{"id":408,"date":"2021-05-11T09:30:00","date_gmt":"2021-05-11T07:30:00","guid":{"rendered":"https:\/\/aud2.ibr.cs.tu-bs.de\/?p=408"},"modified":"2021-05-12T17:55:02","modified_gmt":"2021-05-12T15:55:02","slug":"vorlesung-4","status":"publish","type":"post","link":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/2021\/05\/11\/vorlesung-4\/","title":{"rendered":"Vorlesung 4"},"content":{"rendered":"\n
In dieser Vorlesung betrachten wir weitere Dynamic Programming – Ans\u00e4tze an. Dabei geht es unter Anderem um das bekannte Knapsack-Problem. Zudem betrachten wir zwei geometrische Probleme.<\/p>\n\n\n\n
Folien<\/strong>: VL4.pdf<\/a> <\/p>\n\n\n\n Dynamic Programming by Richard Bellman, 1957 (Originalarbeit als PDF)<\/a> In dieser Vorlesung betrachten wir weitere Dynamic Programming – Ans\u00e4tze an. Dabei geht es unter Anderem um das bekannte Knapsack-Problem. Zudem betrachten wir zwei geometrische Probleme.<\/p>\n","protected":false},"author":1,"featured_media":403,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"default","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":"","_expiration-date-status":"saved","_expiration-date":0,"_expiration-date-type":"","_expiration-date-categories":[],"_expiration-date-options":[]},"categories":[13],"tags":[],"_links":{"self":[{"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/408"}],"collection":[{"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/comments?post=408"}],"version-history":[{"count":3,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/408\/revisions"}],"predecessor-version":[{"id":799,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/408\/revisions\/799"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/media\/403"}],"wp:attachment":[{"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/media?parent=408"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/categories?post=408"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/tags?post=408"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}
Video:<\/strong> [YouTube]<\/a>, [IBR]<\/a><\/p>\n\n\n\nWeitere Links<\/h4>\n\n\n\n
Finding a largest convex subset at Stack Overflow<\/a>
On the Chromatic Art Gallery Problem<\/a> (Forschungsartikel von 2014, gezeigt hatte ich das Bild auf Seite 5.)
A graphical introduction to Dynamic Programming<\/a> (ganz nett gestaltet, erstes Beispiel ist die Berechnung der Fibonacci-Zahlen, also gut zug\u00e4nglich)
Titelbild-XKCD<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"