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Consider a set- or dictionary-datastructure:
• C++ map, set, etc.
• Java HashMap, TreeMap, etc.
• Python dict, set
• . . .

Operations:
• Find given key
• Add key
• Delete key
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Classic vs. Self-organizing

Classic:
• Insert, Delete change the set and internal representation
• Find does not change anything

Self-organizing:
• Insert, Delete change the set and internal representation
• Find may change internal representation

Pro’s & Con’s:
• Possibly faster if some keys are requested more often than

others
• Can be used in data compression
• More complicated
• Bad for multithreading



Homework: Linked lists

Linked List:
• Not a very practical set implementation
• Can be used for compression
• Instead of encoding bytes or byte pairs, encode list positions
• Length depends on position in list
• Common byte pairs become shorter, uncommon ones longer

Results:
• MoveToFront 2-competitive
• FrequencyCount, Transpose not competitive



Arrays? Double-ended queues?

If sets are small or don’t change much, (sorted) arrays are
practical. Iteration is often more important than queries.
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Arrays? Double-ended queues?

If sets are small or don’t change much, (sorted) arrays are
practical. Iteration is often more important than queries.

MoveToFront does not work well for arrays.

Double-ended queues or ring-buffers can work.



Hash tables

Have not been studied much; not much potential as
self-organizing datastructures. Collisions should be rare.
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Operations on trees

Rotations: Transform one binary tree into the other.
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Cost: 1 unit. Can also be used to realize AVL-trees. Can be
applied anywhere in the tree.
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Rotations

Can we move from any tree to any other by rotations?

Yes! Reaching a right path needs at most n− 1 rotations:
• We can always rotate a vertex into the right path
• Increases number of edges on the right path by 1
• In total, we have n− 1 edges

To transform from one tree to another: Transform both to
right path, apply rotations from target to right path in reverse.

⇒ at most 2n− 2 rotations.

Actually, 2n− 6 are sufficient.
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Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):

A(σ, T0) ≤ f(n) ·OPT(σ, T0) +O(n).

Allows initial move to any initial tree!

Related problem: Optimal static binary search tree.
• Given request probabilities for n keys
• Compute the tree minimizing the average depth
• NP-hard!

f(n)-static-competitive:
Compare A not to OPT, but to optimal static tree.
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Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.

What is the best we can hope for?

O(1); constant competitive ratio.

Is there is an obvious O(log n)-competitive algorithm?

Yes! Balanced static search trees (AVL, red-black, ...)!

Simple strategies (as for linked lists)?

RotateOnce, RotateToTop
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RotateToTop

5

4

3

2

1

Request for 1:



RotateToTop

5

4

3

1

2

Request for 1:



RotateToTop

Request for 1:

5

4

1

3

2



RotateToTop

Request for 1:

5

1

4

3

2



RotateToTop

Request for 1:

1

5

4

3

2



RotateToTop

Request for 1:

1

5

4

3

2



RotateToTop
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RotateToTop

Generally, the tree stays a path.
⇒ Ω(n2) cost per repetition of (1, . . . , n).

We can achieve O(n) per repetition:
First rotate into right path; costs O(n).
Then O(1) per request.
⇒ RotateToTop is Ω(n)-competitive.
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• But a (conjectured) candidate for O(1): Splay trees



Better idea?

Can we do better?
• No better (proven) algorithm than O(log n)
• But a (conjectured) candidate for O(1): Splay trees

Basic idea: RotateToTop with changed rotations
• Consider up to two rotations at once
• If they are in the same direction, rotate upper edge first
• Operations: Zig (last rotation), Zig-Zag, Zig-Zig
• Zig and Zig-Zag are normal bottom-up rotations
• Zig-Zig: Does not destroy balance



Better idea?

Can we do better?
• No better (proven) algorithm than O(log n)
• But a (conjectured) candidate for O(1): Splay trees

Basic idea: RotateToTop with changed rotations
• Consider up to two rotations at once
• If they are in the same direction, rotate upper edge first
• Operations: Zig (last rotation), Zig-Zag, Zig-Zig
• Zig and Zig-Zag are normal bottom-up rotations
• Zig-Zig: Does not destroy balance
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Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.
https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma

Number of nodes below node: n(v)
Rank of v: r(v) = log2(n(v))
Tree potential Φ(T ) =

∑
v r(v)

Cost of access/splaying with k rotations:

k + Φ(U)− Φ(T ) ∈ O(log n).

Careful: Initial potential > 0!
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Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence σ of accesses costs O(n+ OPT(σ)).

Status: open. Works for all special sequence families studied
so far. Works experimentally in practice.

Static Finger Theorem
In a sequence σ with many accesses close to a finger f :

O

(
n log n+

∑
x∈σ

log(|x− f |+ 2)

)
.

Scanning Theorem
Access sequences like 1, . . . , n or n, . . . , 1 cost O(n).
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Further Properties

Dynamic Finger Theorem
Let x, y be consecutive elements in the sequence σ. Total cost:

O

(
n+

∑
x,y

log(|x− y|+ 2)

)
.

Working Set Theorem
Let t(x) be the number of distinct elements accessed since last
access to x. Total cost:

O

(
n log n+

∑
x

log(t(x) + 2)

)
.
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Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

Splay Sort:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(n log n) worst-case

Practice: Slower than QuickSort, MergeSort, etc. for
random sequences

But: Adaptive! Works better with partially-sorted inputs!

There are specialized, better algorithms for that case though.


