
Algorithms Group
Department of Computer Science - IBR
TU Braunschweig

Summer 2020

Prof. Dr. Sándor P. Fekete
Phillip Keldenich

Online Algorithms
Exercise 3

June 3, 2020

Hand in your solutions as PDF file until June 17, 2020, 11:30 AM via e-mail to
v.sack@tu-bs.de, with CC to keldenich@ibr.cs.tu-bs.de. If you cannot turn your
solution into a PDF file (for example by writing it in LaTeX or Word), you can also
submit photographs or scans. In that case, be careful to keep the file size acceptable
(about 3 MB per page) by using appropriate compression and resolution; however, make
sure that your solutions are still readable.

In this homework assignment, we consider the List Update Problem. Suppose that
we are storing a set S = {s1, . . . , sn} of values as unsorted singly-linked list. Our input
sequence consists of queries si ∈ S that ask us to find a certain element in our list. In
order to find an element, we iterate through the list starting from the front and return
the element once we find it. Because iterating through our list takes time, we incur a
cost of 1 for each element that we touch during the search. For example, searching for 2
in the list [1, 2, 3] costs two units, and searching for 2 in [2, 1, 3] costs just one unit.
After each query for an item si, we are allowed to move the item si to any point closer to
the front of the list; this exchange does not cost us anything. For example, if we search
for 2 in the list [1, 4, 2, 3], we can change the list to [2, 1, 4, 3], [1, 2, 4, 3] or [1, 4, 2, 3] after
finding 2 for a total cost of three units. Intuitively speaking, we want our algorithm to
maintain its list such that frequently requested elements are closer to the front than less
frequently requested elements.

Exercise 1 (Bad Algorithms):
In this task, we consider natural (but non-competitive) algorithms for the List Update
Problem.

a) After each request, the algorithm Transpose swaps the requested element with the
preceeding element in the list. For example, after searching 2 in the list [1, 4, 2, 3],
the list becomes [1, 2, 4, 3]; searching for 2 again results in the list [2, 1, 4, 3]. Prove
that Transpose is not c-competitive for any constant c.

b) The algorithm FrequencyCount maintains a frequency count for each element
that is incremented each time the element is requested. After each request, it
moves the requested item as far as possible to the front such that the list stays
in nonincreasing order of frequency count. Prove that FrequencyCount is not
c-competitive for any constant c.

(5+10 pts.)



Exercise 2 (Move To Front):
In this exercise, we consider the MoveToFront algorithm for the List Update Prob-
lem. After each request si, the algorithm moves the requested item si to the front of the
list. For example, after searching for 2 in [1, 4, 2, 3], the list becomes [2, 1, 4, 3].

a) Prove that there is no constant c < 2 such that Move To Front is c-competitive.

b) Prove that Move To Front is 2-competitive.

Hint: Use the number of inversions in Move To Front’s list w.r.t. OPT’s list
after request i as a potential function φ(i). An inversion is a pair x, y of elements
such that x comes before y in Move To Front’s list, but after y in OPT’s list.

In order to prove cMTF(i) + φ(i)− φ(i− 1) ≤ 2cOPT(i) for a request si, consider the
number of items k that come before si in both OPT’s and Move To Front’s list,
the number of items m that come before si in OPT’s list but after si in Move To
Front’s list, and the number of items ` that come before si in Move To Front’s
list but after si in OPT’s list.

(10+15 pts.)

2


