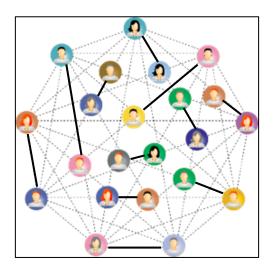


Netzwerkalgorithmen – Vorlesung #10

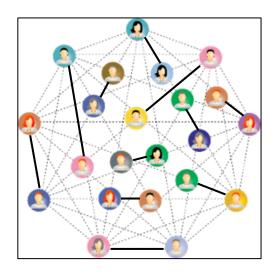
Arne Schmidt

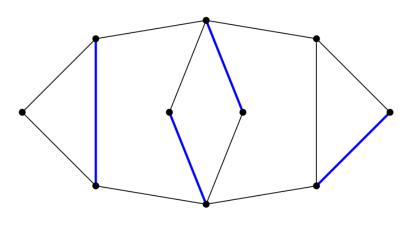
Kapitel 5



Matchings

Matchings





Matchings

Definition 5.1 (Matchings)

Sei G = (V, E) ein Graph

- (1) Eine Kantenmenge $M \subseteq E$ heißt **Matching**, wenn $e \cap f = \emptyset$ für je zwei Kanten $e, f \in M$ gilt.
- (2) Kanten in *M* heißen **unabhängig**.
- (3) Ein Matching M heißt **perfektes Matching**, wenn 2|M| = |V| gilt.
- (4) Ein Matching heißt **inklusionsmaximal** (engl. maxim**al**), wenn $M \cup \{e\}$ für jede Kante $e \in E \setminus M$ kein Matching ist.
- (5) Ein Matching heißt **(kardinalitäts-)maximal** (engl. maxim**um**), wenn kein Matching M' mit |M| < |M'| existiert.

Matchings

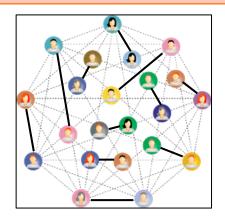
Problem 5.2: Maximale Matchings (engl. Maximum Matching)

Gegeben:

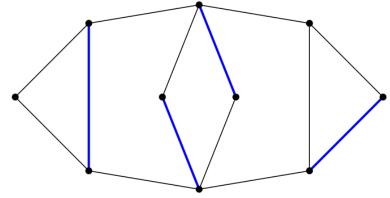
Graph G = (V, E)

Gesucht:

Maximales Matching *M*.

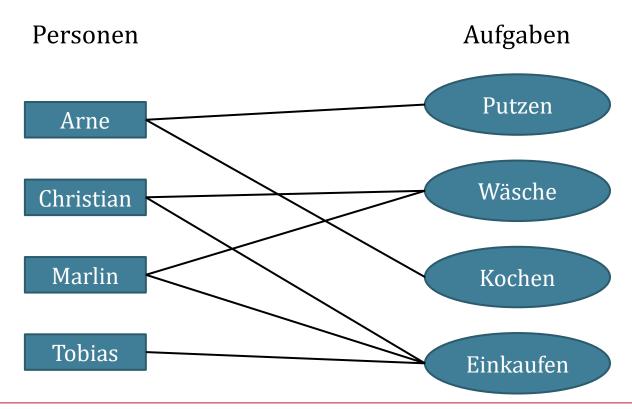


Perfektes Matching



Inklusionsmaximales Matching Gibt es ein besseres?

Aufgabenverteilung



5.1 Bipartite Graphen

Bipartite Graphen

Definition 5.3 (Bipartite Graphen)

Sei G = (V, E) ein Graph

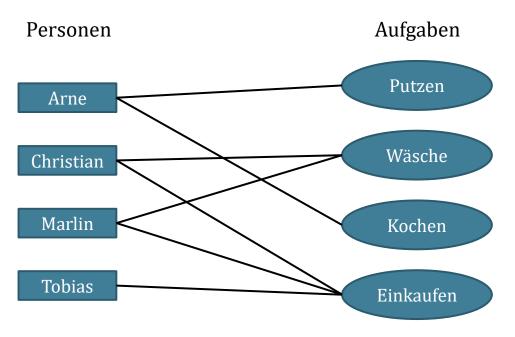
- (1) G heißt **bipartit**, wenn sich V disjunkt in zwei Knotenmengen V_1, V_2 zerlegen lässt, sodass $u \in V_1$ und $v \in V_2$ für jede Kante $\{u, v\} \in E$ gilt.
- (2) Mit $K_{a,b}$ wird der **vollständig bipartite Graph** bezeichnet, d.h. $|V_1| = a$, $|V_2| = b$ und zwischen jedem Paar $(u, v) \in V_1 \times V_2$ verläuft eine Kante.

Satz 5.4

Sei *G* ein Graph. Dann sind folgende Aussagen äquivalent.

- *1. G* ist bipartit.
- 2. G ist zweifärbbar.
- 3. G enthält keine Kreise ungerader Länge.

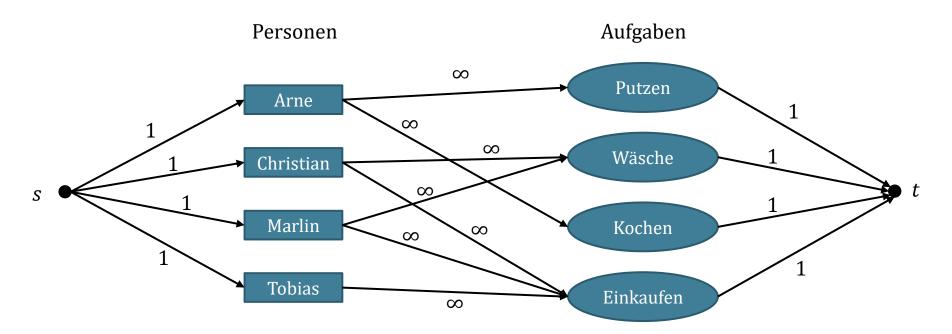
Aufgabenverteilung



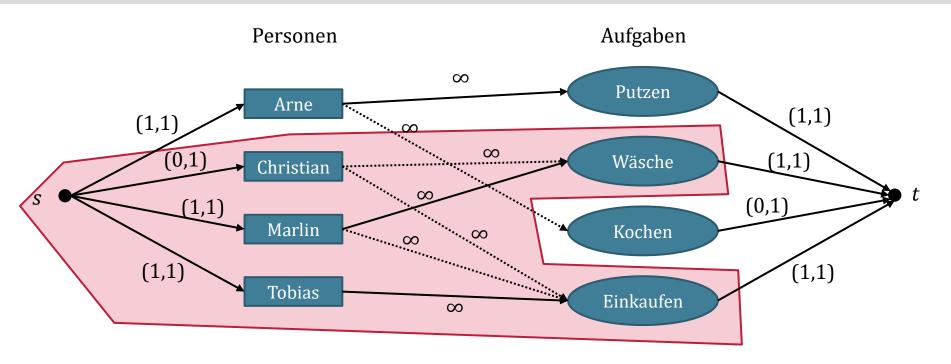
Möchten sich einer Aufgabe zuweisen.

Möchten einer Person zugewiesen werden.

Reduktion auf Flüsse

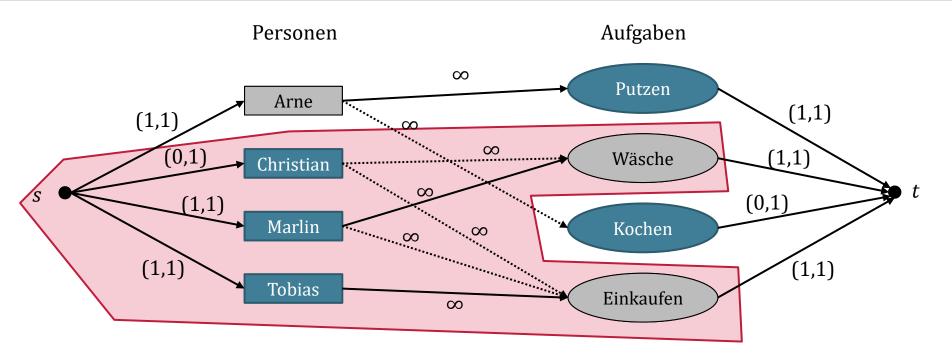


Reduktion auf Flüsse

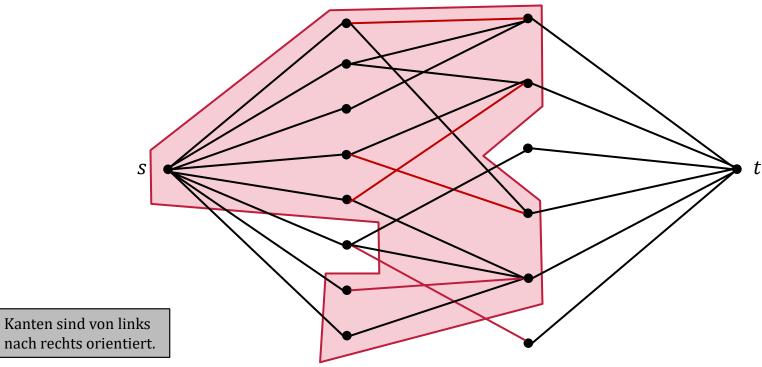


 $MinCut = MaxFlow = 3 \Rightarrow MaxMat = 3$

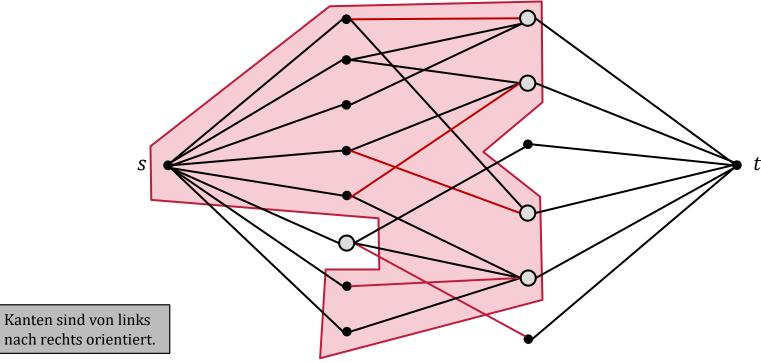
Reduktion auf Flüsse



Weiteres Beispiel



Weiteres Beispiel



Vertex Cover

Definition 5.5 (Vertex Cover)

Sei G = (V, E) ein Graph.

- (1) Eine Knotenmenge $C \subseteq V$ heißt **Vertex Cover**, wenn $u \in C$ oder $v \in C$ für jede Kante $e = \{u, v\} \in E$ gilt.
- (2) Ein Vertexcover heißt **(kardinalitäts-)minimal** (engl. minimum), wenn es kein Vertex Cover C' mit |C| > |C'| gibt.

Lemma 5.6

Sei G ein Graph. Für jedes Matching M und jedes Vertex Cover C gilt $|M| \leq |C|$.

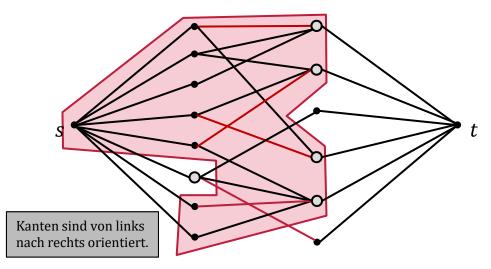
Satz 5.7 (Kőnig-Egerváry)

Sei G ein bipartiter Graph. Die Größe eines minimalen Vertex Covers in G entspricht der Größes eines maximalen Matchings in G.

Vertex Cover

Satz 5.7 (Kőnig-Egerváry)

Sei G ein bipartiter Graph. Die Größe eines minimalen Vertex Covers in G entspricht der Größes eines maximalen Matchings in G.



Sei *Q* Schnittknotenmenge ohne *s*. Betrachte Kanten zwischen:

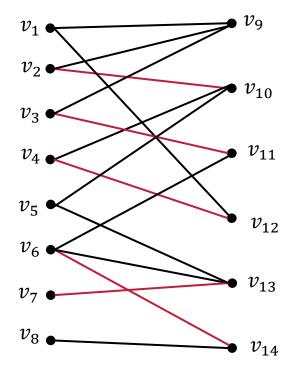
- $Q \cap V_1$ und $Q \cap V_2$
- $Q \cap V_1$ und $V_2 \setminus Q$ Ist leer!
- $V_1 \setminus Q$ und $Q \cap V_2$
- $V_1 \setminus Q$ und $V_2 \setminus Q$

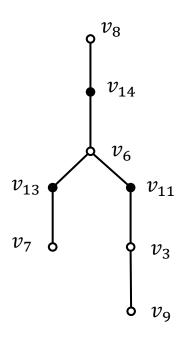
⇒ $C := (Q \setminus V_1) \cup (Q \cap V_2)$ ist ein VC. |C| = Wert des MinCuts. Also ist: MaxMat = MaxFlow = MinCut = MinVC

Matching für bipartite Graphen

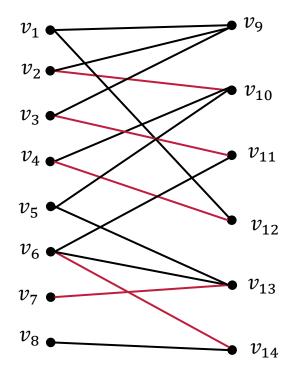
```
Algorithmus 5.8
                                        1.
                                              Function BIPARTITEMATCHING(G)
Eingabe:
                                                    Set M := \emptyset
     Bipartiter Graph G = (V, E)
                                                   for r \in V_1 mit r ungematcht do
Ausgabe:
                                                         Setze T := (\{r\}, \emptyset) und W(T) := \{r\}
     Maximales Matching M
                                                         While (es ex. Kante \{v, w\} \in E mit v \in W(T) und w \notin V(T))
                                                               If w ist ungematcht then
                                        6.
                                                                     Benutze w um augmentierenden Pfad zu bilden.
                                        8.
                                                                     Augmentiere M
                                        9.
                                                                     If es ex. Kein ungematchter Knoten mehr then
                                        10.
                                                                           Return perfektes Matching M
                                        11.
                                                                     else
                                        12.
                                                                          Gehe zu Zeile 3.
                                        13.
                                                               else
                                        14.
                                                                     Sei \{w, z\} Matchingkante an w.
                                                                     Füge w, z zu V(T) hinzu und z zu W(T)
                                        15.
                                                                     Füge \{v, w\}, \{w, z\} zu E(T) hinzu.
                                        16.
                                        17.
                                                    Return M
```

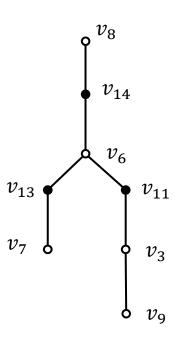

Beispiel

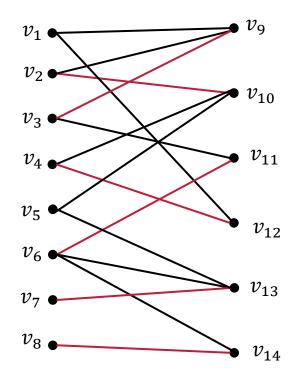




Beispiel







Analyse

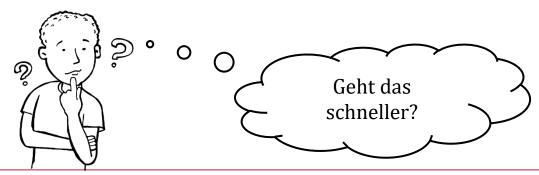
Satz 5.9

Algorithmus 5.8 löst Problem 5.2 (Max Matching) korrekt in Zeit O(mn).

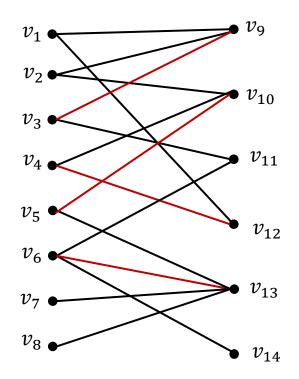
Beweis:

Korrektheit klar über Reduktion auf Flüsse.

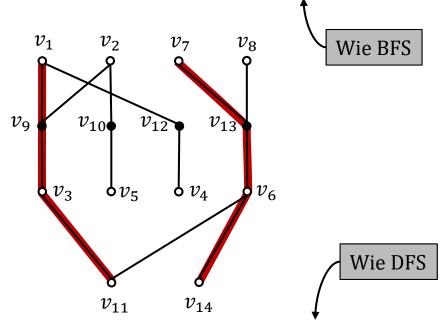
Laufzeit: Wie Ford-Fulkerson mit $f^* = MaxMat \in O(n)$



Suche über Level

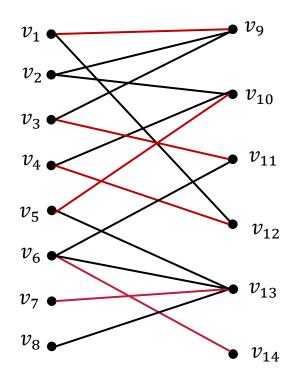


Starte von allen ungematchten Knoten eine Suche wie gehabt.

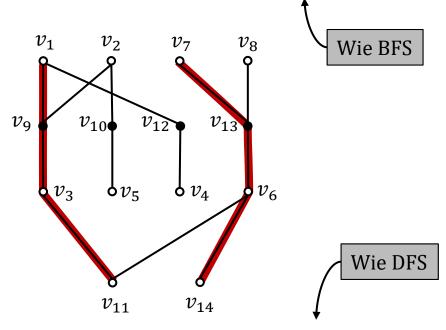


Vom Level mit ungematchten Knoten, starte Suche rückwärts.

Suche über Level



Starte von allen ungematchten Knoten eine Suche wie gehabt.



Vom Level mit ungematchten Knoten, starte Suche rückwärts.

Algorithmus von Hopcroft-Karp

```
Algorithmus 5.10
Eingabe:
     Ungerichteter Graph G=(V,E)
Ausgabe:
     Maximales Matching M
     Function HOPCROFTKARP(G)
           Setze M = \emptyset
           Setze R := \{v \in V_1 \mid v \text{ ungematcht}\}
           Starte von allen Knoten in R BFS-mäßig, um "Level-Graphen" zu konstruieren
4.
           Stoppe bei Level, welcher ungematchte Knoten aus V_2 enthält.
           Sei F \subseteq V_2 die Menge an ungematchten Knoten in diesem Level.
           Suche über diese Level DFS-mäßig augmentierende Pfade zwischen Knoten aus R und F.
           Augmentiere M.
           If es gab eine Verbesserung und V_1 enthält ungematchte Knoten then
10.
                Gehe zu Zeile 3.
11.
           Else
12.
                Return M
```


Analyse

Satz 5.11

Algorithmus von Hopcroft-Karp löst Problem 5.2 (Max Matching) korrekt in Zeit $O(m\sqrt{n})$.

Satz von Hall

Definition 5.11 (Nachbarschaft)

Sei G = (V, E) ein Graph. N(X) bezeichnet die Nachbarschaft einer Menge $X \subseteq V$, also die Menge an Knoten, die adjazent zu Knoten aus X sind.

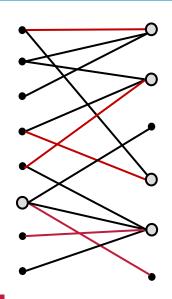
Satz 5.13

Sei G = (V, E) ein bipartiter Graph mit $V = V_1 \cup V_2$. Dann hat G genau dann ein V_1 überdeckendes Matching, wenn $|N(X)| \ge |X|$ für alle $X \subseteq V_1$ gilt.

Satz von Hall

Satz 5.13

Sei G = (V, E) ein bipartiter Graph mit $V = V_1 \cup V_2$. Dann hat G genau dann ein V_1 überdeckendes Matching, wenn $|N(X)| \ge |X|$ für alle $X \subseteq V_1$ gilt.



⇒: Trivial

⇐:

Annahme: Es ex. kein V_1 überdeckendes Matching.

Sei M Matching mit $|M| < |V_1|$.

Satz 5.7: es ex. *U* Vertex Cover mit $|U| < |V_1|$.

Wähle $U_1 := U \cap V_1$ und $U_2 := U \cap V_2$.

 $\Rightarrow N(V_1 \setminus U_1) \subseteq U_2$, also:

$$|N(V_1 \setminus U_1)| \le |U_2| < |V_1| - |U_1| = |V_1 \setminus U_1|$$

Heiratssatz von Frobenius

Satz 5.13

Sei G = (V, E) ein bipartiter Graph mit $V = V_1 \cup V_2$. Dann hat G genau dann ein V_1 überdeckendes Matching, wenn $|N(X)| \ge |X|$ für alle $X \subseteq V_1$ gilt.

Korollar 5.14

Sei G = (V, E) ein bipartiter Graph mit $V = V_1 \cup V_2$. Dann hat G genau dann ein perfektes Matching, wenn $|V_1| = |V_2|$ und $|N(X)| \ge |X|$ für alle $X \subseteq V_1$ gilt.

Nächste Woche

