
Online Algorithms Summer 2024

Prof. Dr. Sándor P. Fekete
Peter Kramer

Due: 27.05.2024
Discussion: 03.06.2024

Sheet 2

Please submit your individual solutions using the boxes in front of IZ338 , before
the exercise timeslot on the due date above. Your homework submission may be
handwritten using proper ink (no pencil, no red ink) or printed.

Exercise 1 (k-Server Problem: Greedy algorithm): (15 points)
In this exercise, we consider the k-Server Problem in the Euclidean plane. In this problem,
we start with k servers at given points s1, . . . , sk ∈ R2. We are given a sequence of n requests at
locations σj ∈ R2. Each request σj must be handled immediately by moving one of the servers
from its current position p to σj . The cost for moving a server from p to σj corresponds to the
Euclidean distance d(σj , p) = ||σj − p||2. The goal is to minimize the total distance traveled by
the servers. The algorithm Greedy serves each request using the server closest to the request.

What is the competitive ratio c of Greedy for k = 2 servers?

Exercise 2 (k-Server Problem: Double Coverage): (10+10+10 points)
In this exercise, we consider the k-Server Problem in the Euclidean line. In this problem,
we start with k servers at given points s1, . . . , sk ∈ R. We are given a sequence of n requests
at σj ∈ R. Each request σj must be handled immediately by moving one of the servers from its
current position p to σj . The cost for moving a server from p to σj corresponds to the Euclidean
distance d(σj , p) = |σj − p|. The goal is to minimize the total distance traveled by the servers.

We want to prove that the algorithm Double Coverage (DC) is k-competitive: If a request
falls outside the convex hull of the servers’ current locations, DC serves it with the nearest
server. Otherwise, the request is between two adjacent servers. In this case, DC moves both
servers toward the request at equal speed until (at least) one of the servers reaches it.

We denote the cost incurred in response to σi by cDC(i) and cOPT(i) for DC and an optimal
offline algorithm OPT, respectively. Let Mmin denote the minimum cost matching between the
servers in OPT and DC, and let ΣDC =

∑
i<j d(si, sj) be the sum of all interpoint distances

between DC’s servers. Let Φ(i) = k ·Mmin + ΣDC be a potential function. From the previous
homework we know that DC is k-competitive if cDC(i) + Φ(i)− Φ(i− 1) ≤ k · cOPT(i). In this
exercise we show that Φ(i)− Φ(i− 1) ≤ k · cOPT(i)− cDC(i).

a) Both the moves of DC and OPT have an influence on the change of potential Φ(i)−Φ(i−1)
at request σi. We split the change of potential in two steps and first consider the influence
of OPT, i.e. the change of potential after OPT serves request σi and before DC serves the
request. Show that OPT’s move only changes the value of Mmin with a difference lower or
equal to k · cOPT(i).

b) We now consider DC’s move after OPT’s potential change was applied. As DC behaves
differently in response to some request position σi, we split it’s behavior into two cases.
For the first case, DC changes the position of a single server. Show that in this case,

Φ(i) ≤ Φ(i− 1) + k · cOPT(i)− cDC(i).

c) In the second case, DC changes the position of two servers. Show that in this case
Φ(i) ≤ Φ(i− 1) + k · cOPT(i)− cDC(i), which concludes the proof.

Page 1 / 2

https://www.ibr.cs.tu-bs.de/rooms/index.html?room=338&lang=de
https://www.ibr.cs.tu-bs.de/courses/ws2324/ag/slides/VL2.pdf

Exercise 3 (k-Server Problem: DC-Tree): (20 points)
In this exercise, we consider the k-Server Problem in a tree network. The distance between
two points on the tree is the length of the simple path between them.

We say that a server sj is a neighbor to a request σi exactly if there is no other server on the
path from sj to σi. The DC-Tree algorithm answers each request by moving all neighboring
servers at constant speed towards the request. DC-Tree is k-competitive. Let G be any N -node
graph. Let T be the minimum spanning tree of G. Show that DC-Tree is k(N − 1)-competitive.

(Hint: Compare the optimal offline algorithm for T and the optimal offline algorithm for G.)

Page 2 / 2

