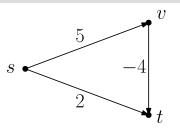


Netzwerkalgorithmen – Vorlesung #6

Arne Schmidt

Wiederholung

Wiederholung



Algorithmus 3.9

Eingabe:

Digraph D=(V,A), konservative Kostenfunktion $c\colon A\to\mathbb{R}$, Startknoten $s\in V$ Ausgabe:

Länge $\ell(v)$ eines kürzesten sv-Pfades, Vorgänger p(v) von v auf diesem Pfad

```
1. Function MBF(D, c, s)

2. \ell(s) \coloneqq 0

3. \ell(v) \coloneqq \infty, \ p(v) \coloneqq nil \ \forall v \in V \setminus \{s\}

4. For i = 1 to n - 1 do

5. For all (v, w) \in A do

6. If \ell(w) > \ell(v) + c((v, w)) then

7. \ell(w) \coloneqq \ell(v) + c((v, w))

8. p(w) \coloneqq v
```

Satz 3.10

Der Algorithmus von Moore, Bellman und Ford löst Problem 3.4 (Kürzeste Wege) korrekt für konservative Kantenkosten in O(nm) Zeit.

3.3 All Pairs Shortest Paths

All Pairs Shortest Paths

Problem 3.13: Paarweise kürzeste Wege Problem (All Pairs Shortest Path, APSP)

Gegeben:

Digraph D = (V, A)

Konservative Kostenfunktion $c: A \to \mathbb{R}$

Gesucht:

Für jedes Knotenpaar $(v_i, v_j) \in V^2$ einen kürzesten $v_i v_j$ -Weg

Idee 1:

n Mal Dijkstra mit Laufzeit $O(mn + n^2 \log n)$

Problem: Nur positive Kantengewichte möglich!

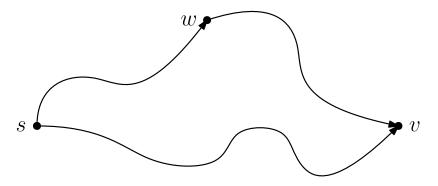
Idee 2:

n Mal MBF mit Laufzeit $O(mn^2)$

Problem: Im Worst-Case ist die Laufzeit $O(n^4)$!

Idee

Betrachte nicht nur direkten Vorgänger, sondern einen Knoten auf einem *sv-*Pfad:

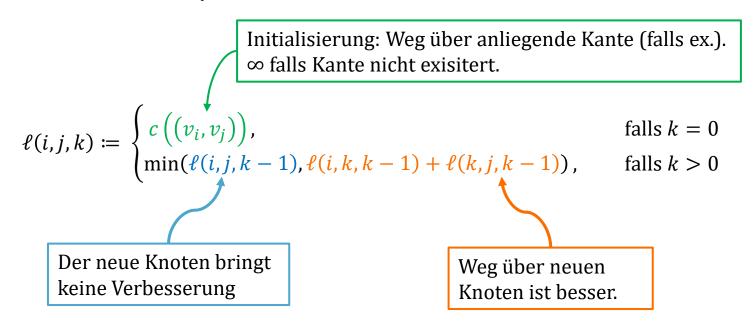


Annahme: Wir kennen zu jedem Knotenpaar den kürzesten Pfad, wenn Knoten v_1, \dots, v_{k-1} auf diesem Pfad liegen dürfen.

Frage: Gelange ich schneller von v_i nach v_i , wenn erst Knoten v_k besucht wird?

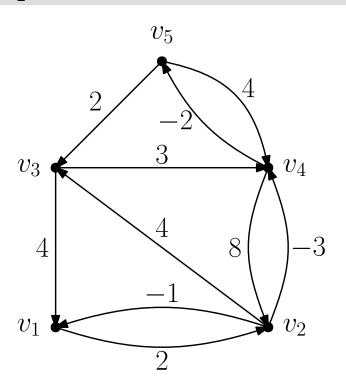
Rekursionsgleichung

Sei $\ell(i,j,k)$ der kürzeste v_iv_j -Pfad, wenn Knoten v_1,\dots,v_k benutzt werden dürfen.



Algorithmus von Floyd-Warshall

```
Algorithmus 3.14
Eingabe:
      Digraph D = (V, A), Kostenfunktion c: A \to \mathbb{R}
Ausgabe:
      Für jedes Paar (v_i, v_i) \in V^2 die Länge \ell_i(j) des kürzesten v_i v_i-Pfades und
      den Vorgänger p_i(j) von v_i auf diesem Pfad.
     Function FLOYDWARSHALL(D, c)
           \ell_i(j) = \infty, p_i(j) = \text{nil}, \forall (v_i, v_i) \in V^2
          \ell_i(j) = c((v_i, v_j)), \ p_i(j) = v_i, \ \forall (v_i, v_i) \in A
   \ell_i(i) = 0, \ \forall v_i \in V
    For k = 1 to n do
                 For i = 1 to n do
                       For i = 1 to n do
                             If \ell_i(j) > \ell_i(k) + \ell_k(j) then
8.
9.
                                   \ell_i(j) \coloneqq \ell_i(k) + \ell_k(j)
                                   p_i(j) \coloneqq p_k(j)
10.
```

$$k = 0$$

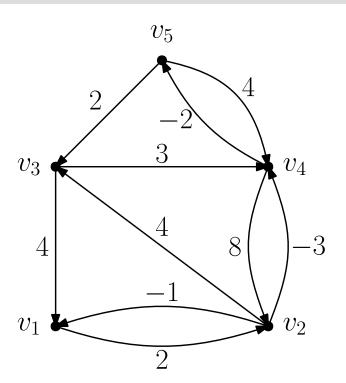
$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & \infty & \infty & \infty \\ -1 & 0 & 4 & -3 & \infty \\ 4 & \infty & 0 & 3 & \infty \\ v_{4} & \infty & \infty & 0 & -2 \\ v_{5} & \infty & \infty & 2 & 4 & 0 \end{pmatrix}$$

$$k = 1$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & \infty & \infty & \infty \\ -1 & 0 & 4 & -3 & \infty \\ 4 & 6 & 0 & 3 & \infty \\ v_{4} & \infty & 8 & \infty & 0 & -2 \\ v_{5} & \infty & \infty & 2 & 4 & 0 \end{pmatrix}$$



$$k = 1$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad 0 \quad 2 \quad \infty \quad \infty$$

$$v_{2} \quad -1 \quad 0 \quad 4 \quad -3 \quad \infty$$

$$v_{3} \quad 4 \quad 6 \quad 0 \quad 3 \quad \infty$$

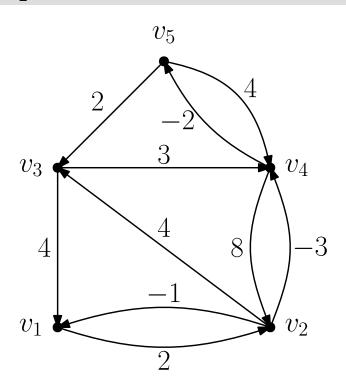
$$v_{4} \quad \infty \quad 8 \quad \infty \quad 0 \quad -2$$

$$v_{5} \quad \infty \quad 2 \quad 4 \quad 0$$

$$k = 2$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & 6 & -1 & \infty \\ -1 & 0 & 4 & -3 & \infty \\ 4 & 6 & 0 & 3 & \infty \\ v_{4} & 7 & 8 & 12 & 0 & -2 \\ v_{5} & \infty & \infty & 2 & 4 & 0 \end{pmatrix}$$



$$k = 2$$

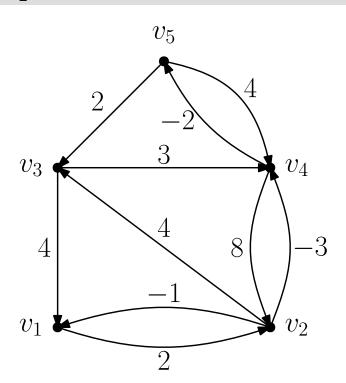
$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & 6 & -1 & \infty \\ -1 & 0 & 4 & -3 & \infty \\ 4 & 6 & 0 & 3 & \infty \\ 7 & 8 & 12 & 0 & -2 \\ v_{5} & \infty & \infty & 2 & 4 & 0 \end{pmatrix}$$

$$k = 3$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & 6 & -1 & \infty \\ -1 & 0 & 4 & -3 & \infty \\ 4 & 6 & 0 & 3 & \infty \\ 7 & 8 & 12 & 0 & -2 \\ v_{5} & 6 & 8 & 2 & 4 & 0 \end{pmatrix}$$



$$k = 3$$

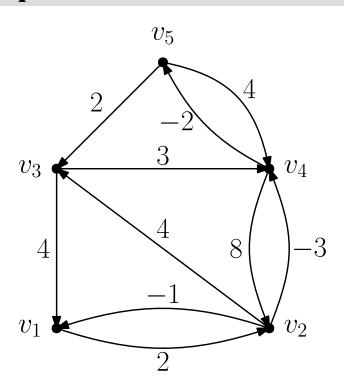
$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & 6 & -1 & \infty \\ -1 & 0 & 4 & -3 & \infty \\ 4 & 6 & 0 & 3 & \infty \\ 7 & 8 & 12 & 0 & -2 \\ v_{5} & 6 & 8 & 2 & 4 & 0 \end{pmatrix}$$

$$k = 4$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & 6 & -1 & -3 \\ -1 & 0 & 4 & -3 & -5 \\ 4 & 6 & 0 & 3 & 1 \\ 7 & 8 & 12 & 0 & -2 \\ v_{5} & 6 & 8 & 2 & 4 & 0 \end{pmatrix}$$



$$k = 4$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & 6 & -1 & -3 \\ -1 & 0 & 4 & -3 & -5 \\ 4 & 6 & 0 & 3 & 1 \\ 7 & 8 & 12 & 0 & -2 \\ v_{5} & 6 & 8 & 2 & 4 & 0 \end{pmatrix}$$

$$k = 5$$

$$v_{1} \quad v_{2} \quad v_{3} \quad v_{4} \quad v_{5}$$

$$v_{1} \quad \begin{pmatrix} 0 & 2 & -1 & -1 & -3 \\ -1 & 0 & -3 & -3 & -5 \\ 4 & 6 & 0 & 3 & 1 \\ 4 & 6 & 0 & 0 & -2 \\ v_{5} & 6 & 8 & 2 & 4 & 0 \end{pmatrix}$$

Algorithmus von Floyd-Warshall

Satz 3.15

Der Algorithmus von Floyd-Warshall löst Problem 3.13 (APSP) korrekt in Zeit $O(n^3)$.

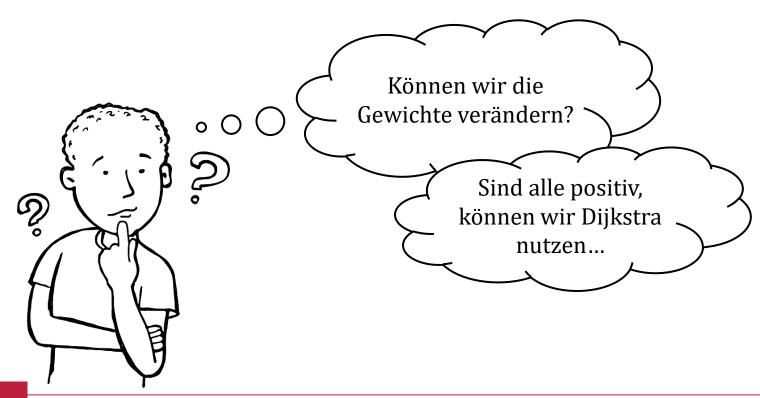
Beweis: Selbst!

Lemma 3.16

Ein Digraph D=(V,A) mit Kostenfunktion $c\colon A\to\mathbb{R}$ enthält genau dann einen negativen Kreis, wenn für (mind.) einen Knoten $v_i\in V$ nach Ausführung des Algorithmus von Floyd-Warshall $\ell_i(i)<0$ gilt.

Beweis: Selbst!

Geht das schneller?



Geht das schneller?

Reweighting – Idee

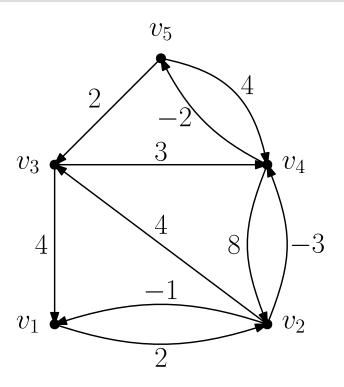
Suche Knotenlabel h(v), sodass für jede Kante e=(u,v) folgendes gilt $c'(e)\coloneqq c(e)+h(u)-h(v)\geq 0$

Dann gilt für jeden v_1v_k -Pfad $P := (v_1, ..., v_k)$

$$c'(P) = \sum_{i=1}^{k-1} c'((v_i, v_{i+1})) = \sum_{i=1}^{k-1} c((v_i, v_{i+1})) + h(v_i) - h(v_{i+1}) = c(P) + h(v_1) - h(v_k)$$
Teleskopsumme

Also ist c(P) minimal genau dann, wenn c'(P) minimal ist.

Gut erreichbare Knoten



Einerseits:

 v_5 lässt sich leicht über v_4 erreichen. v_4 lässt sich leicht über v_2 erreichen.

Andererseits:

 v_3 lässt sich leicht über v_5 erreichen, wenn vorher v_2 und v_4 besucht wurde.

Algorithmus von Johnson(-Dijkstra)

Algorithmus 3.17

Eingabe:

Digraph D = (V, A), Kostenfunktion $c: A \to \mathbb{R}$

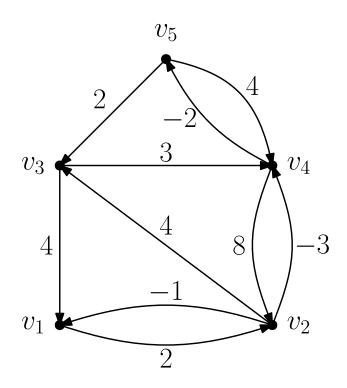
Ausgabe:

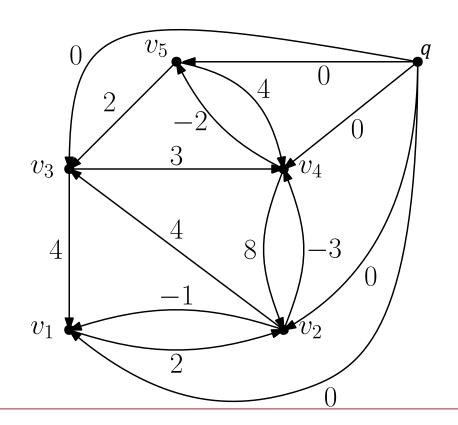
Für jedes Paar $(v_i, v_j) \in V^2$ die Länge $\ell_i(j)$ des kürzesten $v_i v_j$ -Pfades und den Vorgänger $p_i(j)$ von v_i auf diesem Pfad.

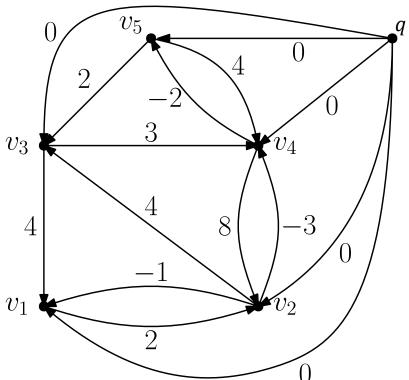
- 1. Function JOHNSON(D, c)
- 2. Füge Knoten *q* hinzu
- 3. Füge Kanten (q, v) mit c((q, v)) = 0 für alle $v \in V$ hinzu.
- 4. Führe MBF(D, c, q) aus.

Das ergibt Label $\ell(v)$ für alle Knoten $v \in V$

- 5. Entferne *q*
- 6. Setze $c'((u,v)) = c((u,v)) + \ell(u) \ell(v)$
- 7. Führe einmal Dijkstra von jedem Knoten v_i aus, um Label $\ell_i(j)$ zu erhalten.
- 8. Subtrahiere von jedem Label $\ell_i(j)$ den Wert $\ell(v_i) \ell(v_j)$.







Label nach MBF:

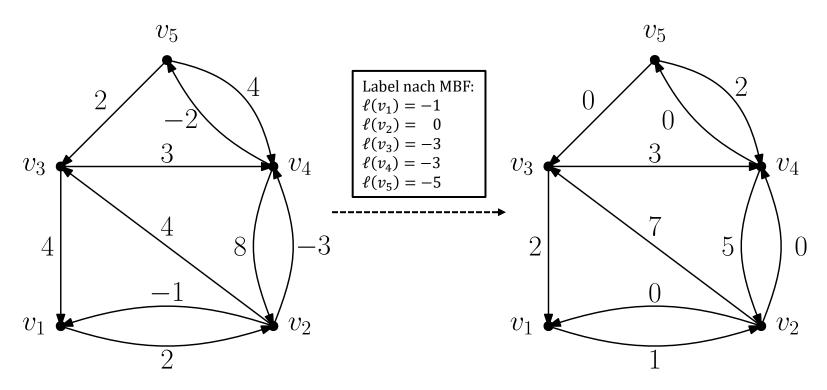
$$\ell(v_1) = -1$$

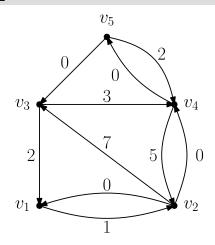
$$\ell(v_2) = 0$$

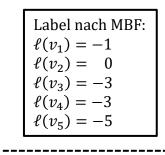
$$\ell(v_3) = -3$$

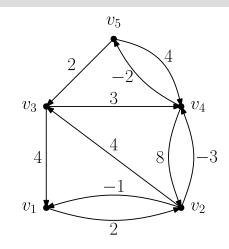
$$\ell(v_4) = -1$$

$$\ell(v_4) = -3$$
$$\ell(v_5) = -5$$









Algorithmus von Johnson

Satz 3.18

Der Algorithmus von Johnson löst Problem 3.13 (APSP) korrekt in Zeit $O(mn + n^2 \log n)$.

Beweisidee für Korrektheit:

Zeige, dass $c'(e) \ge 0$ für alle $e \in A$ gilt.

Laufzeit:

Im Wesentlichen wird einmal MBF und *n*-Mal Dijsktra durchgeführt.

Also ist die Laufzeit

$$O(mn + n \cdot (m + n \log n)) = O(mn + n^2 \log n)$$

3.4 Überblick

Algorithmen

Algorithmus	Kostenfunktionen	Problem	Laufzeit	Paradigma
Dijkstra	$\mathbb{R}_{\geq 0}$	SSSP	$O(m + n \log n)$	Greedy, Dyn. Programming
Moore, Bellman, Ford	Konservativ	SSSP	O(mn)	Dyn. Programming
Floyd-Warshall	Konservativ	APSP	$O(n^3)$	Dyn. Programming
Johnson	Konservativ	APSP	$O(mn + n^2 \log n)$	Reweighting, Dyn. Programming

Graphenklassen – SSSP

Graphenklasse	Kostenfunktionen	Laufzeit	Algorithmus
Dicht $m \in \Omega(n \log n)$	$\mathbb{R}_{\geq 0}$	O(m)	Dijkstra
Dünn $m \in O(n \log n)$	$\mathbb{R}_{\geq 0}$	$O(n \log n)$	Dijkstra
Beliebig	$\mathbb{N}, c(e) \leq L$	O(Lm+n)	BFS
Dicht $m \in \Omega(n \log n)$	Konservativ	O(mn)	MBF
Dünn $m \in O(n \log n)$	Konservativ	$O(n^2 \log n)$	MBF

Graphenklassen – APSP

Graphenklasse	Kostenfunktionen	Laufzeit	Algorithmus
Dicht $m \in \Omega(n \log n)$	$\mathbb{R}_{\geq 0}$	O(nm)	<i>n</i> Mal Dijkstra
Dünn $m \in O(n \log n)$	$\mathbb{R}_{\geq 0}$	$O(n^2 \log n)$	<i>n</i> Mal Dijkstra
Sehr dicht $m \in \Omega(n^2)$	Konservativ	$O(n^3)$	Floyd- Warshall
Dicht $m \in \Omega(n \log n)$	Konservativ	O(mn)	Johnson
Dünn $m \in O(n \log n)$	Konservativ	$O(n^2 \log n)$	Johnson

Mentimeter