Online Algorithms

Online Algorithms
Tutorial 4 — Self-Organizing
Datastructures

Self-Organizing Datastructures

Consider a set- or dictionary-datastructure:
o C++ map, set, etc.
e Java HashMap, TreeMap, etc.

e Python dict, set
o ...

SWILz

O 2,
‘gﬁ}g ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
blvsc\ﬁé

Self-Organizing Datastructures

Consider a set- or dictionary-datastructure:
o C++ map, set, etc.

e Java HashMap, TreeMap, etc.

e Python dict, set

Operations:
e Find given key

o Add key
o Delete key

SWILz

O 2,
5”»}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
()Nsc\ﬂé

Classic vs. Self-organizing

Classic:
e Insert, Delete change the set and internal representation
e Find does not change anything

SWILz

o 2,
‘gﬁ}g ‘%’e Technische
< AR\ 2

Universitit
Braunschweig

o . »>
blvsc\ﬁé

Classic vs. Self-organizing

Classic:
e Insert, Delete change the set and internal representation
e Find does not change anything

Self-organizing:
e Insert, Delete change the set and internal representation
e Find may change internal representation

WILg

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

Classic vs. Self-organizing

Classic:
e Insert, Delete change the set and internal representation
e Find does not change anything

Self-organizing:
e Insert, Delete change the set and internal representation
e Find may change internal representation

Pro's & Con's:
e Possibly faster if some keys are requested more often than
others
e Can be used in data compression
e More complicated
e Bad for multithreading

SWILz

o 2,
gﬁ}i ‘%% Technische
< 2 MR(2

Universitit
Braunschweig

o . »
blvsc\“eé

Homework: Linked lists

Linked List:
e Not a very practical set implementation
e Can be used for compression
e Instead of encoding bytes or byte pairs, encode list positions
e |Length depends on position in list
e Common byte pairs become shorter, uncommon ones longer

Results:
e MOVETOFRONT 2-competitive
¢ F'REQUENCYCOUNT, TRANSPOSE not competitive

WILg

o 2,
51}& ‘%% Technische
< #RL| N 2

Universitit
Braunschweig

o . »
blvsc\X?fA

Arrays? Double-ended queues?

If sets are small or don’t change much, (sorted) arrays are
practical. lteration is often more important than queries.

SWILz

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
blvsc\ﬁé

Arrays? Double-ended queues?

If sets are small or don’t change much, (sorted) arrays are
practical. lteration is often more important than queries.

MOVETOFRONT does not work well for arrays.

WILg

o 2,
5”»}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
()Nsc\ﬂé

Arrays? Double-ended queues?

If sets are small or don’t change much, (sorted) arrays are
practical. lteration is often more important than queries.

MOVETOFRONT does not work well for arrays.

Double-ended queues or ring-buffers can work.

SWILz

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

Hash tables

Have not been studied much; not much potential as
self-organizing datastructures. Collisions should be rare.

3 > Universitat
) (< .
#%¢ Braunschweig

Nscy

O,NILQ&
‘gﬁ}& X% Technische
kil %

Binary trees

A lot of potential for self-organization: There are very many
different binary trees that encode the same set.

WILg

o 2,
‘gﬁ}& ‘%’e Technische
< AR\ 2

Universitit
Braunschweig

o . »>
e &
‘87 & \@47

“NscH

Binary trees

A lot of potential for self-organization: There are very many
different binary trees that encode the same set.

oVily,

‘gﬁ}i 3% Technische

333 %z Universitit
Z: Braunschweig

o . »>
blvsc\ﬁé

Binary trees

A lot of potential for self-organization: There are very many
different binary trees that encode the same set.

Search 5: Costs 1
Search 4: Costs 3
Search 7: Costs 2

oVily,

51}& 3% Technische

333 %z Universitit
Z: Braunschweig

o . »>
()Nsc\ﬂé

Binary trees

A lot of potential for self-organization: There are very many
different binary trees that encode the same set.

Search 5: Costs 1 Search 5: Costs 3
Search 4: Costs 3 Search 4: Costs 1
Search 7: Costs 2 Search 7: Costs 2

o,\ﬂILQG,

‘gﬁ}i 3% Technische

333 %2 Universitit
Z: Braunschweig

o . »>
(z]vsc\‘aé

Operations on trees

Rotations: Transform one binary tree into the other.

Cost: 1 unit. Can also be used to realize AVL-trees. Can be
applied anywhere in the tree.

o»IILQ@
‘gﬁ}i X% Technische
S 35 }, 2 Universitit

Braunschweig

O
(z]vsc\‘a&

Rotations

Can we move from any tree to any other by rotations?

3 > Universitat
) (< .
#%¢ Braunschweig

Nscy

o,\ﬂll‘g@(.
gl}a %% Technische
bl

Rotations

Can we move from any tree to any other by rotations?

Yes! Reaching a right path needs at most n — 1 rotations:
e We can always rotate a vertex into the right path
e Increases number of edges on the right path by 1
e In total, we have n — 1 edges

SWILz

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

Rotations

Can we move from any tree to any other by rotations?

Yes! Reaching a right path needs at most n — 1 rotations:
e We can always rotate a vertex into the right path
e Increases number of edges on the right path by 1
e In total, we have n — 1 edges

To transform from one tree to another: Transform both to
right path, apply rotations from target to right path in reverse.

= at most 2n — 2 rotations.

SWILz

o 2,
gﬁ}i ‘%% Technische
< 2 MR(2

Universitit
Braunschweig

o . »
blvsc\“eé

Rotations

Can we move from any tree to any other by rotations?

Yes! Reaching a right path needs at most n — 1 rotations:
e We can always rotate a vertex into the right path
e Increases number of edges on the right path by 1
e In total, we have n — 1 edges

To transform from one tree to another: Transform both to
right path, apply rotations from target to right path in reverse.

= at most 2n — 2 rotations.

Actually, 2n — 6 are sufficient.

SWILz

o 2,
gﬁ}i ‘%% Technische
< 2 MR(2

Universitit
Braunschweig

o . »
blvsc\“eé

Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):

A(o,Ty) < f(n) - OPT(0,Tp) + O(n).

Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):
A(o,Ty) < f(n) - OPT(0,Ty) + O(n).

Allows initial move to any initial tree!

Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):
A(o,Ty) < f(n) - OPT(0,Tp) + O(n).
Allows initial move to any initial tree!

Related problem: Optimal static binary search tree.
e Given request probabilities for n keys

e Compute the tree minimizing the average depth
e NP-hard!

SWILz

o 2,
5”»}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘aé

Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):
A(o,Ty) < f(n) - OPT(0,Tp) + O(n).
Allows initial move to any initial tree!

Related problem: Optimal static binary search tree.
e Given request probabilities for n keys
e Compute the tree minimizing the average depth
e NP-hard!

f(n)-static-competitive:
Compare A not to OPT, but to optimal static tree.

Universitit
Braunschweig

o"ﬂu"@
‘sﬁﬁ‘%% Technische
< #RL| N 2

o . »
blvsc\X?fA

Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

,\NILQ‘,

O é
‘gﬁ}& 3% Technische
< #RL| N 2

Universitit
Braunschweig

o . »>
e &
‘87 & \@47

“NscH

Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.

SWILz

o 2,
‘gﬁ}g ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
blvsc\ﬁé

Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.

What is the best we can hope for?

SWILz

2,
‘gﬁ}& 3% Technische
S }, Universitit

blvs C\Y“A

Braunschweig

Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?

O(1); constant competitive ratio.

SWILz

2,
5% 3% Technische
S }, 2 Universitit

blvs C\Yﬁﬁ

Braunschweig

Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?

O(1); constant competitive ratio.

Is there is an obvious O(logn)-competitive algorithm?

SWILz

o 2,
5”»}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?
O(1); constant competitive ratio.

Is there is an obvious O(logn)-competitive algorithm?

Yes! Balanced static search trees (AVL, red-black, ...)!

SWILz

o 2,
5”»}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?

O(1); constant competitive ratio.

Is there is an obvious O(logn)-competitive algorithm?

Yes! Balanced static search trees (AVL, red-black, ...)!

Simple strategies (as for linked lists)?

SWILz

o 2,
gﬁ}i ‘%% Technische
< #RL| N 2

Universitit
Braunschweig

o . »
blvsc\X?fA

Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?

O(1); constant competitive ratio.

Is there is an obvious O(logn)-competitive algorithm?

Yes! Balanced static search trees (AVL, red-black, ...)!

Simple strategies (as for linked lists)?

ROTATEONCE, ROTATETOTOP

SWILz

o 2,
51}& ‘%% Technische
< #RL| N 2

Universitit
Braunschweig

o . »
blvsc\X?fA

How good are simple strategies?

WILy

OIS 9
o2t 332 Technische
) %;

Universitit
Braunschweig

O »>
Po kLR
OIVSC\Y‘QX

How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

SWILz

o 2,
‘gﬁ}i ‘%’e Technische
< AR\ 2

Universitit
Braunschweig

o . »>
blvsc\ﬁé

How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

RoTATETOTOP:
e Any initial tree
e Sequence (1,...,n)
e How does the tree look now?

SWILz

o 2,
51}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
()Nsc\ﬂé

How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

RoTATETOTOP:
e Any initial tree
e Sequence (1,...,n)
e How does the tree look now?

After 1: 1 is at the root! After 2: Left path is 2-1!

SWILz

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

RoTATETOTOP:
e Any initial tree
e Sequence (1,...,n)
e How does the tree look now?

After 1: 1 is at the root! After 2: Left path is 2-1!
After n: Left path n-...-1.

SWILz

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

RoTATETOTOP:
e Any initial tree
e Sequence (1,...,n)
e How does the tree look now?

After 1: 1 is at the root! After 2: Left path is 2-1!
After n: Left path n-...-1.

SWILz

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

RoTATETOTOP
Request for 1:

RoTATETOTOP
Request for 1:

RoTATETOTOP
Request for 1:

RoTATETOTOP
Request for 1:

RoTATETOTOP
Request for 1:

RoTATETOTOP
Request for 1:

ROTATETOT OP
After request for 2:

ROTATETOT OP

Generally, the tree stays a path.
= Q(n?) cost per repetition of (1,...,n).

Universitit
Braunschweig

o"ﬂ”':'@e .
‘gﬁ}a %% Technische
< AR\ 2

o . »>
blvsc\ﬁé

ROTATETOT OP

Generally, the tree stays a path.
= Q(n?) cost per repetition of (1,...,n).

We can achieve O(n) per repetition:
First rotate into right path; costs O(n).
Then O(1) per request.

= ROTATETOTOP is {2(n)-competitive.

Universitit
Braunschweig

o"ﬂu‘%
‘sﬁﬁ‘%% Technische
< AR\ 2

o . »>
()Nsc\ﬂé

Better idea?

Can we do better?
e No better (proven) algorithm than O(logn)
e But a (conjectured) candidate for O(1): Splay trees

Universitit
Braunschweig

oVily,
giﬁ‘%% Technische
< AR\ 2

o . »>
blvsc\ﬁé

Better idea?

Can we do better?
e No better (proven) algorithm than O(logn)
e But a (conjectured) candidate for O(1): Splay trees

Basic idea: ROTATETOT OP with changed rotations
e Consider up to two rotations at once

e If they are in the same direction, rotate upper edge first
e Operations: Zig (last rotation), Zig-Zag, Zig-Zig

e /ig and Zig-Zag are normal bottom-up rotations

o /ig-Zig: Does not destroy balance

Universitit
Braunschweig

o"ﬂu"@
gﬁ}i‘%& Technische
< 2 MR(2

o . »
blvsc\“eé

Better idea?

Can we do better?
e No better (proven) algorithm than O(logn)
e But a (conjectured) candidate for O(1): Splay trees

Basic idea: ROTATETOT OP with changed rotations
e Consider up to two rotations at once

If they are in the same direction, rotate upper edge first
Operations: Zig (last rotation), Zig-Zag, Zig-Zig

Zig and Zig-Zag are normal bottom-up rotations
Zig-Zig: Does not destroy balance

Splaying a path

Technische

 Universitit
o Braunschweig

Splaying a path

Technische

 Universitit
o Braunschweig

Splaying a path

Technische

 Universitit
o Braunschweig

Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

SWILz

o 2,
5»}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
e &
‘87 & \457

“NscH

Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

SWILz

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
e &
?7 * \$¢

“NscH

Splay trees

Static optimality theorem:

For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma

SWILz

@,
gf’?_i 3% Technische
< ARL| N\ 2 . oy oo
S > Universitat
5| A

< .
S Braunschweig
scv

Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma

Number of nodes below node: n(v)
Rank of v: r(v) = log,(n(v))
Tree potential ®(1') =) 7r(v)

WILg

o 2,
51}& ‘%% Technische
< #RL| N 2

Universitit
Braunschweig

o . »
blvsc\X?fA

Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma

Number of nodes below node: n(v)
Rank of v: r(v) = logy(n(v))
Tree potential ®(1') =) 7r(v)

Cost of access/splaying with k rotations:

k+ ®(U) — ®(T) € O(logn).

SWILz

o 2,
gﬁ}i ‘%% Technische
< 2 MR(2

Universitit
Braunschweig

o . »
blvsc\“eé

Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma

Number of nodes below node: n(v)
Rank of v: r(v) = logy(n(v))
Tree potential ®(1"') =) |, r(v) Careful: Initial potential > 0!

Cost of access/splaying with k rotations:

k+ ®(U) — ®(T) € O(logn).

SWILz

o 2,
gﬁ}i ‘%% Technische
< 2 MR(2

Universitit
Braunschweig

o . »
blvsc\“eé

Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence o of accesses costs O(n + OPT(0)).

WILg

o 2,
5”»}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
()Nsc\ﬂé

Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence o of accesses costs O(n + OPT(0)).

Status: open. Works for all special sequence families studied
so far. Works experimentally in practice.

WILg

2,
gf’?_i X% Technische
S o }, % Universitit

(z]vsc\‘aé

Braunschweig

Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence o of accesses costs O(n + OPT(0)).

Status: open. Works for all special sequence families studied
so far. Works experimentally in practice.

Scanning Theorem
Access sequences like 1,...,norn,...,1 cost O(n).

SWILz

o 2,
51}& ‘%% Technische
< #RL| N 2

Universitit
Braunschweig

o . »
blvsc\X?fA

Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence o of accesses costs O(n + OPT(0)).

Status: open. Works for all special sequence families studied
so far. Works experimentally in practice.

Scanning Theorem
Access sequences like 1,...,norn,...,1 cost O(n).

Static Finger Theorem
In a sequence o with many accesses close to a finger f:

O (nlogn—l—Zlog(]aj— f +2)) .

rTEo

Universitit
Braunschweig

o"ﬂu"@
gﬁ}i‘%‘% Technische
< 2 MR(2

o . »
blvsc\“eé

Further Properties

Dynamic Finger Theorem
Let z,y be consecutive elements in the sequence o. Total cost:

O n+Zlog(]m—y| + 2)

L,y

WILg

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
blvsc\ﬁé

Further Properties

Dynamic Finger Theorem
Let z,y be consecutive elements in the sequence o. Total cost:

O n+Zlog(]m—y! + 2)

L,y

Working Set Theorem
Let £(x) be the number of distinct elements accessed since last

access to x. Total cost:

O | nlogn + Z log(t(x) + 2)

Universitit
Braunschweig

o"ﬂu‘%
gﬁ}i‘%’e Technische
< AR\ 2

o . »>
(z]vsc\‘a&

Splay Sort

Possible application: Sorting

,\)”LQ‘,

(&) ¢
gﬁ}a X% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
e &
‘87 & \,x“’

“NscH

Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SWILz

O 2,
‘gﬁ}g X% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
e &
‘87 & \457

“NscH

Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

SWILz

o 2,
‘gﬁ}i ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
()Nsc\ﬂé

Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(nlogn) worst-case

SWILz

o 2,
5”»}& ‘%% Technische
< AR\ 2

Universitit
Braunschweig

o . »>
(z]vsc\‘a&

Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(nlogn) worst-case

Practice: Slower than QUICKSORT, MERGESORT, etc. for
random sequences

SWILz

o 2,
51}& ‘%% Technische
< #RL| N 2

Universitit
Braunschweig

o . »
blvsc\X?fA

Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(nlogn) worst-case

Practice: Slower than QUICKSORT, MERGESORT, etc. for
random sequences

But: Adaptive! Works better with partially-sorted inputs!

SWILz

o 2,
51}& ‘%% Technische
< 2 MR(2

Universitit
Braunschweig

o . »
blvsc\“eé

Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(nlogn) worst-case

Practice: Slower than QUICKSORT, MERGESORT, etc. for
random sequences

But: Adaptive! Works better with partially-sorted inputs!

There are specialized, better algorithms for that case though.

SWILz

o 2,
gﬁ}i ‘%% Technische
< 2 MR(2

Universitit
Braunschweig

o . »
blvsc\“eé

