{"id":432,"date":"2023-06-27T09:17:07","date_gmt":"2023-06-27T07:17:07","guid":{"rendered":"https:\/\/aud2.ibr.cs.tu-bs.de\/?p=432"},"modified":"2023-07-10T09:21:12","modified_gmt":"2023-07-10T07:21:12","slug":"vorlesung-10","status":"publish","type":"post","link":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/2023\/06\/27\/vorlesung-10\/","title":{"rendered":"Vorlesung 10"},"content":{"rendered":"\n
In dieser Vorlesung machen wir einen Exkurs und besch\u00e4ftigen und mit Optimierungsmethoden f\u00fcr mehrdimensionales Packen.<\/p>\n\n\n\n
Folien<\/strong>: VL10.pdf<\/a> <\/p>\n\n\n\n Zus\u00e4tzliche Links<\/strong><\/p>\n\n\n\n 1D Bin Packing.<\/strong> [PDF]<\/a> H\u00f6her-Dimensionales Packen.<\/strong> [PDF]<\/a> An Exact Algorithm for Higher-Dimensional Orthogonal Packing.<\/strong> [PDF]<\/a> Origami und Kreispacken.<\/strong> [PDF]<\/a> Dichtes Packen.<\/strong> [PDF]<\/a> Packing Geometric Objects with Optimal Worst-Case Density.<\/strong> [PDF]<\/a> [Video – IBR]<\/a> Packing Squares into a Disk with Optimal Worst-Case Density.<\/strong> [PDF]<\/a> Dichtes \u00dcberdecken.<\/strong> [PDF]<\/a> [Video – YouTube]<\/a> Worst-Case Optimal Covering of Rectangles by Disks.<\/strong> [PDF]<\/a> Online-Packen.<\/strong> [PDF]<\/a> In dieser Vorlesung machen wir einen Exkurs und besch\u00e4ftigen und mit Optimierungsmethoden f\u00fcr mehrdimensionales Packen.<\/p>\n","protected":false},"author":6,"featured_media":430,"comment_status":"closed","ping_status":"closed","sticky":false,"template":"","format":"standard","meta":{"site-sidebar-layout":"default","site-content-layout":"","ast-site-content-layout":"","site-content-style":"default","site-sidebar-style":"default","ast-global-header-display":"","ast-banner-title-visibility":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":"","astra-migrate-meta-layouts":"","footnotes":""},"categories":[17],"tags":[],"publishpress_future_action":{"enabled":false,"date":"2024-03-26 14:57:54","action":"draft","terms":[],"taxonomy":"category"},"_links":{"self":[{"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/432"}],"collection":[{"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/users\/6"}],"replies":[{"embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/comments?post=432"}],"version-history":[{"count":8,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/432\/revisions"}],"predecessor-version":[{"id":1201,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/432\/revisions\/1201"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/media\/430"}],"wp:attachment":[{"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/media?parent=432"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/categories?post=432"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/aud2.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/tags?post=432"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}
Video:<\/strong> [YouTube]<\/a>, [IBR]<\/a><\/p>\n\n\n\n
S.P. Fekete, J. Schepers.
New Classes of Fast Lower Bounds for Bin Packing Problems.
Mathematical Programming, 91 (2001), pp. 11-31.<\/p>\n\n\n\n
S.P. Fekete, J. Schepers.
A Combinatorial Characterization of Higher-Dimensional Orthogonal Packing.
Mathematics of Operations Research, 29 (2004), pp. 353-368.<\/p>\n\n\n\n
S.P. Fekete, J. Schepers, J. van der Veen.
Operations Research, Vol. 55, No. 3, 2007, pp. 569-587.<\/p>\n\n\n\n
E.D. Demaine, S.P. Fekete, R.J. Lang.
Circle packing for Origami is Hard.
In: P. Wang-Iverson, R.J. Lang, M. Yim (eds.), Origami5: Fifth International Meeting of Origami Science, Mathematics, and Education, AK Peters\/CRC Press, 2011, pp.609-626.<\/p>\n\n\n\n
S.P. Fekete, S. Morr, C. Scheffer.
Split Packing: Algorithms for Packing Circles with Optimal Worst-Case Density.
Discrete and Computational Geometry, 61(3), 2019, pp. 562-594.<\/p>\n\n\n\n
A. Becker, S.P. Fekete, P. Keldenich, S. Morr, C. Scheffer.
In: 35th International Symposium on Computational Geometry (SoCG 2019), pp. 63:1-63:6.<\/p>\n\n\n\n
S.P. Fekete, V. Gurunathan, K. Juneja, P. Keldenich, C. Scheffer.
In: Symposium on Computational Geometry (SoCG 2021), LIPIcs vol. 189, pp. 36:1-36:16.<\/p>\n\n\n\n
S.P. Fekete, P. Keldenich, C. Scheffer.
Covering Rectangles by Disks: The Video.
In: Symposium on Computational Geometry (SoCG 2020), LIPIcs vol. 164, pp. 75:1-75:5.<\/p>\n\n\n\n
S.P. Fekete, U. Gupta, P. Keldenich, C. Scheffer, S. Shah.
In: Symposium on Computational Geometry (SoCG 2020), LIPIcs vol. 164, pp. 42:1-42:23.<\/p>\n\n\n\n
S.P. Fekete, C. Scheffer, S. von H\u00f6veling.
Online Circle Packing.
In: Proceedings of the 16th Algorithms and Data Structures Symposium (WADS 2019), pp. 366-379.
Online Square-in-Square Packing.<\/strong> [PDF]<\/a>
S.P. Fekete, H.-F. Hoffmann.
In: Algorithmica, 77(3) 2017, 867-901.
Online square packing with gravity.<\/strong> [PDF]<\/a>
S.P. Fekete, T. Kamphans, N. Schweer.
In: Algorithmica, 68(4), 2014, pp. 1019-1044.<\/p>\n","protected":false},"excerpt":{"rendered":"