Algorithms Group Summer 2022
Department of Computer Science - IBR
TU Braunschweig

Prof. Dr. Sandor P. Fekete
Michael Perk

Online Algorithms
Homework Assignment 1

May 09, 2022

Solutions are due on Monday, the 16th of May, 2022, until 15:00 in the homework cup-
board. You can also hand in your solution in person before the big tutorial begins or via
e-mail to kramer@ibr.cs.tu-bs.de with CC to mperk@ibr.cs.tu-bs.de.

Exercise 1 (The BahnCard Problem: Optimal Offline Algorithm):

In the big tutorial, we considered the BahnCard Problem BC(C, 3,T) with cost C, cost
reduction [and validity duration 7. We proved that, in the worst case, no online al-
gorithm can perform better than 2 — 5 times the cost of an optimal offline algorithm.
Construct an optimal offline algorithm that, for a given sequence o consisting of n chrono-
logically ordered ticket requests (t1,¢1), . .., (ta, ¢n), produces an optimal solution in O(n)
time.

You may make use of the following two facts:

e The optimal offline algorithm never has to buy a BahnCard while it still owns one.

e The optimal offline algorithm never has to buy a BahnCard at a time point that is
not the time point of some ticket request.

(20 pts.)

Algorithm 1: Online algorithm SUM for the Bahncard problem

Input: Sequence o = ((;,¢;))1<i<n of travel requests, T, 3, C

Output: v = (7i)1<i<n € {0,1}", where 7; = 1 means buying a BC at request i
1 if We already own a BC at request © then
2 ‘ Output v; =0

3 else

4 if The cost of all reqular requests in (t; — T,t;] is at least ¢* then
5 ‘ Output v, =1

6 else

7 L Output v, =0

Exercise 2 (The BahnCard Problem: Online Algorithm SUM):

For the BahnCard problem BC(C, 3,T), we presented the online algorithm SUM. Recall
that a request is called a reduced request if SUM possesses a BahnCard for that request
and regular otherwise, and the break-even price c* is %

Let 0 = (t1,¢1), .., (tn, ¢,) be a sequence of travel requests. Moreover, let 7,..., 7, be
the times where the optimal offline solution buys a BahnCard and consider the phases
0,71),[T1,72), .., [Tk, 00). We prove that SUM is (2 — 3)-competitive by proving csya <

(2 — copr) for each phase individually.

a) Recall that we call a time interval I = [b, e) expensive if the sum of all costs for
travel requests with time t; € I is at least ¢*, and cheap otherwise. Prove that for
each phase [1;, 7;11) with 1 < i <k, the interval [r;, 7; + T') is expensive. Moreover,
let 74,1 := 00. Prove that any subinterval of [r; + T, 7;,1) of length at most T is
cheap.

b) Prove that, for the first phase I = [0,71), csum < copr

¢) Prove that csyy < (2 —) - copr for a phase I = [1;, 7;41) if SUM does not buy a
BahnCard in phase [

d) Finally, prove that csyy < (2 —) - copr for a phase I = [1;,7;41) if SUM buys
a BahnCard in phase I. Hint: Decompose [into three intervals I, I, I3 based on
the time until which SUM possesses a BahnCard from the last phase and the time
where SUM decides to buy a new BahnCard.

(3 + 4 + 8 + 10 pts.)

Exercise 3 (Potential Functions and Amortized Analysis):

Consider an abstract online problem where an online algorithm A faces an online sequence
r =riry...1, of requests. As a response to each request r;, A has to perform an action
A(i) without knowing the next request r;,;. Each such action incurs a cost ca(i) € R.
Analogously, the optimal offline algorithm OPT performs actions as response to requests
with costs copr(7).

In the analysis of online algorithms, it is often impossible to bound the cost of an online
algorithm by proving c4(i) < ¢ - copr(i) for each request i. Therefore, we need a way to
distribute the costs of an expensive action of A across several requests.

One way of doing this is by considering a potential function ®, : {1,2,...,n} — Rx
with ®,(0) = 0. This potential function acts as a savings account that is not allowed to
become negative and that accumulates saved costs to pay for later expensive actions.

(a) Prove the following. If for every request sequence r, there is a potential function
®, such that
ca(i) + ®,.(1) = D,.(i — 1) < ¢ copr(i),
then A is c-competitive, i.e., > ca(i) < ¢ > copr(i).
i=1 i=1

(b) Consider the problem READ INTO BUFFER, where we want to read a non-empty
stream s of unknown length into a buffer that is stored in memory as contiguous
array of size at most 2|s|. Reading a symbol from s into the buffer has a cost of 1.

The optimal offline algorithm allocates an array of size |s| once and thus has a cost
of |s]|.

In the online scenario, if the buffer is full, it has to be reallocated and the old
contents have to be copied to the new buffer. For every symbol already in the
buffer, this incurs an additional cost of 1. Thus, reading the kth symbol from s
costs either 1 (not full) or k& (buffer full).

Devise a 3-competitive algorithm for READ INTO BUFFER, using a potential func-
tion to prove the competitive ratio.

(5415 pts.)

