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L1 Shortest Paths Among Polygonal Obstacles 
in the Plane 1 

Joseph S. B. Mitchell 2 

Abstract. We present an algorithm for computing L 1 shortest paths among polygonal obstacles in 
the plane. Our algorithm employs the "continuous Dijkstra" technique of propagating a "wavefront" 
and runs in time O(E log n) and space O(E), where n is the number of vertices of the obstacles and E 
is the number of "events." By using bounds on the density of certain sparse binary matrices, we show 
that E = O(n log n), implying that our algorithm is nearly optimal. We conjecture that E = O(n), which 
would imply our algorithm to be optimal. Previous bounds for our problem were quadratic in time 
and space. 

Our algorithm generalizes to the case of fixed orientation metrics, yielding an O(ne- 1/2 log2 n) time 
and O(ne-1/2) space approximation algorithm for finding Euclidean shortest paths among obstacles. 
The algorithm further generalizes to the case of many sources, allowing us to compute an L 1 Voronoi 
diagram for source points that lie among a collection of polygonal obstacles. 

Key Words. Shortest paths, Voronoi diagrams, Rectilinear paths, Wire routing, Fixed orientation 
metrics, Continuous Dijkstra algorithm, Computational geometry, Extremal graph theory. 

1. Introduction. Recently, there has been much interest in the problem of finding 
shortest Euclidean (L2) paths for a point moving in a plane cluttered with polygonal 
obstacles. This problem can be solved by constructing the visibility 9raph of the 
set of obstacles and then searching this graph using Dijkstra's algorithm [Di] or 
an A* algorithm [Nil. The bottleneck in the computation is in the construction 
of the visibility graph. It has been known for some time that the visibility graph 
can be constructed in time O(n 2 log n) [Le], [LW], [Mill,  [SS], where n is the 
number of vertices,describing the set of obstacles. More recently, it has been shown 
that the visibility graph can be constructed in worst-case optimal time O(n z) 
[AAGHI], [We], or in output-sensitive time O(e + n log n) [GM], [KM], where 
e = O(n 2) is the number of edges in the visibility graph. In some special cases in 
which the shortest path is known to possess certain monotonicity properties, 
algorithms that require O(n log n) time to compute shortest paths are known [LP], 
[Mill ,  [SS]. While other algorithms for the general case are known whose running 
time can be written in other, possibly more favorable, terms [Mi3], [RS], it remains 
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an open problem to devise a worst-case subquadratic time algorithm for finding 
shortest Euclidean paths. 

Our Problem. We consider here the L 1 (rectilinear) version of the two-dimen- 
sional shortest path problem: Determine a path of minimum L 1 length from s to 
t that avoids the interiors of a set of disjoint simple polygonal obstacles described 
by a set of n vertices. We allow an arbitrary polygonal path from s to t, but we 
measure the lengths of each of its segments according to the L1 metric. A closely 
related problem that is also solved by our method is that of finding a shortest 
rectilinear path from s to t. A rectilinear path is one that is always parallel to 
either the x- or the y-axis, and its length can be measured either by Euclidean 
distance or L 1 distance, since these lengths will be the same. The rectilinear path 
problem naturally arises in certain wire-routing applications in which one is 
interested in finding the shortest path for a wire that is constrained to avoid a 
given set of components and must always run up, down, left, or right. 

Previous Work. Larson and Li [LL] studied the problem of finding all minimal 
rectilinear distance paths among a set of m origin-destination pairs in a plane with 
polygonal obstacles. Their algorithm runs in time O(m(m 2 + nZ)), which specializes 
to O(n 2) for the case of only one origin and one destination. The special case in 
which all obstacles are rectangles has been solved in optimal time | log n) 
[DLW] by exploiting the monotonicity of shortest paths. Furthermore, [-DLW] 
show that ~(n log n) is a lower bound on the time complexity in the case of 
rectangular obstacles, implying the same lower bound for our more general 
problem. 

Our Results. In this paper we provide the first subquadratic time algorithm for 
the general problem (with polygonal obstacles). Our algorithm runs in time 
O(E log n) and space O(E), where E is the number of "events" in our algorithm 
and is related to a function g(n) that bounds the maximum number of ones in a 
binary n-by-n matrix that obeys certain sparsity conditions. Appealing to a recent 
result of Bienstock and Gy6ri [BG], which shows that 9(n)= O(n log n), we 
conclude that the running time of our algorithm is no worse than O(n log 2 n), 
nearly achieving the known lower bound and considerably improving the previous 
best-known quadratic bound. We suspect that E = O(n). If our conjecture is true, 
then the algorithm we present here is actually optimal, running in time O(n log n). 

We should note that an earlier draft of this paper [Mi2] claimed a bound of 
O(n log n/log log n) on E, which relied on bounding the number of ones in a matrix 
without an "L-quadrilateral" pattern. The bound used a complex combinatorial 
argument in which there was found an error. While we still believe that L- 
quadrilateral-free matrices obey the stated upper bound, the proof eludes us at 
this time. 

As in [DLW],  our algorithm can solve the following query form of the problem: 
Given a source point s, we build a structure, a Shortest Path Map (as originally 
defined in [LP]), such that, for any query point t, we can find the length of a 
shortest path from s to t in O(log n) time (by point location within the map), and 
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we can output a shortest path in additional time O(k), where k is the number of 
"turns" in the path. 

Our results generalize to the case of "fixed orientation metrices" [WWW], of 
which the L~ and L~ metrics are special cases, and to multiple source points. 
Thus, our algorithm yields an almost-optimal algorithm for computing the 
Voronoi diagram according to any fixed orientation metric of a set of sites in a 
two-dimensional polygonal space. An immediate consequence of this result is an 
efficient algorithm (O(n~- 1/2 log2 n) time and O(ne- 1/2) space) for finding e-optimal 
Euclidean shortest paths or Voronoi diagrams among obstacles in the plane. These 
bounds compare favorably to the recent results of [CI], who finds an e-optimal 
path in time O(n/e + n log n), after spending O((n/e)log n) time to build a data 
structure of size O(n/e). 

Our Method. We use a technique called a "continuous Dijkstra algorithm" 
[Mill, [MMP], IMP], which considers the effects of sweeping an advancing 
"wavefront" from a source point s to all points of free space f t .  (The wavefront 
at distance D is the set of points p of Y for which the shortest path length from 
s to p is D.) In order to simulate the advancement of the wavefront, we must 
update our data structure at each of E events. The special property of the LI 
metric that makes it easy to keep track of the propagating wavefront is the fact 
that it is always composed of straight-line segments that are diagonal (oriented 
at _+ 45~ This means that determining events in the continuous Dijkstra method 
involves answering segment dragging queries of the forms to be discussed in Section 
3. Thanks to the ingenious data structures of Chazelle [Chl], [Ch2], we are able 
to perform the necessary queries and updates in O(log n) time for each event, while 
using only linear storage. 

The proof of the upper bound on the number of events uses a charging scheme 
that leads to the study of the maximum number of ones that can appear in a 
binary matrix that is not allowed to contain certain "violated patterns." Our 
research points to a very interesting class of problems, intimately related to 
extremal graph theory, involving the study of matrices that are sparse due to a 
set of violated patterns. We provide the first application of these combinatorial 
bounds to geometric problems. One might think of our method as a two- 
dimensional generalization of the method of Davenport-Schinzel sequences (e.g., 
see [Sh], [SCKLPS]), which involves bounding the length of a (one-dimensional) 
sequence of symbols in which certain patterns (alternations) are known not to 
occur. Recently, in fact, this method has been applied to other problems in 
geometry. [PaS] have used the sparse matrix method to bound the size of the 
queue in the Bentley-Ottman line sweeping algorithm, and [CEGS] have used 
the method to bound the number of cycles that appear in certain arrangements 
of lines in space. We expect to see continued application of this technique to 
other problems in combinatorial and computational geometry. 

REMARK. Since the original writing of this paper, [CKV] have independently 
obtained an algorithm with time and space bounds similar to ours, although by 
very different methods. Also, [Wi] has recently obtained bounds (by a similar 
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method to that of [CKV]) that are nearly optimal, especially in some special cases. 
Both [CKV] and [Wi] use a technique that involves computing a sparse "shortest 
paths preserving" graph, which is guaranteed to include shortest paths between 
pairs of vertices. 

2. Preliminaries. We assume that "free" space is a (multiply) connected, closed 
and bounded set ~- given by a simple polygon with a set of disjoint (open) simple 
polygonal holes ("obstacles"). Assuming that there is an outer bounding polygon 
is not essential, but it simplifies the presentation slightly and can be made without 
loss of generality. We denote the set of all obstacle vertices by ~ and let n = I ~ [  
be the combinatorial size of the problem instance. For  a vertex p e ~U, we denote 
by p.pred and p.succ the predecessor and successor vertices in the list of vertices 
defining the obstacle containing p, where the list is given in counterclockwise order 
about the boundary of the obstacle (i.e., in such a way that free space is on the 
right when the list is traversed). 

We let s ~ ~ be a "source" (or starting) point, and we let t ~ ~ denote any 
"destination" (or goal) point. Without loss of generality, we can assume that s ~ ~U, 
since we can think of there being a "point obstacle" at s. 

For  simplicity of discussion, we will make the following General Positioning 
Assumption (GPA) about the data of the problem: No three vertices of ~ are 
colIinear, and no two vertices lie along a horizontal, vertical, or diagonal (_+45 ~ 
line. We make this assumption without loss of generality, since we can always 
perturb the data slightly to achieve the GPA. 

Given two points ql = (xl, Yl) and q2 = (x2, Y2) in the plane, the L 1 (rectilinear) 
distance between them is defined to be 

d(ql, qz) = dl(q~, q2) = Ix1 - x21 + lYt - Yzl. 

We measure paths according to their rectilinear length. Throughout  the paper, 
unless otherwise specified, we will use the terms distance and length to refer to 
rectilinear distance and rectilinear length. 

A path H from s to t will be called an (s, O-path. A path is said to be feasible if 
it lies within ~-. A feasible (s, 0-path that has minimum rectilinear length among 
all feasible (s, 0-paths is called a shortest path from s to t. We denote the length 
of a shortest (s, 0-path by l(s, t). Note that, while the length of a shortest (s, 0-path 
is unique, there will in general be (uncountably) many shortest (s, t)-paths. 

Our problem is to find a shortest path from s to t. We will in fact be finding a 
shortest path tree rooted at s (denoted SPT(s)) and we will show how it can be 
extended to a shortest path map rooted at s (denoted SPM(s)). An SPT(s) is a tree, 
with nodes corresponding to vertices ~ and edges corresponding to line segments 
between vertices, such that the polygonal path from s to v e ~U, obtained by joining 
nodes (vertices) along the (unique)path of SPT(s) from node s to node v, is a 
shortest path. Shortest path trees rooted at s are not unique. The SPT(s) that we 
construct is a specific one that we can define precisely once we have more 
terminology. 
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Fig. 1. Defining immediately accessible. 

Given two points Pl = (xl, Yl) and P2 = (X2, Y2) in the plane, we say that 
p~ is northwest of P2 if xa < x2 and Yl > Y2. Similar definitions apply to the 
terms southeast, southwest, and northeast. We abbreviate these four directions as 
SE, NE, NW, SW, and we will use the symbol 6 to indicate a direction 6 ~ N = 
{SE, NE, NW, SW}. 

We define the (closed) rectangle cornered at p~ and P2 to be the set R(p~, P2) = 
{(x, y): min{x~, xz} _< x < max{x1, x2} and min{yj, Y2} < Y -< max{y~, Y2}}. We 
will say that point Pa ~ f f  is immediately accessible from P2 e f f  if p~ and P2 are 
contained in the same connected component of R(p~, P2) c~ i f ,  and there are no 
vertices (other than possibly pl and P2) on the boundary of this component. (Thus, 
the portion of the wavefront propagating out from P2 that hits point p~ encounters 
no vertices before hitting pa.) Note that if Pl is immediately accessible from P2, 
then Px and P2 must be mutually visible (meaning that P~P2 c ~) .  See Figure 1. 
For  p e ~ ,  we define acc6(p), 6 ~ 9 ,  to be the set of all points q that lie in direction 

from p and that are immediately accessible from p. See Figure 2 for an example. 
We can now define the particular shortest path tree that we construct more 

precisely. For  each vertex v E # ,  there are possibly many vertices u ~ V with the 
property that v and u are mutually visible and l(s, v) = l(s, u) + d(u, v). Each such 
u is a possible parent of v in some shortest path tree rooted at s. To make specific 
the unique shortest path tree, SPT(s), that is constructed by our algorithm, we 
define the parent of v to be the leftmost vertex u ~ W with the properties that 

P 

Fig. 2. The set of points, accNW(p), is shown shaded. 
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l(s, v) = I(s, u) + d(u, v) and v is immediately accessible from u. (Note that, by the 
definition of immediate accessibility, or by the G PA, there can be only one leftmost 
point u with the two specified properties.) The parents of the vertices " f  define 
the tree SPT(s). We now make the following simple observation: 

LF~MMA 1. I f  there exists aJeasible (s, O-path, then there exists a shortest (s, O-path, 

s = v o, v I . . . . .  v k = t, such that vi+ 1 is immediately accessible f rom vi.fi)r each i = 0, 
1 . . . . .  k - 1, and v~ e ~". 

P~oov. If there exists a feasible (s, O-path, then there exists a shortest (s, O-path 
11 that passes through a maximal number of obstacle vertices. Path gl visits a 
sequence of obstacle vertices, s = v o, v 1, . . . ,  vk = t. We claim that vi+ 1 is immedi- 
ately accessible from v~. If this were not the case, then the connected component  
of R(vi, vi+ 1) c~.~ that contains v~ and vi+ 1 must contain some other obstacle 
vertex. Let u e " / /be  such a vertex that is closest to the line segment v~v~+ 1. Then, 
H could be modified to include the vertex u, without increasing its L 1 length, 
contradicting the maximality of the number of vertices along H. [] 

A shortest path tree is a structure giving shortest paths from the source s to all 
other vertices. A shortest path map with respect to s, SPM(s), is a generalization 
of this structure to allow one to answer shortest path queries from s to any point 
t e.-~ by performing a point location of t within the map. Shortest path maps for 
Euclidean shortest path problems have been studied in [LP],  [Mi l l ,  [Mi3]. 

Before giving a brief description of the structure of SPM(s), we need some 
definitions. The bisector h(p~, P2) between two points Pl and P2, having "weights" 
wl and w2, is defined to be the locus of all points q such that d(q, pl) + wl = 
d(q, P2) + w2. In our problem, the weight associated with a point will be the length 
of a shortest path from the source s to the point. Various cases are shown in 
Figure 3, where it is observed that the bisector may consist of an entire quadrant 
of the plane (as in cases (c) and (d)). This introduces some ambiguity if we wish 
to confine attention to one-dimensional bisectors, as there are an infinite number 
that would suffice in cases (c) or (d). We choose (arbitrarily) to resolve this 
ambiguity in favor of vertical bisectors (shown as thick solid lines in the figure). 

We define a shortest path map SPM(s) to be a partitioning of the plane into 
cells C(r) ( r e " t / )  with the following property: if t e C(r), then t is immediately 
accessible from r and I(s, t) = I(s, r) + d(r, t). Vertex r (the root of cell C(r)) is on 
the boundary of C(r), and all points of C(r) are immediately accessible from r. If 
cell C(r) is adjacent to cell C(r'), then the boundary shared by C(r) and C(r') is a 
subset of the bisector b(r, r') between r and r'. See Figure 4 for an example of 
SPM(s). (The GPA is violated in this picture.) 

We assume that SPM(s) is endowed with pointers from each vertex to its parent 
in SPT(s). The subdivision is defined such that if t ~ C(r), then a shortest path from 
s to t is obtained by following a shortest path from s to r (e.g., following the path 
given by SPT(s)), and 1hen proceeding from r to t along any path of length d(r, t) 
in C(r) (e.g., the straight line segment from r to t). 

Thus, if we are given SPM(s), the length of a shortest path from ~'; to i can be 
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Fig. 3. The bisector between the weighted points Pl and p> 

found in O(Iog n) time by solving a point location problem lEGS],  [Ki], [Pr]  to 
determine the cell C(r) containing t. The length will be I(s, t) = l(s, r) + d(r, t). Then, 
a shortest path from s to t can be backtraced in time O(k), where k is the number 
of vertices in the shortest path that we trace. 

3. Segment Dragging Queries. Our main algorithm's efficiency comes from being 
able to preprocess ,~ so that "segment dragging" queries of the following form 
can be answered efficiently: Determine the next point or segment "hi t"  by a query 
segment qq' when it is "dragged" in a specified manner. We assume that segments 
are dragged in such a way that the segment being dragged remains parallel to a 
fixed direction, while the endpoints of the segment slide along two straight paths, 
which we call tracks. 

Parallel Tracks. The familiar "range search for a rain (max)" problem is a special 
case of a segment dragging problem in which we preprocess a set of points 
P = {P~, P2 . . . . .  p,} so that we can report "hits" by a horizontal query segment 
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Fig. 4. A shortest path map SPM(s). 

qq--7 being dragged in the direction of positive (negative) y, with its endpoints sliding 
on two vertical lines. See Figure 5(a). In the usual rectangular range query problem, 
one wishes to say something about the set of points inside a given query rectangle 
(such as "report  them," "count  them," or "find the one with minimum (maximum) 
y-coordinate').  In our special case of the segment dragging problem, the rect- 
angular query region is a semi-infinite vertical strip whose base is the query 
segment qq--7. The best known solution to the range query for a max problem is 
that of Chazelle [Chl] ,  where this problem is solved in preprocessing time 
O(n log n) and query time O(log n), with a space complexity of O(n log s n), where 
8 is an arbitrarily small positive real number. (Alternately, the (time, space) 
complexities can be (n log 1 +~ n, n) or (n log n log log n, n log log n).) For  the special 
case needed to answer our segment dragging problem, however, Chazelle is able 
to achieve query times of O(log n) with a space complexity of O(n) [Ch2]. 

We also need to answer segment dragging queries for inclined segments (always 
at some fixed angle 0) that we drag with endpoints sliding along vertical tracks. 
This problem is easily seen to be equivalent to the horizontal segment dragging 
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Fig. 5. (a) Dragging a horizontal segment. (b) Dragging an inclined segment. 

problem, as all that is needed is to transform the coordinates of the collection of 
points to the coordinate system defined by the y-axis and the (oriented) line at 
angle 0 (see Figure 5(b)). Thus, after O(n log n) preprocessing, inclined segment 
dragging queries can be answered in time O(log n). 

Nonparallel Tracks." Dragging Out of a Corner. We will also have need of segment 
dragging queries in the case that the tracks are not parallel, but at fixed 
orientations, and the segment is dragged "out  of the corner" defined by the 
intersecting tracks' From a query point r, find the first point hit by a segment qq' 
at inclination 0 that is being dragged parallel to itself so that its endpoints q and 
q' slide along the rays 11 and l 2 (which are rooted at point r and have inclinations 
~ol and q~2, respectively). We assume that the segment qq" starts being dragged 
from a position such that triangle Arqq' contains no point Pi ~ P; that is, we can 
think of q and q' as being very close to r on the rays 11 and l z. Thus, the query 
is two-dimensional since it is fully specified by giving the point r. (The angles 0, 
~o~, and ~02 are given and fixed.) See Figure 6. This segment dragging problem is 
solved by converting it to a point location problem in an appropriate planar 
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�9 ~ 

�9 qT . . . . .  

r 

Fig. 6. Dragging a segment out of a corner along two rays. 
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subdivision, S(O, ~ol, (O2), such that an answer to the query is given by doing an 
O(log n) time point location query of r in S(O, (Ol, (O2). 

Very briefly, this subdivision is built as follows: We use a sweep line method 
in which the sweeping line is at inclination 0. Assume, without loss of generality, 
that the angles q01 and (o2 both lie in the first quadrant, so that our sweep line l 
moves to the northeast. As l encounters points of P, we update the subdivision. 
There will be a northeast boundary of the subdivision at any given instant. When 
a new point Pi is encountered, we extend a ray from pi in the direction of (Ol + n 
and another ray in the direction of (o2 + zc. Where these rays intersect the northeast 
boundary of the current subdivision, we mark points ql,~ and qa,g. The segments 
p~q~.~ and P~q2.1 are added to the subdivision, the northeast boundary is updated 
accordingly, and we continue sweeping the line l. This algorithm builds the 
subdivision S(O, q~l, (~ in time O(n log n), as each update of the northeast bound- 
ary requires two O(log n) binary searches to locate and insert the points q~.~ and 
q2. ~. An example is shown in Figure 7. Once we have this subdivision, if we locate 
r in, say, the shaded region of Figure 7, then the next point hit by the segment 
qq' will be p, the upper right vertex of the region. If r lies northeast of the final 
northeast boundary, then the segment qq' can be dragged off to infinity without 
hitting a point. (The reader is referred to Figure 4.2 of [EOS], where a similar 
ru-point subdivision is illustrated in the solution of "next-point search problems"; 
the ru-point subdivision corresponds to S(rc/2, 0, n/4) in our notation.) 

The algorithm just described for building the subdivision S(O, (ol, (o2) is easily 
extended to include the case of queries in the presence of both points and polygonal 
obstacles (instead of just points {Pl . . . .  , p,}). We assume now that once an endpoint 
(q or q') of the dragged segment hits the interior of an obstacle edge, that endpoint 
starts to slide along the edge, still maintaining the segment qq' at inclination 0. 
To handle these queries in the presence of obstacles, we simply modify the 
algorithm above so that during the line sweep the northeast bcundary will contain 

Fig. 7. Subdivision S(O, (Pl, ~02). 
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Fig. 8. Subdivision S(3n/4, 0, ~/2) in the presence of obstacles. 

segments of the subdivision as well as obstacle segments. Figure 8 shows an 
example of such a subdivision. Note that if r is located in one of the shaded regions 
of Figure 8, then both endpoints of qq' will hit an obstacle edge (the one forming 
the northeast boundary of the region), and the segment qq---v will never hit an 
obstacle vertex; thus, the obstacles have a "shadowing" effect. 

We allow the special cases in which 0 = (Pl or 0 = ~o 2. The corresponding 
subdivisions (S(O, O, ~o2) or S(O, qh, 0), resp.) are built exactly as above and solve 
the problem of dragging a ray so that it remains parallel while its endpoint slides 
along another ray (either 12 or 11, resp.). In the presence of obstacles, the ray is 
allowed to  extend only until it first hits an obstacle boundary. 

REMARK (Application to Voronoi Diagrams). As an aside, note that by building 
the subdivisions S(3rc/4, 0, 7~/2), S(5n/4, n/2, re), S(7n/4, 7c, 3n/2), and S(n/4, 3~/2, 2n) 
for a given set P of n points, we have, in fact, solved the closest point problem in 
O(n log n) time and O(n) space (optimal time and space). To find the closest point 
to any query point q, we simply have to locate q in each of the four subdivisions 
and pick the closest of the four resulting choices. (If desired, the four subdivisions 
can be merged into one subdivision (the Voronoi diagram) within the given time 
bound, thereby eliminating the need to do four point location queries per q.) This 
is an alternative algorithm to that given in [LWo]  for the construction of the 
Voronoi diagram in the L 1 (L~) metric. While [LWo]  give a divide-and-conquer 
algorithm, we see that the problem can also be solved by our plane-sweep 
algorithm within the same time and space complexity. Our algorithm also 
generalizes immediately to the case of fixed orientation metrics, giving a plane- 
sweep alternative to the divide-and-conquer algorithm of [WWW]. 
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Fig. 9. Dragging a segment into a corner. 

Nonparallel Tracks." Dragging into a Corner. The subdivision S(O, go 1, r dis- 
cussed above solves the problem of dragging a segment out of a corner; our 
application needs also to consider the problem of dragging a segment into a corner. 
Consider the situation depicted in Figure 9. The segment qq' is dragged so that 
q and q' slide along the track rays ll and 12 (respectively), and we ask for the first 
point hit by qq' before it "dies" into the corner w. (In our application, we will be 
working in the presence of obstacles. We will be given that segment qq' intersects 
no obstacle interiors.) This query is a special type of range query for a max in 
which the query region is a triangle (of known, fixed angles) instead of a rectangle. 
Unfortunately, we know of no method to answer these queries in O(log n) time 
and linear space with O(n log n) preprocessing. We leave it as an interesting open 
problem whether queries of this form can be answered efficiently. 

In our algorithm, we circumvent this issue by using a combination of queries 
of the types we know how to solve efficiently (as described above). If an efficient 
solution can be found for the case of dragging a segment into a corner, the 
presentation of our algorithm (and its proof) can be simplified. 

SUMMARY (Our Application). Our interest in these segment dragging problems 
will be to examine the effect of a "wavefront" propagating through a collection 
of polygonal obstacles. Determining which point is hit next by a dragged segment 
will be critical to selecting the next "event" that occurs as the wavefront moves 
through the free space. The segment dragging queries of use in our case will be 
those of dragging segments inclined at angles n/4 (or 3n/4) along tracks parallel 
to the coordinate axes (north, south, east, and west). We will also be building the 
subdivisions S(3n/4, 0, n/2), S(5n/4, n/2, n), S(7n/4, n, 3n/2), and S(rc/4, 3n/2, 2n), so 
that queries of the form "What  is the closest point to r to the northeast?" can be 
answered in O(log n) time. Additionally, we will need the subdivisions S(n/4, 
n/4, n/2), S(3n/4, 3n/4, n), S(5n/4, 5rc/4, 37z/2), and S(7zc/4, 7rc/4, 2n). All of these 
subdivisions will be understood to include the effect of the obstacles. 

4.  T h e  A l g o r i t h m  

The Continuous Dijkstra Paradigm. Our algorithm operates in much the same 
spirit as the well-known Dijkstra algorithm [-Di]. A "signal" is propagated from 
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the source s to all other points of free space Y.  Once an obstacle vertex p receives 
the signal for the first time, it propagates it further. Point p is considered to be 
permanently labeled with the time, d(p), at which it first received the signal. The 
label d(p) is the length, l(s, p), of shortest paths from s to p, and we refer to it as 
the depth of p. We continue to propagate signals until every obstacle vertex has 
received the signal. We need only keep track of discrete events that take place as 
the signal propagates through the free space f t .  

In effect, then, our method is to sweep the plane with an advancing "wavefront." 
The wavefront at distance D, rooted at s, is the set of points p of f f  for which 
l(s, p) = D. The special property of the L 1 metric that makes it relatively easy to 
keep track of the propagating wavefront is the fact that it is always composed 
of straight line segments that are diagonal (oriented at _+45~ Even with this 
nice structure, we find it difficult to keep track of the exact wavefront. Instead, 
we consider "wavefronts" propagating in each of the four directions 6 e ~ = 
{SE, NE, NW, SW}, and we allow these wavefronts to "run over" each other. In 
particular, we do not actually keep track of when one portion of the wavefront 
(say, propagating northwest) first runs into another portion of the wavefront (say, 
propagating southeast), as these events may be difficult to detect. Instead, we only 
detect collisions of wavefronts with obstacles, doing the necessary "clipping" of 
wavefronts only after we discover that two of them have hit the same obstacle 
vertex. 

We allow a vertex to be hit from each of the four directions, possibly several 
times. By allowing wavefronts to sweep over the same portion of the plane more 
than once, we are being conservative (with respect to "clipping") but potentially 
wasteful (with respect to inflating the number of events). The goal of our complexity 
analysis (Section 6) is to show that our wasteful strategy does not yield a huge 
number of events. In particular, we will show that the number, E, of events has 
an upper bound of O(n log n) and that the update time per event is only O(log n). 

By considering wavefronts separately in each of the four directions, we have 
decomposed the problem in much the same way as was done in [MMP ]  for the 
problem of computing discrete geodesics, where points on an edge were "hi t"  
independently by waves coming from each side of the edge. In the discrete geodesic 
problem, two subdivisions of each edge were built, according to the structure of 
the shortest paths to points on the edge, one subdivision corresponding to each 
of the two directions from which the paths may be incident to the edge. (Paths 
may hit an edge by passing through either of the two faces adjacent to the edge.) 
In the problem considered here, the shortest path to a point may come from one 
of four directions 6 e ~ = {SE, NE, NW, SW}. 

Dragged Segments. First, we define more formally what is meant by a dragged 
segment. A dragged segment is a line segment that makes up a portion of a 
wavefront. There are nine basic types of dragged segments of each of the four 
inclinations (0e {re/4, 3~/4, 5~/4, 7~/4}, corresponding to propagation SE, NE, 
NW, and SW, respectively), depending on the nature of the left and right 
rays. Each track ray may be a horizontal ray, a vertical ray, or an obstacle edge. 
These cases are illustrated in Figure 10 for a dragged segment of inclination 5rc/4 
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Fig. 10. Nine cases of dragged segments propagating NW. 

(propagating NW), where names are assigned to each of the cases. For example, 
NW(left-ray, right-ray) indicates a NW dragged segment whose left track ray 
is of type left-ray e {H, V, O} and whose right track ray is of type right-ray 
e {H, V, O}, with "H," "V," and " O "  indicating a track ray that is horizontal, 
vertical, or obstacle, respectively. All points on a dragged segment are at the same 
L1 distance from the root of the segment. This is why the dragged segments are 
thought of as "wavefronts," and, in this sense, we can think of the roots of dragged 
segments as "virtual" sources that act to propagate the wavefront from the original 
SOUrCe s. 

The data structure for a dragged segment has the following information 
associated with segment qq': 

�9 Its inclination, 0, which is the angle from the positive x-axis to the oriented 
segment q'q, and will always be either To/4, 3~/4, 5~/4, or 7~/4 in the case of the 
L t metric. 

�9 Its endpoints q and q', which are the positions of the segment's endpoints at the 
moment the segment is first instantiated, before it starts being "dragged." 

�9 Its left and right track rays--these are the rays along which q and q' must be 
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dragged, and they may be horizontal or vertical rays through free space or rays 
containing obstacle edges. 

�9 The stop points L and R of the left and right track rays--these are the first 
obstacle points "hi t"  by the left and right track rays. (If the track rays intersect 
each other at point u before they hit obstacles, then L = R = u, where u is the 
inside corner of the corresponding segment dragging query.) 

�9 Its root r, which is an obstacle vertex that is responsible for propagating the 
portion of the wavefront to which the segment belongs. 

�9 Its contact list, which is the set of (at most four) obstacle edges that the dragged 
segment touches (including the obstacle edges on which its endpoints may be 
sliding). 

�9 Its event position qeq'e, which is the next position of the segment at which the 
contact list changes. 

�9 Its event point p, which is the point that is responsible for the change in the 
contact list when the segment reaches its event position. The event point p must 
lie on the boundary of an obstacle, and it will either be a stop point or a vertex. 
(The GPA allows us to assume that the event point is unique.) 

�9 The event distance d(r) + d(r, p), which is simply the distance from s at which the 
event point is encountered by the segment. 

Types of Events. We can now describe the three basic types of events that can 
Occur 

I. When the event point p is one of the stop points (L or R), we say that the 
segment has reached its stop point. 

II. When p is interior to the dragged segment in its event position, we say that 
there has been an interior collision. 

III. When p is a vertex encountered by an endpoint of the dragged segment, we 
say there has been an endpoint collision. 

We say that a root r hits or collides with an obstacle vertex p if some dragged 
segment rooted at r has p as an event point. 

We define the region swept out by a dragged segment as the set of points in the 
plane that are intersected by the segment at some position of the segment between 
the time it is instantiated (at qq') and the time it hits its event, point p. 

Other Data Structures. Our algorithm maintains a list of "active" dragged 
segments in a priority queue (called the event queue), with the segments ordered 
according to their event distances. The next event is the dragged segment whose 
event distance is minimum and is obtained by popping the queue. In the case of 
ties, we can order the event distances by the lexicographic ordering of the x- and 
y-coordinates of their roots. 

Each obstacle vertex v ~ V has associated with it a sorted list, the SE-hit list, 
~SE(v) = {rl,.  . . . .  rN} of roots r i of dragged segmen/~s that are southeast of v and 
are such that the dragged segment has "hi t"  point v (i.e., v has been an event point 
for a dragged segment rooted at ri, and this event has already occurred). The 
points of ~SE(v) are kept in order of increasing y-coordinates (which is also the 



70 J.S.B. Mitchell 

order of increasing x-coordinates since the points of ~s~(v) form a staircase path 
going northeast). Similar definitions apply to the hit lists ~Ne(V), ~NW(v), and 
~SW(v). Any particular list ~6(v), 6 c ~ = {SE, NE, SW, NW}, could have O(n) 
entries, so it appears that the space requirement could become quadratic (and that 
the time to build the lists could become O(n 2 log n)); however, the total size of all 
lists will be bounded above by E, the number of events, which we show (Section 
6) to be almost linear. 

Also associated with each obstacle vertex v ~ ~ is a permanent label, d(v), which, 
at the conclusion of the algorithm, gives the length l(s, v) of shortest paths from s 
to v. Initially, d(v) --- + oe for all v ~ ~ .  We say that v has been permanently labeled 
if d(v) < + oe. We say that a non-vertex point x has been permanently labeled if 
it lies in the region swept out by some dragged segment. Each vertex v also has 
a pointer, parent(v), which, at the conclusion of the algorithm, points to the parent 
of v in SPT(s). Initially, parent(v) = NIL. 

The algorithm proceeds as follows: 

ALGORITHM 

(0) (Initialize) Permanently label s with 0. Initialize SEGLIST to be the set of four 
dragged segments rooted at s of types NE(V, H), NW(H, V), SW(V, H), and 
SE(H, V). Determine the next events for each of these, and initialize the event 
queue to consist of these four events (along with their distance labels). 

(1) (Main Loop) While there is an entry in the event queue that has a finite label, 
remove one, qq', which corresponds to the smallest label and call the procedure 
Propagate (qq'). 

The details of the algorithm are contained in the procedure Propagate. Intuit- 
ively, to propagate a dragged segment qq' means to allow a "wavefront" of signals 
to advance past the event point p in the direction that qq' is being dragged. This 
usually involves creating new dragged segments corresponding to the advancing 
wavefront, or in "clipping" the segment qq' so that the continuation of the sweep 
of the wavefront does not sweep over regions of the plance that we know to be 
better reached from some other root (from the same direction). 

The procedure Propagate does different things depending on whether the next 
event is of Type I, II, or III and on whether or not the event point p has already 
been permanently labeled. The cases are illustrated in Figures 11, 12, and 13. We 
now give more details. 

m 

Procedure Propagate (qq') 

(0) Let p = (xp, yp) be the event point, let r = (xr, Yr) be the root, and let L and 
R be the left and right stop points of qq'. qeq'e is the event position of the 
dragged segment (i.e., its position when it is in contact with p). Assume (without 
loss of generality) that the segment qq' is inclined at angle 5n/4 and propagating 
northwest, so that r is southeast of p. According to the nature of the event 
point p, go to one of the cases (1)-(3) below. 

(1) (p is a stop point) (Type I event) If p = L, then insert a dragged segment (of 
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type NW(O, H), NW(O, O), or NW(O, V)) rooted at r whose right track ray 
is that of qq' and whose left track ray is the obstacle segment containing L. 
Otherwise (t9 = R), insert a dragged segment (of type NW(H, O), NW(O, O), 
or NW(V, O)) rooted at r whose left track ray is that of qq' and whose right 
track ray is the obstacle segment containing R. Figure 11 shows the cases in 
which a NW(H, .) segment hits a left stop point p = L. (Charge point p.) 

(2) (p is not yet permanently labeled) Permanently label p with the distance d(p) = 
d(r) + d(r, p) and set parent(p)= r. Set NSe(p)= {r}. Insert new segments 
according to the cases below. (Charge point p.) 
(a) (p is interior to qeq'e) (Type II event) In this case, the wavefront "splits" at 

p, and we insert two or more new dragged segments, according to the 
orientation of the segments (p, p.succ) and (p, p.pred). Below, we enumerate 
the possible cases for the orientation, O, of the (directed) segment (t7, p.succ) 
and the corresponding new dragged segments that continue the propaga- 
tion to the right of the splitting point p; the case analysis based on the 
orientation of the segment (p,p.pred) for how to propagate dragged 
segments to the left of p is similar. 

(i) 0 ~ (~/4, 7r/2). Insert a NW dragged segment rooted at r whose right 
track ray is that of qq' and whose left track ray is the obstacle segment 
(p, p.succ). 

(ii) 0 ~ (re~2, n). Insert a NW dragged segment rooted at r whose right track 
ray is that of qq' and whose left track ray is the northward ray through 
p. Also insert a dragged segment of type NW(O, V), of initial length 
zero, rooted at p whose right track ray is the northward ray through 
p and whose left track ray is the obstacle segment (p, p.succ). 

(iii) 0 e (n, 5n/4). Insert a NW dragged segment rooted at r whose right 
track ray is that of qq' and whose left track ray is the northward ray 
through p. Also insert dragged segments of types NW(H, V) and 
SW(O, H), rooted at p, whose initial lengths are zero. 

Figure 12 shows various cases. 
(b) (p = q~) (Type III event) There are four cases, depending on the orientation, 

0, of the (directed) segment (p, p.succ), which are almost identical to those 
considered in (a) above. 

(i) 0 e (re/4, ~z/2). Insert a NW dragged segment rooted at r whose right 
track ray is that of qq' and whose left track ray is the obstacle segment 
(p, p.succ). 
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Fig. 12. Type II event: Interior collision. 

(ii) 0 ~ (~/2, ~). Insert a NW dragged segment rooted at r whose right track 
ray is that of qq' and whose left track ray is the northward ray through 
p. Also insert a dragged segment of type NW(O, V), of initial length 
zero, rooted at p whose right track ray is the northward ray through 
p and whose left track ray is the obstacle segment (p, p.succ). 

(iii) 0 e (~, 3~z/2). Insert a NW dragged segment rooted at r whose right 
track ray is that of qq' and whose left track ray is the northward ray 
through p. Also insert dragged segments of types NW(H, V) and 
SW(O, H), rooted at p, whose initial lengths are zero. 

(iv) 0 ~ (3rr/2, 2~z). Insert a NW dragged segment rooted at r whose right 
track ray is that of qq' and whose left track ray is the northward ray 
through p. Also insert dragged segments of types NW(H, V), SW(V, H), 
and SE(O, V), rooted at p, whose initial lengths are zero. 

Figure 13 shows various cases. 
(c) (p = q') (Type Ill  event) Similar to case 2(b). 

(3) (p is already permanently  labeled, and ~SE(p) = ~ )  This is the case in which p 
has already been hit from some direction, but not yet hit from the southeast. 
Set NSE(p) = {r}, Insert new segments according to the cases below. (Charge 
point p.) 
(a) (p is interior to qeq'e) (Type II event) As in step 2(a) above, we split the 

wavefront at p, and consider cases for propagation on each of the two sides 
of p. Again, we present only the details of the cases for the propagation to 
the right of p; the left side is handled similarly. The only difference between 
what we do now and what we did before is that we omit inserting the 
dragged segments that are rooted at p, since further propagation from p 
has been considered already when p was first hit. We have two cases, 
depending on the orientation, 0, of the (directed) segment (p, p.succ): 



L t Shortest Paths Among Polygonal Obstacles in the Plane 73 

. . . . .  . . . . . . .  i 

NW(O,H) NW(O,O) 

i 

, I 
, I 

NW(O,V) 

NW(O,H) NW(O,O) 

i 

NW(O,V) 

Fig. 13. Type III event: Endpoint collision. 

(i) 0 s (n/4, n/2). Insert a NW dragged segment rooted at r whose right 
track ray is that of qq' and whose left track ray is the obstacle segment 
(p, p.succ). 

(ii) 0 e (n/2, 5n/4). Insert a NW dragged segment rooted at r whose right 
track ray is that of qq' and whose left track ray is the northward ray 
through p. 

(b) (p = qe) (Type III event) There are two cases, depending on the orientation, 
0, of the (directed) segment (p, p.succ). These are almost exactly the same 
as the dragged segments that are inserted to the right of p in case 3(a) 
above, except that the second case now applies to the range 0 ~ (n/2, 2n). 

(c) (p = q;) (Type III event) Similar to case 3(b). 
(4) (p is a l r e a d y  p e r m a n e n t l y  labe led ,  and  ~Se(p) r ;,?5) This is the case in which p 

has already been hit from the southeast. Locate and insert r in the hit list 
NSe(p) = {r I . . . . .  rn} by finding the points rl and ri+, (0 _< i < N) such that the 
y-coordinate of r lies between that of r i and that of ri+ 1 (where we define the 
y-coordinate of r o to be - o e  and that of rn+ 1 to be + oe). Refer to Figure 14. 
Insert new segments according to the cases below. 
(a) (p is  inter ior  to  qq') (Type II event) The propagation of the wavefront 

portion represented by qq' will possibly continue, but only after "clipping" 
is done on the west or north to account for the fact that other dragged 
segments that have previously hit p are sweeping "ahead" of qq'. 

(i) (i = N) (Clip on the west) If Xq; > x,N, then insert__a NW dragged 
segment rooted at r whose right track ray is that of qq' and whose left 
track ray is the northward ray through r N. (Charge the lower left corner 
of R(r, p) (namely, point (Xp, Yr)) with a "West Clip (WC).") If xq, <_ xrN, 
then no new dragged segment needs to be inserted, since, by the time 
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m 
it hits p, qq' has already swept over the necessary portion of free space 
to the right of rN. 

(ii) (0 < i < N) No new dragged segment needs to be inserted, since, by 
the time it hits p, qq--7 has already swept over the necessary portion of 
free space to the right of ri and below ri + r 

(iii) (i = 0) (Clip on the north) If Yqe < Yql, then insert a NW dragged 
segment rooted at r whose left track ray is that of qq' and whose right 
track ray is the westward ray through r r (Charge the upper right 
corner of R(r, p) (namely, point (xr, yp)) with a "Nor th  Clip (NC)." If 
Yqe >- Yr,, then no new dragged segment needs to be inserted, since, by 
the time it hits p, qq' has already swept over the necessary portion of 
free space belo w r 1. 

(b) (p = qe) (Type III event) This case is similar to case 4(a), except that there 
can be clipping on the west but not on the north (since, necessarily, 

Yqe = YP ~ Yr,)" 
(c) (p = q'e) (Type III event) This case is similar to case 4(a), except that there 

can be clipping on the north but not on the west (since, necessarily, 
xq; = xp > x,~). 

REMARK (Charging Events). The specification of the procedure includes instruc- 
tions to "charge" some point at each event. This accounting scheme will allow us 
to give an upper bound on the total number of events that can occur. The analysis 
of our charging scheme will be discussed in more detail in Section 6. 

Inserting a Dragged Seoment. By "inserting" a dragged segment qq', we mean 
to compute its stop points, find its event point, event position, and event distance, 
and update the event queue accordingly. When we insert a dragged segment into 
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the priority queue, we must determine its event point and corresponding event 
distance, by the methods of Section 3. For types NW(H, O), NW(H, V), NW(O, 
O), and NW(O, V), this is done simply by locating an appropriate point, 
p = (xq, - e, yq + e) (for very small e > 0), in the subdivision S(5~/4, ~, ~/2). This 
works, since, in our algorithm, we can easily check that it will always be the case 
that the triangle Apqq' is obstacle-free, so we can consider the dragged segment 
to have started at point p, with zero length. For types NW(H, H) and NW(V, V), 
the segment insertion is done by checking each of the two track rays for stop 
points and doing an appropriate range query by the methods of [Ch2]. 

The remaining three types of segment dragging queries (NW(O, H), NW(V, H), 
and NW(V, O)) are potentially problematic, since, as mentioned in Section 3, we 
do not know how to preprocess in time O(n log n) to do them in O(log n) time. We 
determine the next event for a type NW(V, H) dragged segment by calling the 
procedure Find-Next-Event-NW(V, H) (qq'), which we now define. Similar proce- 
dures can be defined for the types NW(O, H) and NW(V, O), and for the other 
three directions 6 6 {SE, NE, SW}. If a method is found for doing the segment 
dragging queries "into a corner" directly, then these procedures will be un- 
necessary for our algorithm. 

Procedure Find-Next-Event-NW(V, H) (qq') 

(0) Let c be the corner into which (qq') is being dragged. (For a NW(V, H) segment, 
point c is the intersection of the vertical line through q with the horizontal 
line through q'.) 

(1) Drag (qq') northward until (a) q reaches c, or (b) q' hits a stop point, or (c) a 
vertex w is hit by the dragged segment at position qeq'e. In case (a), we can 
stop, since no obstacle vertex is hit by a NW(V, H) dragged segment; the 
procedure returns with a message that no event point exists. In case (b), we 
continue dragging the segment northward, now with q' sliding along the 
appropriate obstacle segment; then, case (a) or (c) must occur. In case (c), we 
check the point w: If w6 R(r, c), the procedure stops and returns point w; 
otherwise, we let q = qe, q ' =  w, and we return to (1) to continue dragging 
northward. ("Charge" point w.) 

The basic idea of the above procedure is to drag the segment ~7 northward 
instead of dragging it into the corner. If we are /ucky enough to hit first a point 
that lies inside the corner, then we are done. Otherwise, we clip the northward 
dragging segment on the right at the obstacle that stopped us, and we continue 
dragging the clipped segment northward. The fact that the above procedure will 
eventually find the next point hit by a dragged segment of type NW(V, H) is clear, 
since the region swept out by the segments we drag northward contains the triangle 
/~qcq'. But the fact that, before arriving at the desired event point p, we may hit 
many points w that are outside (above) the corner into which we should be 
dragging is a potential source of problems. However, each such point that we hit 
is "charged," and we are able to show (in Lemma 5 of Section 6) that no point is 
charged more than once by the calling of this procedure. 
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Note that, since the left and right track rays for a NW(V, H) segment dragging 
query cross each other, it is possible that there is no event point detected (case (a) 
of step 1), in which case there is no change to the event queue when we "insert" 
the segment. In essence, the dragged segment simply "dies" into the corner, 
encountering no vertices along the way. 

5. Correctness of the Algorithm. The correctness of our algorithm follows directly 
from Lemma 1 and two simple observations: 

(1) Let v be a vertex with parent r in SPT(s), and let 6 6 ~ be the direction from 
r to v. Then, once vertex r is encountered by the advancing wavefront, dragged 
segments rooted at r are created in such a way as to sweep out all of the region 
acc~(r), except those points of ~ that are missed due to clipping (in step 4 of 
Propagate). 

(2) The clipping that is done in step 4 of Propagate is done conservatively: When 
a dragged segment is clipped and replaced by a new dragged segment that 
sweeps out a smaller region, this smaller region includes all points that are 
best reached by the root r. 

The first observation follows from checkiilg each case of the procedure Propa- 
gate, making certain that the wavefront is advanced in all possible directions. 

The proof of the second observation is also straightforward. Assume that a NW 
dragged segment rooted at r is clipped on the west along the vertical line through 
point r N, as a result of a collision with event point p. We claim that no point v 
in the region accNW(rN)~ accNW(r) has parent r in SPT(s). Otherwise, point v is 
better reached from r than from rN, which would imply that point p is better 
reached from r than from r N, contradicting the fact that r N hit p before r did. 

LEMMA 2. Propagate correctly assigns distance labels, d(v), and parent pointers, 
parent(v), to vertices v ~ ~U. Thus, our algorithm correctly constructs the shortest 
path tree, SPT(s). 

PROOF. The proof proceeds by induction on the iteration count of the main loop 
of the algorithm and mimics the usual proof of correctness of Dijkstra's algorithm 
[Di]. We claim that each time we permanently label an obstacle vertex p = v (done 
in step 2 of Propagate), we label it with the correct shortest path length from s. 
Assume that v is labeled with the distance d(v)= d(r)+ d(r, v) in step 2 of 
Propagate, due to a collision of a dragged segment rooted at r with the vertex 
p = v. Let D be the event distance at which the collision takes place. Assume 
inductively that all distance labels of vertices at distance less than D from s have 
been assigned correctly. If we were incorrect in labeling v with d(r) + d(r, v), then 
there must exist a different root, r' ~ r, with the property that v is immediately 
accessible from r' and d(r') + d(r', v) < D = d(r) + d(r, v). Thus, r' is at a distance 
less than D from s, implying (by the induction hypothesis) that it has already been 
(correctly) permanently labeled and (by observations (1) and (2) above) that there 
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must be a dragged segment in the event queue that is rooted at r' and that has 
an event distance less than D, a contradiction. [] 

6. Complexity of the Algorithm. In Section 3 we showed that each of the segment 
dragging queries that we require can be performed in time O(log n) after an 
O(nlog n) preprocessing, using O(n) storage. Furthermore, stop points can be 
computed in overall time O(n log n). Updates to the hit lists can also be done in 
logarithmic time. Thus, the overall running time of our algorithm is bounded by 
O(E log n), where E is the number of events. 

Our goal in this section is to bound E, the total number of events. We do this 
by bounding the total number of dragged segments that are ever created, since 
each dragged segment corresponds to exactly one event. In each call to the 
procedure Propagate, we create a small number (at most 4) of new dragged 
segments according to the several cases outlined. In each case involving a segment 
creation, we "charge" some point for the creation. 

Let us review the charging scheme specified in Propagate. We consider, without 
loss of generality, the case of propagating a dragged segment to the northwest: 

(1) If event point p is a stop point, then we charge the event to p. There are at 
most 4n stop points, and each is charged at most twice--once because of a 
left track ray, and once because of a right track ray. 

(2) If vertex p is permanently labeled in Propagate, then we charge p, and this is 
done only once for each vertex. 

(3) If vertex p has been permanently labeled, but has not yet been hit from the 
southeast (NSE(p): ~) ,  then we charge p. This results in at most three 
additional charges to vertex p. 

(4) If vertex p has previously been hit from the southeast, then, if a new dragged 
segment is created, we either charge the southwest corner of the rectangle 
R(r, p) with a West Clip (WC), or we charge the northeast corner of the 
rectangle with a North Clip (NC). (Note that these points that we charge may, 
in some cases, not lie in free space. This will not matter in our arguments that 
bound the number of charged points.) 

It is easy to bound the number of charges in cases (1)-(3) by O(n): there are 
only a linear number of points that can be charged and each is charged only a 
constant number of times. In case (4), however, we charge "grid points": a grid 
point is a point at the intersection of a horizontal line through a vertex and a 
vertical line through a vertex. There are a quadratic number of grid points, so we 
must be careful in counting the number of grid charges. Our objective is to show 
that only a very small number (at most O(n log n)) of the grid points can be charged 
in the worst case. The proof of this claim relies crucially on the fact that certain 
patterns of "charge" are not possible on the grid. We restrict our attention to 
bounding the number of West Clips (WC's) that are charged to grid points when 
propagating dragged segments to the northwest; other cases are handled similarly. 

An example of the charging of WC's to grid points is shown in Figure 15. Here, 
it is assumed that the length of the shortest paths from s to the roots r i (i = 1, 2, 
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Fig. 15. Example of charging of WC's to grid points. 

11 r 3 

3, 4) are ordered asfoUows: d(rl) ~ d(r2) ,~ d(r3) ~ d(r4). With this assumption, we 
get the West Clip charges as shown by small hollow circles. The numbers by the 
charges indicate the order in which the collisions take place. The large circles with 
the " x "  indicate the positions of the actual clip points. (The vertical lines through 
the clip points are the new left track rays that are implied by the West Clips.) 

We bound the number of WC's by relating it to the number of ones that can 
occur in a binary matrix in which certain "violated patterns" cannot exist. 

Our first claim is that rectangles are violated patterns: 

LEMMA 3. In propagating dragged segments to the northwest, procedure Propagate 
will not charge the four corners of a rectangle with a West Clip. 
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Fig. 16. Proof of Lemma 3. 

PROOF. To see that the four corners of a rectangle cannot be charged WC, 
assume the contrary. (Refer to Figure 16.) If r 1 hit Pl first, then when r 2 hits p~, 
it will be clipped to the right of r~, and would then never hit P2- Similarly, if r2 
hits PI first, then r 1 would be clipped above when it hits p~, so it would never hit 
P2. But a rectangle of WC charges implies that all four collisions must occur, a 
contradiction. [] 

Now, think of the grid points as defining elements of an n-by-n matrix, whose 
rows correspond to horizontal grid lines through vertices (which are distinct by 
the GPA) and whose columns correspond to vertical grid lines through vertices. 
Let the entry of the matrix be one if the corresponding grid point is charged WC 
and let it be zero otherwise. Note that each grid point can be charged WC at most 
once .  

We say that a binary matrix contains no rectangles (or is "rectangle-free") if 
there do not exist distinct rows i and i' and distinct columns j and f such that all 
four matrix elements at (i,j), (i,j'), (i',j), and (i',j') are ones. It is not difficult to 
show that an m-by-n binary matrix with no rectangle of ones can have at most 
O((m + n) 1"5) ones. (See [Bo], or see [Lo], Problem 10.36(a).) In fact, the bound 
of O((m + n) 15) is best possible, since there are rectangle-free matrices achieving 
this density of ones (see [Lo]). These facts can also be interpreted as results from 
extremal graph theory (as in [Bo], [Lo]). 

Thus, an immediate corollary of Lemma 3 is that the number of WC's (and, 
hence, the number of events E) is bounded by 0(n1"5), To get a better bound on 
the number of WC's, we examine a larger class of violated patterns of WC charges. 
Let x 1 < x 2 ~ x 3 and yl < yz. Then we will show that it is not possible for the 
four points (xt, Yl), (x3, Y0, (x~, Y2), and (x2, Y2) all to be charged with a West 
Clip. (We call such a set of four points a trapezoid.) 

LEMMA 4. In propagating dragged segments to the northwest, procedure Propagate 
will not charge the four corners of a trapezoid with a West Clip. 
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Fig. 17. A trapezoid of West Clip charges. 

PROOF. Refer to Figure 17. Assume that a trapezoid exists, as shown in the 
figure. Note that the order in which points Pl, P2, and P3 are hit by a diagonal 
line dragged to the northwest must be Pl, P2, P3. (This follows since, if for example, 
P3 were to be the first one hit, then when rl hits P3 and gets west clipped, it is cut 
off from being able to hit Px or P2.) Then, r 1 must have hit px before r 2 did 
(otherwise, r 1 would have been north clipped when it hit PI, rather than being 
west clipped). But then, when r 2 does hit Pl, it is west clipped at a point at or east 
of point rl, meaning that it could not have gone on to collide with P2. This is a 
contradiction. [] 

If we again interpret the grid points as elements of a binary matrix in which 
there is a one corresponding to grid points that are charged with a West Clip and 
a zero otherwise, then we can get a bound on the number of charges by studying 
the density of trapezoid-free binary matrices. Bienstock and Gy6ri [BG] have 
studied such matrices (motivated, in fact, by our application) and have shown the 
following result: 

PROPOSITION 1 (Bienstock and Gy6ri). The number of ones in a trapezoid-free 
binary n-by-n matrix is O(n log n). 

In fact, the stated upper bound is tight: examples exist of trapezoid-free binary 
matrices with f~(n log n) ones [Sch]. An immediate corollary is then: 

COROLLARY 1. The number of West Clips (and, hence, the number of events E) is 
O(n log n). 

We can continue to find other violated patterns of charges in hopes of obtaining 
tighter bounds on the number of WC's. In an earlier draft of this paper [Mi2], 
we showed, for example, that there can be no "L-quadrilateral" of charges on the 
grid points. (An L-quadrilateral is given by the four points (ibjO, (i2,Jl), (il,j2), 
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(i',j') for indices il _< i' < i 2 and j l  < j '  -<J2.) In [Mi2], we claimed an upper bound 
of O(n(log n/log log n)) on the number of ones in an L-quadrilateral-free binary 
matrix, but there was an error in the proof, so this question remains open. [BG] 
have shown a lower bound of f~(n(log n/log log n)), which we conjecture to be tight. 
The example of a matrix that yields the lower bound in [BG], however, cannot 
occur as a set of WC charges in our problem, so it does not imply a corresponding 
lower bound on the number of events for our-algorithm. It remains to be seen 
whether other violated patterns of charges can be found that will lead to a linear 
bound on the number of WC's and hence a proof of optimality of our algorithm. 

Boundin 9 Collisions of Find-Next-Event-NW(V, H). In order to complete the 
complexity analysis of our algorithm, we must show that the procedure we use to 
perform queries of dragging segments into corners does not consider too many 
collisions. Recall that Find-Next-Event-NW(V, H) determines the next collision 
caused by dragging a segment into a corner c to the northwest. This is a type of 
segment dragging query that we do not know how to answer in optimal time, so 
it was simulated by actually dragging the segment northward and checking the 
collision point for being inside the corner (that is, inside the rectangle R(r, c)). If 
it is not, we clip the segment on the right at the collision point, and we drag it 
northward again, continuing until we either hit a point that is inside the corner 
or we discover that no such point exists. Each time we hit a point w that lies 
outside the corner, we charge it. How many such charges are there? Our next 
lemma shows that no vertex w will be charged more than once, inplying that the 
total amount  of work expended in calls to Find-Next-Event-NW(V, H) is O(n log n). 

LEMMA 5. Each obstacle vertex w is hit by procedure Find-Next-Event-NW(V, H) 
at most once. A similar chaim holds for procedures Find-Next-Event-NW(O, H) and 
Find-Next-Event-NW(V, O). 

PROOF. We prove only the claim for NW(V, H) dragged segments; similar proofs 
can be written for the other two cases. The proof  is by contradiction. Assume that 
w is hit twice by one or more calls to procedure Find-Next-Event-NW(V, H): once 
when qq', rooted at r, is dragged into corner c, a n d  once when pp, rooted at r ,  
is dragged into corner c'. Let qeq', and P~P'e be the corresponding event positions 
when the dragged segments are in contact with w. 

If c r c', then we assume, without loss of generality, that c' is south of c, implying 
that c' is southwest of c, since our propagation rules imply that c is immediately 
accessible from r. Also, then, if r r r', it follows that r' must be southwest of r. 

First, note that in order for w to have been hit, we must have xq < xw < xq, and 
Xp < x,~ < Xp,. This means that w is to the right ofc and c' and to the left o f t  and r'. 

We consider two cases, depending on whether or not r = r': 

(a) If r = r', then we get a contradiction as follows. We can immediately rule out 
the case c = c', since this would imply that the point w is hit twice by the same 
call to Find-Next-Event-NW(V, H). Thus, we can assume we have a situation 
as depicted in Figure 18. 
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Fig. 18. Proof of Lemma 5: Case r = r'. 

The right track ray of pp' (which is the horizontal  line through c') can only 
come about  due to a vertex v on this ray that  is left of r = r' and right of p', 
and that is immediately accessible from r. But this implies that c cannot  be 
immediately accessible from r, a contradiction. 

(b) If r 4: r', then we get a contradict ion as follows. We consider two cases, 
according to whether c' is nor th  or south of r: 
(i) If  c' is nor th  of r, we get the case shown in Figure 19. The right track for 

pp----7 must pass through a vertex v that is immediately accessible f rom r' and 
that  lies left of r' and right of p' (x v, < x~, < xr,). Then, the only way that 
c can be immediately accessible from r is for v not  to lie in the connected 
componen t  of R(r, c) c~ ~ that  contains r and c. This implies that  there is 
an obstacle boundary  segment cutt ing through R(r, c), such that  w lies 
above the segment and r' lies below it. Such an obstacle prevents the 
procedure f ind-Next-Event-NW(V,  H) (pp') from being able to hit vertex 
w. (Note that  this argument  remains valid when c = c'.) 

W q' 
C . . . . . . . . . . .  -~ . . . . . . . .  

- - - i  . . . . . . .  i r 

P 
. . . . . . . . . . . . . . . . . . . . . .  �9 r j 

Fig. 19. Proof of Lemma 5: Case r ~ r' and c' lies above r. 
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Fig. 20. Proof of Lemma 5: Case r 4= r' and c' lies below r. 

(ii) If c' is south of r, we get the picture in Figure 20. The left track ray of 
must pass through a vertex v that is immediately accessible from r and 
that lies above r and below q (y, < y~ < Ya). But this implies that a call to 
Find-Next-Event-NW(V, H) (pp') cannot cause a collision with w, since the 
obstacle containing v will "shield" w: when we drag northward an inclined 
segment whose left endpoint slides along x = xc,, the obstacle containing 
v must be hit before w is hit, and then, as the procedure trims the dragged 
segment on the right, the dragged segment can progress further northward 
only once it makes it around the westernmost corner of the obstacle 
containing v. This contradiction concludes the proof. []  

We can finally state our main result as a theorem: 

THEOREM 1. Given a source point s and a set of polygonal obstacles with a total 
of  n vertices, one can build an L1 shortest path tree SPT(s) rooted at s in time 
O(E log n) and space O(E), where E = O(n log n) is the number of events in the main 
algorithm. The shortest path tree SPT(s) can be extended to a shortest path map 
SPM(s) in time O(nlog n), so that queries for the shortest path length to any 
destination t can be answered in time O(log n) and a shortest path from s to t can 
be reported in time O(k + log n), where k is the number of turns in the path. 

PROOF. The correctness of the algorithm for generating the SPT(s) was estab- 
lished in the previous section. Thus, we must now argue only the time and space 
complexity of the algorithm. 

Each call to Propagate will require at most a constant number of segment 
dragging queries, each of which costs us O(log n) time (not counting dragging into 
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corners). Each iteration of the loop in Find-Next-Event-NW(V, H) requires time 
O(log n) to drag the segment northward, and, by Lemma 5, there will be at most 
O(n) iterations in total. Each insertion or lookup into a list .~a(v) costs O(log n), 
and there will be at most O(E) insertions and lookups. Thus, the total time 
complexity of our algorithm is O(E log n). Also, clearly, the data structures will 
require O(E) space. Corollary 1 shows that E = O(n log n). This proves the claimed 
bounds for the SPT problem. 

The extension to the SPM can be done by at least two methods. One method 
is to modify our existing algorithm to do more bookkeeping, so that we compute 
bisectors as we go, and can output the SPM directly. A second method is to use 
our existing algorithm to compute the SPT(s), which yields the lengths of shortest 
paths from s to every other vertex v. We can then construct the SPM(s) by 
considering each vertex v to be a weighted source, with (additive) weight d(v), and 
applying a weighted constrained Voronoi diagram algorithm according to the L1 
metric, constrained by the set of obstacles. This can be done, for instance, by the 
sweep method of Fortune [Fo],  enhanced to handle obstacles, as in Seidel [Se]. 
(Seidel considers only the unweighted case, but, as pointed out in Fortune [Fo], 
the (additive) weighted case can be handled by imagining that the "cones" erected 
on each source point are raised by an amount equal to the weight.) [] 

Backtracin9 a Shortest Path. There are two possibilities for the path we output: 
we can require that it be rectilinear, or we can allow it to be any polygonal path, 
while we measure its length according to the L 1 metric. In either case, we begin 
by locating the query point t in the SPM(s). We then follow back pointers from 
the root r of the cell containing t to the root of the cell containing r, etc., until 
we reach point s. The path obtained in this way is the polygonal path from s to 
r in the shortest path tree SPT(s), together with the segment from r to t. If we 
require a rectilinear path from s to t, we now simply replace each line segment in 
the polygonal path by a staircase path in free space. These staircase paths are easy 
to identify in time proportional to their size (see [LL]). 

Note that if we require that the path from s to t be rectilinear, then we must 
be prepared to have the number of its links very large. In fact, it may have a 
countably infinite number of links in the case that s (or t) lies at a vertex of a 
polygon whose interior angle is greater than 3Tc/2. If the cone of free space at s 
does not include any of the four coordinate directions, then a rectilinear path from 
s to any other feasible point will require a countably infinite number of links (see 
ILL]). 

Multiple Sources. An immediate generalization of our algorithm is to the case 
of multiple sources. We simply modify the initialization of the main algorithm 
(Step 0) to insert the four dragged segments that surround each source point at 
the beginning. This allows us to build a Voronoi diagram for multiple source 
points that lie among a collection of polygonal obstacles in the L~ plane. It is 
important that each source point be considered to be a vertex of the free space 
so that the source points are included as if they were point obstacles, thereby 
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allowing collisions to be detected that result in clipping propagation from various 
different source points. 

THEOREM 2. We can construct the L 1 Voronoi diagram of a set of K sites among 
a set of simple polygonal obstacles in time O(Elog N)=  O(N log 2 N), where 
N = K + n and E = O(N log N) is the number of events. 

Note that this then solves the problem of [LL] with m origin-destination pairs 
in time O((m + n) logZ(m + n)), improving the previous bound of O(m(m 2 + n2)). 

Fixed Orientations. Another generalization of our algorithm allows us to solve 
shortest path problems involving distances with fixed orientations (see [WWW]). 
Basically, a fixed orientation metric defines the distance between two points to be 
the length of the shortest path that travels only along a given set A of fixed 
orientations. The L~ metric is the special case in which the fixed orientations are 
0 and n/2: it measures lengths of rectilinear paths. A "circle" with respect to a 
distance function with k = I AJ fixed orientations is given by a 2k-gon. Thus, 
wavefronts among obstacles in this distance function are piecewise-linear with 
(oriented) segments of 2k different inclinations. There has been nothing special 
about the orientations 0 and n/2 in our discussions; in particular, the segment 
dragging query problems of Section 3 were discussed for arbitrarily inclined 
segments sliding along arbitrarily inclined track rays. The complexity of our 
algorithm gets multiplied by a factor of k when we pass from LI metrics to 
distances with k fixed orientations. 

THEOREM 3. Consider distances between points of the plane to be measured 
according to a fixed orientation distance function defined by a set of k directions. 
Then, within a multiply-connected polygonal space ~,  one can build a shortest path 
map or a Voronoi diagram in time O(kE log n) and space O(kE), where E = O(n log n) 
is the number of events in our main algorithm. 

If the fixed orientations A that define a distance function are evenly spaced in 
the range [0, re), then as k grows large, the fixed orientation distance becomes a 
close approximation to the Euclidean distance (the percentage error decreases like 
l/k2). This implies the following corollary, which compares favorably to the recent 
results of [C1], who finds an e-optimal path in time O(n/e + n log n), after spending 
O((n/e) log n) time to build a data structure of size O(n/e). 

COROLLARY 2. One can compute e-optimal shortest paths and geodesic Voronoi 
diagrams in the Euclidean plane cluttered with polygonal obstacles in time 
O(ne- i/2 log2 n) and space O(ne- 1/2 log n). 

7. Conclusion. We have presented an algorithm for computing shortest paths 
and Voronoi diagrams according to the L 1 metric (and more generally, fixed 
orientation metrics) in a planar environment with polygonal obstacles. The 
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algorithm runs in time O(E log n) and space O(E), where E has been shown to be 
O(n log n) and is conjectured to be O(n). 

Our complexity analysis applied combinatorial bounds on the densities of 
certain sparse binary matrices. This two-dimensional "Davenport-Schinzel" rea- 
soning is likely to continue to be a tool in other geometric algorithms. It is an 
interesting area of research to explore other combinatorial bounds on sparse 
matrices; several specific open questions were suggested in Section 6. Very recently, 
Fiiredi and Hajnal [FH] have addressed several related questions concerning 
densities of sparse matrices, adding to the results of Bienstock and Gy6ri [BG], 
which were motivated by our geometric application. 

It should be possible to extend our method to give an efficient algorithm for 
the construction of the L1 (or fixed orientation metric) Voronoi diagram of a set 
of pairwise-disjoint polygonal sources. 

It would be interesting to apply our continuous Dijkstra method to the 
three-dimensional problem of finding L 1 shortest paths among orthohedral ob- 
stacles. The goal is to get a subquadratic time algorithm, thereby improving the 
naive grid-based algorithm discussed in [Mi2]. 

REMARK. There has been some recent work on the problems addressed here that 
has taken place since the writing of this paper: I-CKV] have independently 
obtained an algorithm with time and space bounds similar to ours, although by 
very different methods. Also, [Wi] has recently obtained bounds (by a similar 
method to that of [CKV]) that are nearly optimal, especially in some special cases. 
Both [CKV] and [Wi] use a technique that involves computing a sparse "shortest 
paths preserving" graph, which is guaranteed to include shortest paths between 
pairs of vertices. 
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