cA(i) ≤ c · cOPT(i) for each request i. Therefore, we need a way to
distribute the costs of an expensive action of A across several requests.
One way of doing this is by considering a potential function Φr : {1, 2, . . . , n} → R≥0

with Φr(0) = 0. This potential function acts as a savings account that is not allowed to
become negative and that accumulates saved costs to pay for later expensive actions.

(a) Prove the following. If for every request sequence r, there is a potential function
Φr such that

cA(i) + Φr(i)− Φr(i− 1) ≤ c · cOPT(i),

then A is c-competitive, i.e.,
n∑

i=1

cA(i) ≤ c
n∑

i=1

cOPT(i).

(b) Consider the problem Read Into Buffer, where we want to read a non-empty
stream s of unknown length into a buffer that is stored in memory as contiguous
array of size at most 2|s|. Reading a symbol from s into the buffer has a cost of 1.
The optimal offline algorithm allocates an array of size |s| once and thus has a cost
of |s|.
In the online scenario, if the buffer is full, it has to be reallocated and the old
contents have to be copied to the new buffer. For every symbol already in the
buffer, this incurs an additional cost of 1. Thus, reading the kth symbol from s
costs either 1 (not full) or k (buffer full).

Devise a 3-competitive algorithm for Read Into Buffer, using a potential func-
tion to prove the competitive ratio.

(5+15 pts.)

2

