Online Algorithms

Online Algorithms
Tutorial 4 — Self-Organizing
Datastructures




Self-Organizing Datastructures

Consider a set- or dictionary-datastructure:
o C++ map, set, etc.
e Java HashMap, TreeMap, etc.

e Python dict, set
o ...
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Self-Organizing Datastructures

Consider a set- or dictionary-datastructure:
o C++ map, set, etc.

e Java HashMap, TreeMap, etc.

e Python dict, set

Operations:
e Find given key

o Add key
o Delete key
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Classic vs. Self-organizing

Classic:
e Insert, Delete change the set and internal representation
e Find does not change anything
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Classic vs. Self-organizing

Classic:
e Insert, Delete change the set and internal representation
e Find does not change anything

Self-organizing:
e Insert, Delete change the set and internal representation
e Find may change internal representation
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Classic vs. Self-organizing

Classic:
e Insert, Delete change the set and internal representation
e Find does not change anything

Self-organizing:
e Insert, Delete change the set and internal representation
e Find may change internal representation

Pro's & Con's:
e Possibly faster if some keys are requested more often than
others
e Can be used in data compression
e More complicated
e Bad for multithreading
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Homework: Linked lists

Linked List:
e Not a very practical set implementation
e Can be used for compression
e Instead of encoding bytes or byte pairs, encode list positions
e |Length depends on position in list
e Common byte pairs become shorter, uncommon ones longer

Results:
e MOVETOFRONT 2-competitive
¢ F'REQUENCYCOUNT, TRANSPOSE not competitive
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Arrays? Double-ended queues?

If sets are small or don’t change much, (sorted) arrays are
practical. lteration is often more important than queries.
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Arrays? Double-ended queues?

If sets are small or don’t change much, (sorted) arrays are
practical. lteration is often more important than queries.

MOVETOFRONT does not work well for arrays.
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Arrays? Double-ended queues?

If sets are small or don’t change much, (sorted) arrays are
practical. lteration is often more important than queries.

MOVETOFRONT does not work well for arrays.

Double-ended queues or ring-buffers can work.
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Hash tables

Have not been studied much; not much potential as
self-organizing datastructures. Collisions should be rare.
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Binary trees

A lot of potential for self-organization: There are very many
different binary trees that encode the same set.
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Binary trees

A lot of potential for self-organization: There are very many
different binary trees that encode the same set.
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Binary trees

A lot of potential for self-organization: There are very many
different binary trees that encode the same set.

Search 5: Costs 1
Search 4: Costs 3
Search 7: Costs 2
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Binary trees

A lot of potential for self-organization: There are very many
different binary trees that encode the same set.

Search 5: Costs 1 Search 5: Costs 3
Search 4: Costs 3 Search 4: Costs 1
Search 7: Costs 2 Search 7: Costs 2
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Operations on trees

Rotations: Transform one binary tree into the other.

Cost: 1 unit. Can also be used to realize AVL-trees. Can be
applied anywhere in the tree.
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Rotations

Can we move from any tree to any other by rotations?
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Rotations

Can we move from any tree to any other by rotations?

Yes! Reaching a right path needs at most n — 1 rotations:
e We can always rotate a vertex into the right path
e Increases number of edges on the right path by 1
e In total, we have n — 1 edges
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Rotations

Can we move from any tree to any other by rotations?

Yes! Reaching a right path needs at most n — 1 rotations:
e We can always rotate a vertex into the right path
e Increases number of edges on the right path by 1
e In total, we have n — 1 edges

To transform from one tree to another: Transform both to
right path, apply rotations from target to right path in reverse.

= at most 2n — 2 rotations.
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Rotations

Can we move from any tree to any other by rotations?

Yes! Reaching a right path needs at most n — 1 rotations:
e We can always rotate a vertex into the right path
e Increases number of edges on the right path by 1
e In total, we have n — 1 edges

To transform from one tree to another: Transform both to
right path, apply rotations from target to right path in reverse.

= at most 2n — 2 rotations.

Actually, 2n — 6 are sufficient.

SWILz

o 2,
gﬁ}i ‘%% Technische
< 2 MR( 2

Universitit
Braunschweig

o . »
blvsc\“eé



Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):

A(o,Ty) < f(n) - OPT(0,Tp) + O(n).




Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):
A(o,Ty) < f(n) - OPT(0,Ty) + O(n).

Allows initial move to any initial tree!




Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):
A(o,Ty) < f(n) - OPT(0,Tp) + O(n).
Allows initial move to any initial tree!

Related problem: Optimal static binary search tree.
e Given request probabilities for n keys

e Compute the tree minimizing the average depth
e NP-hard!
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Competitiveness

Relaxed competitive ratio f(n) (similar to asymptotic):
A(o,Ty) < f(n) - OPT(0,Tp) + O(n).
Allows initial move to any initial tree!

Related problem: Optimal static binary search tree.
e Given request probabilities for n keys
e Compute the tree minimizing the average depth
e NP-hard!

f(n)-static-competitive:
Compare A not to OPT, but to optimal static tree.
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Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?
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Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
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Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.

What is the best we can hope for?
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Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?

O(1); constant competitive ratio.
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Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?

O(1); constant competitive ratio.

Is there is an obvious O(logn)-competitive algorithm?
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Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?
O(1); constant competitive ratio.

Is there is an obvious O(logn)-competitive algorithm?

Yes! Balanced static search trees (AVL, red-black, ...)!
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Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?

O(1); constant competitive ratio.

Is there is an obvious O(logn)-competitive algorithm?

Yes! Balanced static search trees (AVL, red-black, ...)!

Simple strategies (as for linked lists)?

SWILz

o 2,
gﬁ}i ‘%% Technische
< #RL| N 2

Universitit
Braunschweig

o . »
blvsc\X?fA



Obvious bounds?

How bad can we be? What is the worst possible competitive
ratio?

O(n); corresponds to requesting last element of path.
What is the best we can hope for?

O(1); constant competitive ratio.

Is there is an obvious O(logn)-competitive algorithm?

Yes! Balanced static search trees (AVL, red-black, ...)!

Simple strategies (as for linked lists)?

ROTATEONCE, ROTATETOTOP
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How good are simple strategies?
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How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.
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How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

RoTATETOTOP:
e Any initial tree
e Sequence (1,...,n)
e How does the tree look now?
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How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

RoTATETOTOP:
e Any initial tree
e Sequence (1,...,n)
e How does the tree look now?

After 1: 1 is at the root! After 2: Left path is 2-1!
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How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

RoTATETOTOP:
e Any initial tree
e Sequence (1,...,n)
e How does the tree look now?

After 1: 1 is at the root! After 2: Left path is 2-1!
After n: Left path n-...-1.
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How good are simple strategies?

ROTATEONCE is bad (like TRANSPOSE): Start with path,
request last two elements alternatingly.

RoTATETOTOP:
e Any initial tree
e Sequence (1,...,n)
e How does the tree look now?

After 1: 1 is at the root! After 2: Left path is 2-1!
After n: Left path n-...-1.
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RoTATETOTOP
Request for 1:




RoTATETOTOP
Request for 1:




RoTATETOTOP
Request for 1:




RoTATETOTOP
Request for 1:




RoTATETOTOP
Request for 1:




RoTATETOTOP
Request for 1:




ROTATETOT OP
After request for 2:




ROTATETOT OP

Generally, the tree stays a path.
= Q(n?) cost per repetition of (1,...,n).
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ROTATETOT OP

Generally, the tree stays a path.
= Q(n?) cost per repetition of (1,...,n).

We can achieve O(n) per repetition:
First rotate into right path; costs O(n).
Then O(1) per request.

= ROTATETOTOP is {2(n)-competitive.
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Better idea?

Can we do better?
e No better (proven) algorithm than O(logn)
e But a (conjectured) candidate for O(1): Splay trees
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Better idea?

Can we do better?
e No better (proven) algorithm than O(logn)
e But a (conjectured) candidate for O(1): Splay trees

Basic idea: ROTATETOT OP with changed rotations
e Consider up to two rotations at once

e If they are in the same direction, rotate upper edge first
e Operations: Zig (last rotation), Zig-Zag, Zig-Zig

e /ig and Zig-Zag are normal bottom-up rotations

o /ig-Zig: Does not destroy balance
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Better idea?

Can we do better?
e No better (proven) algorithm than O(logn)
e But a (conjectured) candidate for O(1): Splay trees

Basic idea: ROTATETOT OP with changed rotations
e Consider up to two rotations at once

If they are in the same direction, rotate upper edge first
Operations: Zig (last rotation), Zig-Zag, Zig-Zig

Zig and Zig-Zag are normal bottom-up rotations
Zig-Zig: Does not destroy balance




Splaying a path
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Splaying a path

Technische

 Universitit
o Braunschweig




Splaying a path
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Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.
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Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf
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Splay trees

Static optimality theorem:

For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma
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Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma

Number of nodes below node: n(v)
Rank of v: r(v) = log,(n(v))
Tree potential ®(1') = ) 7r(v)
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Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma

Number of nodes below node: n(v)
Rank of v: r(v) = logy(n(v))
Tree potential ®(1') = ) 7r(v)

Cost of access/splaying with k rotations:

k+ ®(U) — ®(T) € O(logn).
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Splay trees

Static optimality theorem:
For any access probabilities, splay trees are within a constant
factor of optimal static binary trees.

Proof is technical, would take too long, but understandable.

https://www.cs.cmu.edu/~sleator/papers/self-adjusting.pdf

Key lemma: Splay Access Lemma

Number of nodes below node: n(v)
Rank of v: r(v) = logy(n(v))
Tree potential ®(1"') = ) |, r(v) Careful: Initial potential > 0!

Cost of access/splaying with k rotations:

k+ ®(U) — ®(T) € O(logn).
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Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence o of accesses costs O(n + OPT(0)).
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Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence o of accesses costs O(n + OPT(0)).

Status: open. Works for all special sequence families studied
so far. Works experimentally in practice.
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Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence o of accesses costs O(n + OPT(0)).

Status: open. Works for all special sequence families studied
so far. Works experimentally in practice.

Scanning Theorem
Access sequences like 1,...,norn,...,1 cost O(n).
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Dynamic Optimality Conjecture

Dynamic Optimality Conjecture
Splay trees are O(1)-competitive in our relaxed sense:
A sequence o of accesses costs O(n + OPT(0)).

Status: open. Works for all special sequence families studied
so far. Works experimentally in practice.

Scanning Theorem
Access sequences like 1,...,norn,...,1 cost O(n).

Static Finger Theorem
In a sequence o with many accesses close to a finger f:

O (nlogn—l—Zlog(]aj— f +2)) .
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Further Properties

Dynamic Finger Theorem
Let z,y be consecutive elements in the sequence o. Total cost:

O n+Zlog(]m—y| + 2)

L,y
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Further Properties

Dynamic Finger Theorem
Let z,y be consecutive elements in the sequence o. Total cost:

O n+Zlog(]m—y! + 2)

L,y

Working Set Theorem
Let £(x) be the number of distinct elements accessed since last

access to x. Total cost:

O | nlogn + Z log(t(x) + 2)
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Splay Sort

Possible application: Sorting
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Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.
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Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.
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Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(nlogn) worst-case
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Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(nlogn) worst-case

Practice: Slower than QUICKSORT, MERGESORT, etc. for
random sequences
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Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(nlogn) worst-case

Practice: Slower than QUICKSORT, MERGESORT, etc. for
random sequences

But: Adaptive! Works better with partially-sorted inputs!
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Splay Sort

Possible application: Sorting

Insert:
As for binary trees, but then splay the inserted element.

SPLAY SORT:
Insert n elements into splay tree, then walk the tree in-order.

In-order traversal: O(n), insertion: O(nlogn) worst-case

Practice: Slower than QUICKSORT, MERGESORT, etc. for
random sequences

But: Adaptive! Works better with partially-sorted inputs!

There are specialized, better algorithms for that case though.
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