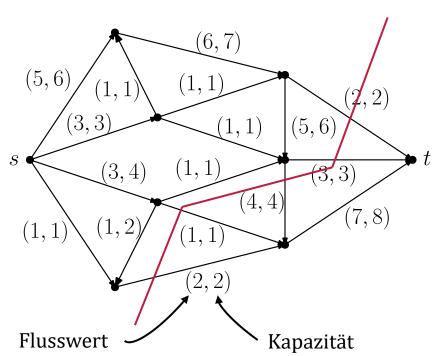


Netzwerkalgorithmen – Vorlesung #8

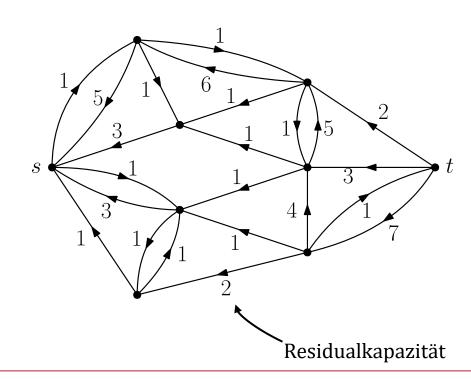
Arne Schmidt

Wiederholung

Wiederholung



Residualgraph



4.2 Berechnung von maximalen Flüssen

Algorithmus von Ford-Fulkerson

Algorithmus 4.8

Eingabe:

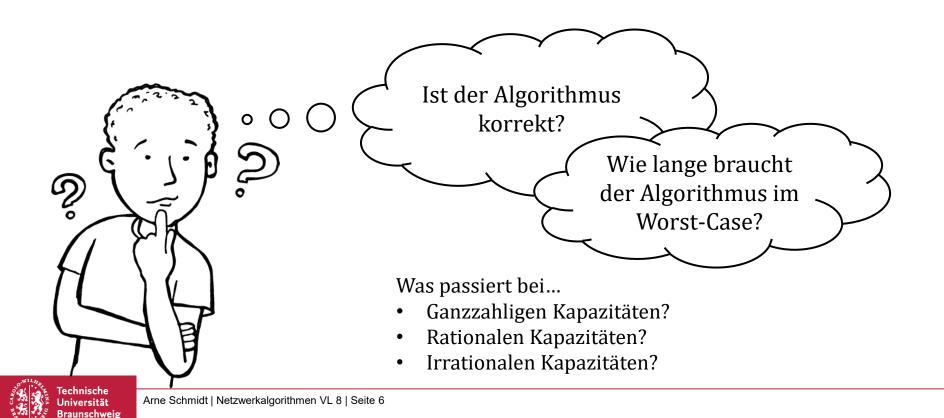
Netzwerk N = (D, u, s, t)

Ausgabe:

st-Fluss *f* mit maximalem Wert

- 1. Function FORDFULKERSON(N)
- 2. $f(e) := 0, \forall e \in A$
- 3. Bestimme Residualgraph D_f und Residualkapazitäten u_f .
- 4. Bestimme st-Pfad P in D_f ; falls keiner existiert **return** f.
- 5. Berechne $\gamma := \min_{e \in P} (u_f(e))$.
- 6. Augmentiere *f* entlang *P*.
- 7. Gehe zu Zeile 3.

Diese Woche – Zum Überlegen!



Korrektheit

Lemma 4.9

Terminiert der Algorithmus von Ford-Fulkerson, dann ist f maximal.

Beweis:

Algorithmus terminiert nur, wenn kein st-Pfad in D_f existiert.

Nach Lemma 4.6 ist *f* maximal.

Terminiertheit

Lemma 4.10

Der Algorithmus von Ford-Fulkerson terminiert immer für rationale Kapazitäten.

Beweis:

Falls Kapazitäten nicht ganzzahlig:

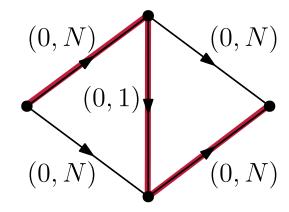
Betrachte Kapazitäten $u_e = \frac{a_e}{b_e}$ und bestimme $u'_e \coloneqq u_e \cdot \mathrm{kgV}_{e' \in A}(b_{e'})$

Unter ganzzahligen Gewichten:

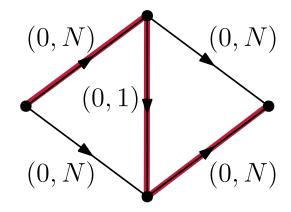
Jeder *st*-Pfad augmentiert *f* um mindestens 1.

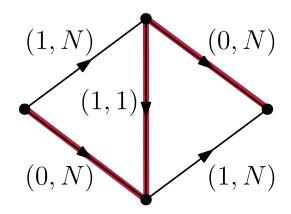
 \Rightarrow maximal $F = \max_{st-Fluss f} f$ viele Iterationen.

Worst-Case Laufzeit



Worst-Case Laufzeit

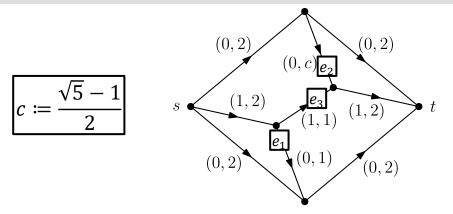




2*N* Iterationen!

Worst Worst-Case

Irrationale Kapazitäten



Residualkapaizitäten von (e_1, e_2, e_3) nach Anwenden von p_1, p_2, p_1, p_3 .

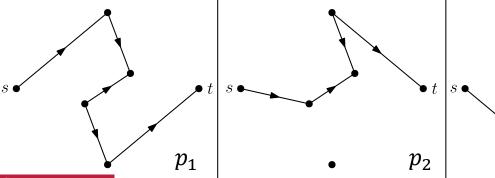
Iteration 0: (1, c, 0)

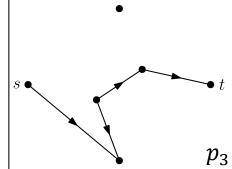
Iteration 1: (1 - c, 2c - 1, 0)

Iteration 2: (2 - 3c, 5c - 3, 0)

Iteration n: (a, b, 0)

Iteration n + 1: (a - b, 2b - a, 0)



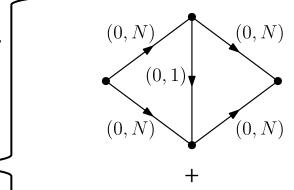


Irrationale Kapazitäten

Problem: Das Wählen beliebiger Pfade.

Lösungsideen:

- Pfad mit bester Verbesserung?
- Pfad mit vielen Kanten?
- Pfad mit wenig Kanten?



Finden langer Pfade ist schwer!

Beste Verbesserung

Problem 4.11: Widest Path Problem

Gegeben:

Graph D = (V, A) mit Kostenfunktion $c: A \to \mathbb{R}$ und Knoten $s \in V$.

Gesucht:

Für jeden Knoten $v \in V$ einen sv-Pfad P mit $\min_{e \in P} c(e)$ maximal.

Vgl: Präsenzaufgabe auf Blatt $2 \Rightarrow$ Lässt sich analog mit modifiziertem Dijkstra lösen.

Laufzeit: $O(m + n \log n)$

Zu zeigen: Es gibt immer einen Pfad, der eine "große" Verbesserung bringt.

Flusszerlegung

Satz 4.12

Sei N = (D, u, s, t) ein Netzwerk und f ein st-Fluss in N.

Dann gibt es eine Menge

- \mathcal{P} von st-Pfaden
- \mathcal{C} von Kreisen

sodass folgendes gilt:

a)
$$f(e) = \sum_{\substack{p \in \mathcal{P} \cup \mathcal{C} \\ e \in n}} w(p)$$

b)
$$Wert(f) = \sum_{p \in \mathcal{P}} w(p)$$

c)
$$|\mathcal{P}| + |\mathcal{C}| \leq |E|$$

Dabei ist w(p) der Flusswert des Pfades bzw. Kreises.

Zeige nun: Die Konstruktion erfüllt Bedingungen a) bis c) \Rightarrow Hausaufgabe!

Pfade mit großer Verbesserung

Lemma 4.13

Sei N = (D, u, s, t) ein Netzwerk mit maximalem Flusswert opt.

Dann gibt es einen augmentierenden Pfad mit Kapazität $\frac{opt}{|E|}$.

Beweis:

Sei *f* ein maximaler Fluss.

Nach Satz 4.12 existieren Pfade P_1, \dots, P_k mit

$$Wert(f) = \sum_{i=1}^{k} w(P_i) \text{ und } k \leq |E|.$$

$$\Rightarrow$$
 Es ex. Pfad P_i mit $w(P_i) \ge \frac{Wert(f)}{|E|}$

Korollar 4.14

Für ein Netzwerk N = (D, u, s, t) mit $u: A \to \mathbb{Q}^+$ maximalem Flusswert f^* benötigt der Algorithmus von Ford-Fulkerson maximal $m \log f^*$ Iterationen, wenn immer ein Pfad mit maximaler Verbesserung gewählt wird.

Kurze Wege

Algorithmus von Edmonds-Karp

Algorithmus 4.15

Eingabe:

Netzwerk N = (D, u, s, t)

Ausgabe:

st-Fluss *f* mit maximalem Wert

- 1. Function EDMONDSKARP(N)
- 2. $f(e) := 0, \forall e \in A$
- 3. Bestimme Residualgraph D_f und Residualkapazitäten u_f .
- 4. Bestimme **kürzesten** st-Pfad P in D_f ; falls keiner existiert **return** f.
- 5. Berechne $\gamma := \min_{e \in P} (u_f(e))$.
- 6. Augmentiere *f* entlang *P*.
- 7. Gehe zu Zeile 3.

Analyse Edmonds-Karp

Lemma 4.16

Sei N = (D, u, s, t) ein Netzwerk und $f_1, ..., f_k$ eine Folge von Flüssen, wobei f_{i+1} aus f_i durch Augmentieren entlang eines kürzesten f_i -augmentierenden Pfades P_i entsteht. Dann gilt:

- a) Für alle $1 \le i < k$ gilt $|E(P_i)| \le |E(P_{i+1})|$
- b) Falls P_i und P_j mit i < j ein Paar entgegengesetzter Kanten enthält, dann gilt $|E(P_i)| \le |E(P_i)| 2$

Nächste Woche

Lemma 4.17

Für ein Netzwerk N=(D,u,s,t) mit $u:A\to\mathbb{R}^+$ terminiert der Algorithmus von Edmonds-Karp nach maximal $\frac{mn}{2}$ Iterationen.

Satz 4.18

Der Algorithmus von Edmonds-Karp löst Problem 4.2 (MaxFlow) in Zeit $O(nm^2)$.