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Book chapter:

https://link.springer.com/chapter/10.1007/BFb0029570



Finalizing Bin Packing

Remarks regarding Bin Packing:
• First Fit 1.7-competitive
• Best possible for Any Fit algorithms
• But there are better algorithms!
• Lower bound for any algorithm: 1.5401 (LP technique)
• Idea: Categorize items by size
• Harmonic algorithm uses categories ( 12 , 1], (

1
3 ,

1
2 ], . . .

• Next Fit within categories
• With sufficient categories, better than 1.7
• Better algorithms: More categories, more complex packing
• Currently: 1.57829 . . . (Advanced Harmonic) (2018)
• Current best lower bound: 1.54278 . . . (2020)
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• A runs on σ, generating A(σ)
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Oblivious adversary
• Adversary knows A
• Adversary generates σ and optimal offline solution OPT(σ)
• A runs on σ, generating A(σ)

c = sup
σ

E(A(σ))
OPT(σ)

Adaptive online adversary
• Adversary knows A
• While not done:

– Adversary generates request σi
– A is given σi
– Adversary learns response and state of A
– Adversary responds to σi
– Next input request or end
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Randomized Online Algorithm Adversaries

Which of these adversaries is stronger?

Clearly, adaptive online can simulate oblivious beforehand!

Did we already see adaptive online adversaries in the lecture?
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Randomized File Migration

Claim from the lecture:
Any (deterministic or randomized) online file migration
algorithm has a competitive ratio of at least 3.

How did the proof go? What was the input sequence?

Always request the file where the algorithm does not have it.

Can an oblivious adversary do that?

No! Can an adaptive online algorithm do that?

Claim:
Against an adaptive online adversary, any randomized online
file migration algorithm has a competitive ratio of at least 3.
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Another classic problem: Distribute jobs on machines
• m machines M1, . . . ,Mm, m known
• n jobs J1, . . . , Jn, n unknown
• Running time t(Ji) > 0

Many different versions:
• Precedence constraints
• Release times
• Preemption
• Machine faults
• Unsure job running time
• Different machines (speed, possible jobs)
• Parallel jobs
• Minimum makespan
• Minimum waiting time, equal load, . . .
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• m identical machines, n jobs
• Running times t(Ji)
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List Scheduling: Competitive Ratio?

Competitive ratio for m = 2?

M1

M2

J1

J2

J3

t(J3) = 2t(J1) = 2t(J2)

J1 J2

J3

OPT

Competitive ratio 3/2

Idea: We fill machines evenly, but should reserve one.

Arbitrary m: m(m− 1) jobs with time 1, 1 job with time m

Competitive ratio?

Our makespan: (m− 1) +m, OPT: m, c ≥ 2− 1/m
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List Scheduling — Competitive Ratio

Jn

Can it get worse?

No! Proof: Consider Jk, the job that ends last

M1

M2

. . .

Mm

Jk

Time τ : Starting time of Jk, T = t(Jk)

τ τ + T

Up to τ : All machines busy! Why? ⇒ OPT ≥ τ + T
m . Why?

T ≤ OPT⇒ τ + T ≤ OPT− T
m + OPT =

(
2− 1

m

)
OPT.

Note: Both lower bounds on OPT tight in worst case!



More Complex Models

We can adapt this analysis to:
• Unknown running times
• Precedence constraints (analysis technical)
• Jobs with release times
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6

m > 3: Yes, but not much, and it gets difficult.
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Randomization

Competitive ratio of A against an oblivious adversary:

c := sup
σ

E[A(σ)]
OPT (σ)

.

First, a lower bound: For m ≥ 2, we cannot be better than 4/3.
• m jobs of length 1, possibly followed by a single 2
• p probability of makespan 1 after the 1s
• After the 1s: OPT = 1, E[A(σ)] = p+ (1− p) · 2 = 2− p
• After the 2: OPT = 2, E[A(σ)] = 3p+ 2(1− p) = 2 + p

c ≥ max

{
2− p, 2 + p

2

}
≥ 4

3
(p = 2/3)



Bounds for Scheduling


