
Algorithms Group
Department of Computer Science - IBR
TU Braunschweig

Summer 2020

Prof. Dr. Sándor P. Fekete
Phillip Keldenich

Online Algorithms
Exercise 5
July 1, 2020

Hand in your solutions as PDF file until July 15, 2020, 11:30 AM via e-mail to
v.sack@tu-bs.de, with CC to keldenich@ibr.cs.tu-bs.de. If you cannot turn your
solution into a PDF file (for example by writing it in LaTeX or Word), you can also
submit photographs or scans. In that case, be careful to keep the file size acceptable
(about 3 MB per page) by using appropriate compression and resolution; however, make
sure that your solutions are still readable.

Exercise 1 (Dynamic Monotone Trees):
In the tutorial, we presented the dynamic binary search tree algorithms RotateTo-
Root, SingleRotation and Splay. All these algorithms have in common that they
do not use additional memory compared to a regular binary search tree. Such strategies
are also called stateless.
In this exercise, we consider a generalization of the FrequencyCount list update algo-
rithm to trees. In a so-called dynamic monotone tree, each element stores a counter that
maintains how often the element has been searched for. The counters are all initialized
to 0. Whenever we search for an element, we increase its counter and rotate it up until
its counter is not bigger than the counter of its parent. In other words, we maintain a
search tree which is also in max-heap order with respect to the access counters.
Prove that dynamic monotone trees are not better than Ω(n)-competitive. (10 pts.)

Exercise 2 (Looking Around a Corner):
In the lecture, we considered the problem of looking around a corner with scan costs.
In this situation, a robot it located at a known distance d from a corner. Distances are
measured in travel time, normalized by scan time, i.e., traveling distance d takes the same
time as d scans. Behind the corner, at an unknown angle, there is some hidden object.
The goal is to move to the corner, performing scans along the way until the object is
seen, minimizing the time taken for traveling and scanning.
We restrict ourselves to traveling on a polygonal chain inscribed in a semicircle of diameter
d defined by the corner C and our starting location s. Given any fixed competitive ratio
c we want to achieve, we can compute the distances xi traveled between the ith and the
(i− 1)st scan using a recursive formula as presented in the lecture:

xi+1 = c (1 + di)︸ ︷︷ ︸
offline cost

− (1 + i)︸ ︷︷ ︸
scan cost

−
i∑

j=1

xi︸ ︷︷ ︸
travel cost

.



Here, di denotes the distance from the starting point to the ith scan point. For the first
step, set d0 = 0 and thus x1 = c − 1. The distance di can be computed from the angles
ϕi = 2 arcsin(xi

d
) covered by the ith segment as

di = d sin

(
1

2

i∑
j=1

ϕj

)
.

d s

x1 = d1
d2

x2

ϕ1

ϕ2

C

Figure 1: The first two steps of looking around a corner

Depending on the parameter c, this recursion either reaches the corner (after finitely
many steps, the angle covered reaches or exceeds π) or collapses (distance we are allowed
to travel becomes non-positive). In the first case, a competitive ratio of c is achievable
by traveling on a semicircle; otherwise, it is not.

a) Why does the robot have to move to the corner?

b) Prove that moving to the corner directly is not c-competitive for any c ≥ 1.

c) Using C++, Java or Python, implement a program or function that is able to check
for a given pair c, d, whether a competitive ratio of c is achievable for the starting
distance d.

d) Use your program in conjunction with the bisection method (binary search for the
right value) to find the best achievable competitive ratio for d = 30. You may
ignore rounding errors for the purpose of this exercise.
Check: For d = 40, the factor c satisfies 2.0015 < c < 2.0016.

(5+5+12+8 pts.)

2


