{"id":172,"date":"2020-11-10T11:30:00","date_gmt":"2020-11-10T10:30:00","guid":{"rendered":"http:\/\/aud.ibr.cs.tu-bs.de\/?p=172"},"modified":"2020-11-12T15:20:45","modified_gmt":"2020-11-12T14:20:45","slug":"vorlesung-4","status":"publish","type":"post","link":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/2020\/11\/10\/vorlesung-4\/","title":{"rendered":"Vorlesung 4"},"content":{"rendered":"\n

In dieser Vorlesung werden notwendige Bedingungen f\u00fcr Eulertouren erleutert. Zus\u00e4tzlich wird das Kapitel 2 noch einmal zusammengefasst.<\/p>\n\n\n\n

Folien: <\/strong>VL4.pdf<\/a>
Video:<\/strong>
[YouTube]<\/a>, [IBR]<\/a><\/p>\n\n\n\n

Weitere Links<\/h3>\n\n\n\n

Wikipedia-Seite: Wege in Graphen<\/a>
Wikipedia-Seite: Eulerkreise<\/a>
Der Originalartikel von Hierholzer<\/a><\/p>\n\n\n\n

Zum Spielen:<\/strong>“One touch drawing: Draw everything with only “One touch” – ein (kostenloses) Spiel, bei dem es um Eulerwege geht.
(“Over 25million players can’t be wrong.” “Sehr gute App., um auch mal den Kopf anzustrengen.” “echt ein super spiel, macht s\u00fcchtig”)
F\u00fcr iPhone etc.<\/a>
F\u00fcr Android etc.<\/a>
Wo wir schon dabei sind: Eine Sammlung vieler anderer kombinatorischer Spiele<\/a>
Der Flynn-Effekt<\/a><\/p>\n\n\n\n

\"\"\/<\/a>
IDEA-Projekt<\/a><\/figcaption><\/figure><\/div>\n\n\n\n
\"\"\/<\/a>
Mathematician’s solution: assuming the land patches are divided by a river, that river must originate at some point, beyond which two of the land masses are connected. The remainder of the proof is left as an exercise for the student.<\/figcaption><\/figure><\/div>\n\n\n\n
\"\"\/<\/a>
K\u00f6nigsberger Br\u00fcckenproblem im heutigen Kaliningrad: Es geht!<\/a><\/figcaption><\/figure><\/div>\n\n\n\n

Modulseiten zum K\u00f6nigsberger Br\u00fcckenproblem und zu Leonhard Euler<\/a><\/p>\n\n\n\n

Wikipedia-Seite: Bill Tutte<\/a>
Buch:
“Graph Theory” von William T. Tutte bei Amazon<\/a>
Wikipedia-Seite: Der Computer Colossus<\/a><\/p>\n","protected":false},"excerpt":{"rendered":"

In dieser Vorlesung werden notwendige Bedingungen f\u00fcr Eulertouren erleutert. Zus\u00e4tzlich wird das Kapitel 2 noch einmal zusammengefasst.<\/p>\n","protected":false},"author":1,"featured_media":173,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":[],"categories":[1,5,11,4],"tags":[],"_links":{"self":[{"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/172"}],"collection":[{"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/comments?post=172"}],"version-history":[{"count":4,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/172\/revisions"}],"predecessor-version":[{"id":285,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/posts\/172\/revisions\/285"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/media\/173"}],"wp:attachment":[{"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/media?parent=172"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/categories?post=172"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/index.php\/wp-json\/wp\/v2\/tags?post=172"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}