
Algorithmica (1992) 8:55-88 Algorithmica
�9 1992 Springer-Verlag New York Inc.

L1 Shortest Paths Among Polygonal Obstacles
in the Plane 1

Joseph S. B. Mitchell 2

Abstract. We present an algorithm for computing L 1 shortest paths among polygonal obstacles in
the plane. Our algorithm employs the "continuous Dijkstra" technique of propagating a "wavefront"
and runs in time O(E log n) and space O(E), where n is the number of vertices of the obstacles and E
is the number of "events." By using bounds on the density of certain sparse binary matrices, we show
that E = O(n log n), implying that our algorithm is nearly optimal. We conjecture that E = O(n), which
would imply our algorithm to be optimal. Previous bounds for our problem were quadratic in time
and space.

Our algorithm generalizes to the case of fixed orientation metrics, yielding an O(ne- 1/2 log2 n) time
and O(ne-1/2) space approximation algorithm for finding Euclidean shortest paths among obstacles.
The algorithm further generalizes to the case of many sources, allowing us to compute an L 1 Voronoi
diagram for source points that lie among a collection of polygonal obstacles.

Key Words. Shortest paths, Voronoi diagrams, Rectilinear paths, Wire routing, Fixed orientation
metrics, Continuous Dijkstra algorithm, Computational geometry, Extremal graph theory.

1. Introduction. Recently, there has been much interest in the problem of finding
shortest Euclidean (L2) paths for a point moving in a plane cluttered with polygonal
obstacles. This problem can be solved by constructing the visibility 9raph of the
set of obstacles and then searching this graph using Dijkstra's algorithm [Di] or
an A* algorithm [Nil. The bottleneck in the computation is in the construction
of the visibility graph. It has been known for some time that the visibility graph
can be constructed in time O(n 2 log n) [Le], [LW], [Mill, [SS], where n is the
number of vertices,describing the set of obstacles. More recently, it has been shown
that the visibility graph can be constructed in worst-case optimal time O(n z)
[AAGHI], [We], or in output-sensitive time O(e + n log n) [GM], [KM], where
e = O(n 2) is the number of edges in the visibility graph. In some special cases in
which the shortest path is known to possess certain monotonicity properties,
algorithms that require O(n log n) time to compute shortest paths are known [LP],
[Mill , [SS]. While other algorithms for the general case are known whose running
time can be written in other, possibly more favorable, terms [Mi3], [RS], it remains

1 Partially supported by a grant from Hughes Research Laboratories, Malibu, California and by NSF
Grant ECSE-8857642. Much of this work was done while the author was a Ph.D. student at Stanford
University, under the suppo~rt of a Howard Hughes Doctoral Fellowship, and an employee of Hughes
Research Laboratories.
2 Department of Applied Mathematics and Statistics, State University of New York at Stony Brook,
Stony Brook, NY 11794-3600, USA. Email: jsbm@ams.sunysb, edu.

Received May 28, 1987; revised December 15, 1990. Communicated by Bernard Chazelle.

56 J.S.B. Mitchell

an open problem to devise a worst-case subquadratic time algorithm for finding
shortest Euclidean paths.

Our Problem. We consider here the L 1 (rectilinear) version of the two-dimen-
sional shortest path problem: Determine a path of minimum L 1 length from s to
t that avoids the interiors of a set of disjoint simple polygonal obstacles described
by a set of n vertices. We allow an arbitrary polygonal path from s to t, but we
measure the lengths of each of its segments according to the L1 metric. A closely
related problem that is also solved by our method is that of finding a shortest
rectilinear path from s to t. A rectilinear path is one that is always parallel to
either the x- or the y-axis, and its length can be measured either by Euclidean
distance or L 1 distance, since these lengths will be the same. The rectilinear path
problem naturally arises in certain wire-routing applications in which one is
interested in finding the shortest path for a wire that is constrained to avoid a
given set of components and must always run up, down, left, or right.

Previous Work. Larson and Li [LL] studied the problem of finding all minimal
rectilinear distance paths among a set of m origin-destination pairs in a plane with
polygonal obstacles. Their algorithm runs in time O(m(m 2 + nZ)), which specializes
to O(n 2) for the case of only one origin and one destination. The special case in
which all obstacles are rectangles has been solved in optimal time | log n)
[DLW] by exploiting the monotonicity of shortest paths. Furthermore, [-DLW]
show that ~(n log n) is a lower bound on the time complexity in the case of
rectangular obstacles, implying the same lower bound for our more general
problem.

Our Results. In this paper we provide the first subquadratic time algorithm for
the general problem (with polygonal obstacles). Our algorithm runs in time
O(E log n) and space O(E), where E is the number of "events" in our algorithm
and is related to a function g(n) that bounds the maximum number of ones in a
binary n-by-n matrix that obeys certain sparsity conditions. Appealing to a recent
result of Bienstock and Gy6ri [BG], which shows that 9(n)= O(n log n), we
conclude that the running time of our algorithm is no worse than O(n log 2 n),
nearly achieving the known lower bound and considerably improving the previous
best-known quadratic bound. We suspect that E = O(n). If our conjecture is true,
then the algorithm we present here is actually optimal, running in time O(n log n).

We should note that an earlier draft of this paper [Mi2] claimed a bound of
O(n log n/log log n) on E, which relied on bounding the number of ones in a matrix
without an "L-quadrilateral" pattern. The bound used a complex combinatorial
argument in which there was found an error. While we still believe that L-
quadrilateral-free matrices obey the stated upper bound, the proof eludes us at
this time.

As in [DLW], our algorithm can solve the following query form of the problem:
Given a source point s, we build a structure, a Shortest Path Map (as originally
defined in [LP]), such that, for any query point t, we can find the length of a
shortest path from s to t in O(log n) time (by point location within the map), and

L a Shortest Paths Among Polygonal Obstacles in the Plane 57

we can output a shortest path in additional time O(k), where k is the number of
"turns" in the path.

Our results generalize to the case of "fixed orientation metrices" [WWW], of
which the L~ and L~ metrics are special cases, and to multiple source points.
Thus, our algorithm yields an almost-optimal algorithm for computing the
Voronoi diagram according to any fixed orientation metric of a set of sites in a
two-dimensional polygonal space. An immediate consequence of this result is an
efficient algorithm (O(n~- 1/2 log2 n) time and O(ne- 1/2) space) for finding e-optimal
Euclidean shortest paths or Voronoi diagrams among obstacles in the plane. These
bounds compare favorably to the recent results of [CI], who finds an e-optimal
path in time O(n/e + n log n), after spending O((n/e)log n) time to build a data
structure of size O(n/e).

Our Method. We use a technique called a "continuous Dijkstra algorithm"
[Mill, [MMP], IMP], which considers the effects of sweeping an advancing
"wavefront" from a source point s to all points of free space f t . (The wavefront
at distance D is the set of points p of Y for which the shortest path length from
s to p is D.) In order to simulate the advancement of the wavefront, we must
update our data structure at each of E events. The special property of the LI
metric that makes it easy to keep track of the propagating wavefront is the fact
that it is always composed of straight-line segments that are diagonal (oriented
at _+ 45~ This means that determining events in the continuous Dijkstra method
involves answering segment dragging queries of the forms to be discussed in Section
3. Thanks to the ingenious data structures of Chazelle [Chl], [Ch2], we are able
to perform the necessary queries and updates in O(log n) time for each event, while
using only linear storage.

The proof of the upper bound on the number of events uses a charging scheme
that leads to the study of the maximum number of ones that can appear in a
binary matrix that is not allowed to contain certain "violated patterns." Our
research points to a very interesting class of problems, intimately related to
extremal graph theory, involving the study of matrices that are sparse due to a
set of violated patterns. We provide the first application of these combinatorial
bounds to geometric problems. One might think of our method as a two-
dimensional generalization of the method of Davenport-Schinzel sequences (e.g.,
see [Sh], [SCKLPS]), which involves bounding the length of a (one-dimensional)
sequence of symbols in which certain patterns (alternations) are known not to
occur. Recently, in fact, this method has been applied to other problems in
geometry. [PaS] have used the sparse matrix method to bound the size of the
queue in the Bentley-Ottman line sweeping algorithm, and [CEGS] have used
the method to bound the number of cycles that appear in certain arrangements
of lines in space. We expect to see continued application of this technique to
other problems in combinatorial and computational geometry.

REMARK. Since the original writing of this paper, [CKV] have independently
obtained an algorithm with time and space bounds similar to ours, although by
very different methods. Also, [Wi] has recently obtained bounds (by a similar

58 J.S.B. Mitchell

method to that of [CKV]) that are nearly optimal, especially in some special cases.
Both [CKV] and [Wi] use a technique that involves computing a sparse "shortest
paths preserving" graph, which is guaranteed to include shortest paths between
pairs of vertices.

2. Preliminaries. We assume that "free" space is a (multiply) connected, closed
and bounded set ~- given by a simple polygon with a set of disjoint (open) simple
polygonal holes ("obstacles"). Assuming that there is an outer bounding polygon
is not essential, but it simplifies the presentation slightly and can be made without
loss of generality. We denote the set of all obstacle vertices by ~ and let n = I ~ [
be the combinatorial size of the problem instance. For a vertex p e ~U, we denote
by p.pred and p.succ the predecessor and successor vertices in the list of vertices
defining the obstacle containing p, where the list is given in counterclockwise order
about the boundary of the obstacle (i.e., in such a way that free space is on the
right when the list is traversed).

We let s ~ ~ be a "source" (or starting) point, and we let t ~ ~ denote any
"destination" (or goal) point. Without loss of generality, we can assume that s ~ ~U,
since we can think of there being a "point obstacle" at s.

For simplicity of discussion, we will make the following General Positioning
Assumption (GPA) about the data of the problem: No three vertices of ~ are
colIinear, and no two vertices lie along a horizontal, vertical, or diagonal (_+45 ~
line. We make this assumption without loss of generality, since we can always
perturb the data slightly to achieve the GPA.

Given two points ql = (xl, Yl) and q2 = (x2, Y2) in the plane, the L 1 (rectilinear)
distance between them is defined to be

d(ql, qz) = dl(q~, q2) = Ix1 - x21 + lYt - Yzl.

We measure paths according to their rectilinear length. Throughout the paper,
unless otherwise specified, we will use the terms distance and length to refer to
rectilinear distance and rectilinear length.

A path H from s to t will be called an (s, O-path. A path is said to be feasible if
it lies within ~-. A feasible (s, 0-path that has minimum rectilinear length among
all feasible (s, 0-paths is called a shortest path from s to t. We denote the length
of a shortest (s, 0-path by l(s, t). Note that, while the length of a shortest (s, 0-path
is unique, there will in general be (uncountably) many shortest (s, t)-paths.

Our problem is to find a shortest path from s to t. We will in fact be finding a
shortest path tree rooted at s (denoted SPT(s)) and we will show how it can be
extended to a shortest path map rooted at s (denoted SPM(s)). An SPT(s) is a tree,
with nodes corresponding to vertices ~ and edges corresponding to line segments
between vertices, such that the polygonal path from s to v e ~U, obtained by joining
nodes (vertices) along the (unique)path of SPT(s) from node s to node v, is a
shortest path. Shortest path trees rooted at s are not unique. The SPT(s) that we
construct is a specific one that we can define precisely once we have more
terminology.

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 59

Fig. 1. Defining immediately accessible.

Given two points Pl = (xl, Yl) and P2 = (X2, Y2) in the plane, we say that
p~ is northwest of P2 if xa < x2 and Yl > Y2. Similar definitions apply to the
terms southeast, southwest, and northeast. We abbreviate these four directions as
SE, NE, NW, SW, and we will use the symbol 6 to indicate a direction 6 ~ N =
{SE, NE, NW, SW}.

We define the (closed) rectangle cornered at p~ and P2 to be the set R(p~, P2) =
{(x, y): min{x~, xz} _< x < max{x1, x2} and min{yj, Y2} < Y -< max{y~, Y2}}. We
will say that point Pa ~ f f is immediately accessible from P2 e f f if p~ and P2 are
contained in the same connected component of R(p~, P2) c~ i f , and there are no
vertices (other than possibly pl and P2) on the boundary of this component. (Thus,
the portion of the wavefront propagating out from P2 that hits point p~ encounters
no vertices before hitting pa.) Note that if Pl is immediately accessible from P2,
then Px and P2 must be mutually visible (meaning that P~P2 c ~) . See Figure 1.
For p e ~ , we define acc6(p), 6 ~ 9 , to be the set of all points q that lie in direction

from p and that are immediately accessible from p. See Figure 2 for an example.
We can now define the particular shortest path tree that we construct more

precisely. For each vertex v E # , there are possibly many vertices u ~ V with the
property that v and u are mutually visible and l(s, v) = l(s, u) + d(u, v). Each such
u is a possible parent of v in some shortest path tree rooted at s. To make specific
the unique shortest path tree, SPT(s), that is constructed by our algorithm, we
define the parent of v to be the leftmost vertex u ~ W with the properties that

P

Fig. 2. The set of points, accNW(p), is shown shaded.

60 J.s.B. Mitchell

l(s, v) = I(s, u) + d(u, v) and v is immediately accessible from u. (Note that, by the
definition of immediate accessibility, or by the G PA, there can be only one leftmost
point u with the two specified properties.) The parents of the vertices " f define
the tree SPT(s). We now make the following simple observation:

LF~MMA 1. I f there exists aJeasible (s, O-path, then there exists a shortest (s, O-path,

s = v o, v I v k = t, such that vi+ 1 is immediately accessible f rom vi.fi)r each i = 0,
1 k - 1, and v~ e ~".

P~oov. If there exists a feasible (s, O-path, then there exists a shortest (s, O-path
11 that passes through a maximal number of obstacle vertices. Path gl visits a
sequence of obstacle vertices, s = v o, v 1, . . . , vk = t. We claim that vi+ 1 is immedi-
ately accessible from v~. If this were not the case, then the connected component
of R(vi, vi+ 1) c~.~ that contains v~ and vi+ 1 must contain some other obstacle
vertex. Let u e " / /be such a vertex that is closest to the line segment v~v~+ 1. Then,
H could be modified to include the vertex u, without increasing its L 1 length,
contradicting the maximality of the number of vertices along H. []

A shortest path tree is a structure giving shortest paths from the source s to all
other vertices. A shortest path map with respect to s, SPM(s), is a generalization
of this structure to allow one to answer shortest path queries from s to any point
t e.-~ by performing a point location of t within the map. Shortest path maps for
Euclidean shortest path problems have been studied in [LP], [Mi l l , [Mi3].

Before giving a brief description of the structure of SPM(s), we need some
definitions. The bisector h(p~, P2) between two points Pl and P2, having "weights"
wl and w2, is defined to be the locus of all points q such that d(q, pl) + wl =
d(q, P2) + w2. In our problem, the weight associated with a point will be the length
of a shortest path from the source s to the point. Various cases are shown in
Figure 3, where it is observed that the bisector may consist of an entire quadrant
of the plane (as in cases (c) and (d)). This introduces some ambiguity if we wish
to confine attention to one-dimensional bisectors, as there are an infinite number
that would suffice in cases (c) or (d). We choose (arbitrarily) to resolve this
ambiguity in favor of vertical bisectors (shown as thick solid lines in the figure).

We define a shortest path map SPM(s) to be a partitioning of the plane into
cells C(r) (r e " t /) with the following property: if t e C(r), then t is immediately
accessible from r and I(s, t) = I(s, r) + d(r, t). Vertex r (the root of cell C(r)) is on
the boundary of C(r), and all points of C(r) are immediately accessible from r. If
cell C(r) is adjacent to cell C(r'), then the boundary shared by C(r) and C(r') is a
subset of the bisector b(r, r') between r and r'. See Figure 4 for an example of
SPM(s). (The GPA is violated in this picture.)

We assume that SPM(s) is endowed with pointers from each vertex to its parent
in SPT(s). The subdivision is defined such that if t ~ C(r), then a shortest path from
s to t is obtained by following a shortest path from s to r (e.g., following the path
given by SPT(s)), and 1hen proceeding from r to t along any path of length d(r, t)
in C(r) (e.g., the straight line segment from r to t).

Thus, if we are given SPM(s), the length of a shortest path from ~'; to i can be

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 61

w2=2
P2

Wl=5

W2=2P 2 - ' - i Wl=3

(a) (b)

P2

w2= 2

. ~1 wl =3

(c) (d)

Fig. 3. The bisector between the weighted points Pl and p>

found in O(Iog n) time by solving a point location problem lEGS], [Ki], [Pr] to
determine the cell C(r) containing t. The length will be I(s, t) = l(s, r) + d(r, t). Then,
a shortest path from s to t can be backtraced in time O(k), where k is the number
of vertices in the shortest path that we trace.

3. Segment Dragging Queries. Our main algorithm's efficiency comes from being
able to preprocess ,~ so that "segment dragging" queries of the following form
can be answered efficiently: Determine the next point or segment "hi t" by a query
segment qq' when it is "dragged" in a specified manner. We assume that segments
are dragged in such a way that the segment being dragged remains parallel to a
fixed direction, while the endpoints of the segment slide along two straight paths,
which we call tracks.

Parallel Tracks. The familiar "range search for a rain (max)" problem is a special
case of a segment dragging problem in which we preprocess a set of points
P = {P~, P2 p,} so that we can report "hits" by a horizontal query segment

62 J.S.B. Mitchell

Fig. 4. A shortest path map SPM(s).

qq--7 being dragged in the direction of positive (negative) y, with its endpoints sliding
on two vertical lines. See Figure 5(a). In the usual rectangular range query problem,
one wishes to say something about the set of points inside a given query rectangle
(such as "report them," "count them," or "find the one with minimum (maximum)
y-coordinate'). In our special case of the segment dragging problem, the rect-
angular query region is a semi-infinite vertical strip whose base is the query
segment qq--7. The best known solution to the range query for a max problem is
that of Chazelle [Chl] , where this problem is solved in preprocessing time
O(n log n) and query time O(log n), with a space complexity of O(n log s n), where
8 is an arbitrarily small positive real number. (Alternately, the (time, space)
complexities can be (n log 1 +~ n, n) or (n log n log log n, n log log n).) For the special
case needed to answer our segment dragging problem, however, Chazelle is able
to achieve query times of O(log n) with a space complexity of O(n) [Ch2].

We also need to answer segment dragging queries for inclined segments (always
at some fixed angle 0) that we drag with endpoints sliding along vertical tracks.
This problem is easily seen to be equivalent to the horizontal segment dragging

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 63

q q'

Pi

T

�9 Op �9
i

q �9

Fig. 5. (a) Dragging a horizontal segment. (b) Dragging an inclined segment.

problem, as all that is needed is to transform the coordinates of the collection of
points to the coordinate system defined by the y-axis and the (oriented) line at
angle 0 (see Figure 5(b)). Thus, after O(n log n) preprocessing, inclined segment
dragging queries can be answered in time O(log n).

Nonparallel Tracks." Dragging Out of a Corner. We will also have need of segment
dragging queries in the case that the tracks are not parallel, but at fixed
orientations, and the segment is dragged "out of the corner" defined by the
intersecting tracks' From a query point r, find the first point hit by a segment qq'
at inclination 0 that is being dragged parallel to itself so that its endpoints q and
q' slide along the rays 11 and l 2 (which are rooted at point r and have inclinations
~ol and q~2, respectively). We assume that the segment qq" starts being dragged
from a position such that triangle Arqq' contains no point Pi ~ P; that is, we can
think of q and q' as being very close to r on the rays 11 and l z. Thus, the query
is two-dimensional since it is fully specified by giving the point r. (The angles 0,
~o~, and ~02 are given and fixed.) See Figure 6. This segment dragging problem is
solved by converting it to a point location problem in an appropriate planar

�9 12
, I

�9 ~ / ~ �9 �9 �9

� 9 �9 �9 �9 �9

�9 ~

�9 qT

r

Fig. 6. Dragging a segment out of a corner along two rays.

64 J .S.B. Mitchell

subdivision, S(O, ~ol, (O2), such that an answer to the query is given by doing an
O(log n) time point location query of r in S(O, (Ol, (O2).

Very briefly, this subdivision is built as follows: We use a sweep line method
in which the sweeping line is at inclination 0. Assume, without loss of generality,
that the angles q01 and (o2 both lie in the first quadrant, so that our sweep line l
moves to the northeast. As l encounters points of P, we update the subdivision.
There will be a northeast boundary of the subdivision at any given instant. When
a new point Pi is encountered, we extend a ray from pi in the direction of (Ol + n
and another ray in the direction of (o2 + zc. Where these rays intersect the northeast
boundary of the current subdivision, we mark points ql,~ and qa,g. The segments
p~q~.~ and P~q2.1 are added to the subdivision, the northeast boundary is updated
accordingly, and we continue sweeping the line l. This algorithm builds the
subdivision S(O, q~l, (~ in time O(n log n), as each update of the northeast bound-
ary requires two O(log n) binary searches to locate and insert the points q~.~ and
q2. ~. An example is shown in Figure 7. Once we have this subdivision, if we locate
r in, say, the shaded region of Figure 7, then the next point hit by the segment
qq' will be p, the upper right vertex of the region. If r lies northeast of the final
northeast boundary, then the segment qq' can be dragged off to infinity without
hitting a point. (The reader is referred to Figure 4.2 of [EOS], where a similar
ru-point subdivision is illustrated in the solution of "next-point search problems";
the ru-point subdivision corresponds to S(rc/2, 0, n/4) in our notation.)

The algorithm just described for building the subdivision S(O, (ol, (o2) is easily
extended to include the case of queries in the presence of both points and polygonal
obstacles (instead of just points {Pl , p,}). We assume now that once an endpoint
(q or q') of the dragged segment hits the interior of an obstacle edge, that endpoint
starts to slide along the edge, still maintaining the segment qq' at inclination 0.
To handle these queries in the presence of obstacles, we simply modify the
algorithm above so that during the line sweep the northeast bcundary will contain

Fig. 7. Subdivision S(O, (Pl, ~02).

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 65

Fig. 8. Subdivision S(3n/4, 0, ~/2) in the presence of obstacles.

segments of the subdivision as well as obstacle segments. Figure 8 shows an
example of such a subdivision. Note that if r is located in one of the shaded regions
of Figure 8, then both endpoints of qq' will hit an obstacle edge (the one forming
the northeast boundary of the region), and the segment qq---v will never hit an
obstacle vertex; thus, the obstacles have a "shadowing" effect.

We allow the special cases in which 0 = (Pl or 0 = ~o 2. The corresponding
subdivisions (S(O, O, ~o2) or S(O, qh, 0), resp.) are built exactly as above and solve
the problem of dragging a ray so that it remains parallel while its endpoint slides
along another ray (either 12 or 11, resp.). In the presence of obstacles, the ray is
allowed to extend only until it first hits an obstacle boundary.

REMARK (Application to Voronoi Diagrams). As an aside, note that by building
the subdivisions S(3rc/4, 0, 7~/2), S(5n/4, n/2, re), S(7n/4, 7c, 3n/2), and S(n/4, 3~/2, 2n)
for a given set P of n points, we have, in fact, solved the closest point problem in
O(n log n) time and O(n) space (optimal time and space). To find the closest point
to any query point q, we simply have to locate q in each of the four subdivisions
and pick the closest of the four resulting choices. (If desired, the four subdivisions
can be merged into one subdivision (the Voronoi diagram) within the given time
bound, thereby eliminating the need to do four point location queries per q.) This
is an alternative algorithm to that given in [LWo] for the construction of the
Voronoi diagram in the L 1 (L~) metric. While [LWo] give a divide-and-conquer
algorithm, we see that the problem can also be solved by our plane-sweep
algorithm within the same time and space complexity. Our algorithm also
generalizes immediately to the case of fixed orientation metrics, giving a plane-
sweep alternative to the divide-and-conquer algorithm of [WWW].

66 J.S.B. Mitchell

i

I .

r �9

1
2

Fig. 9. Dragging a segment into a corner.

Nonparallel Tracks." Dragging into a Corner. The subdivision S(O, go 1, r dis-
cussed above solves the problem of dragging a segment out of a corner; our
application needs also to consider the problem of dragging a segment into a corner.
Consider the situation depicted in Figure 9. The segment qq' is dragged so that
q and q' slide along the track rays ll and 12 (respectively), and we ask for the first
point hit by qq' before it "dies" into the corner w. (In our application, we will be
working in the presence of obstacles. We will be given that segment qq' intersects
no obstacle interiors.) This query is a special type of range query for a max in
which the query region is a triangle (of known, fixed angles) instead of a rectangle.
Unfortunately, we know of no method to answer these queries in O(log n) time
and linear space with O(n log n) preprocessing. We leave it as an interesting open
problem whether queries of this form can be answered efficiently.

In our algorithm, we circumvent this issue by using a combination of queries
of the types we know how to solve efficiently (as described above). If an efficient
solution can be found for the case of dragging a segment into a corner, the
presentation of our algorithm (and its proof) can be simplified.

SUMMARY (Our Application). Our interest in these segment dragging problems
will be to examine the effect of a "wavefront" propagating through a collection
of polygonal obstacles. Determining which point is hit next by a dragged segment
will be critical to selecting the next "event" that occurs as the wavefront moves
through the free space. The segment dragging queries of use in our case will be
those of dragging segments inclined at angles n/4 (or 3n/4) along tracks parallel
to the coordinate axes (north, south, east, and west). We will also be building the
subdivisions S(3n/4, 0, n/2), S(5n/4, n/2, n), S(7n/4, n, 3n/2), and S(rc/4, 3n/2, 2n), so
that queries of the form "What is the closest point to r to the northeast?" can be
answered in O(log n) time. Additionally, we will need the subdivisions S(n/4,
n/4, n/2), S(3n/4, 3n/4, n), S(5n/4, 5rc/4, 37z/2), and S(7zc/4, 7rc/4, 2n). All of these
subdivisions will be understood to include the effect of the obstacles.

4. T h e A l g o r i t h m

The Continuous Dijkstra Paradigm. Our algorithm operates in much the same
spirit as the well-known Dijkstra algorithm [-Di]. A "signal" is propagated from

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 67

the source s to all other points of free space Y. Once an obstacle vertex p receives
the signal for the first time, it propagates it further. Point p is considered to be
permanently labeled with the time, d(p), at which it first received the signal. The
label d(p) is the length, l(s, p), of shortest paths from s to p, and we refer to it as
the depth of p. We continue to propagate signals until every obstacle vertex has
received the signal. We need only keep track of discrete events that take place as
the signal propagates through the free space f t .

In effect, then, our method is to sweep the plane with an advancing "wavefront."
The wavefront at distance D, rooted at s, is the set of points p of f f for which
l(s, p) = D. The special property of the L 1 metric that makes it relatively easy to
keep track of the propagating wavefront is the fact that it is always composed
of straight line segments that are diagonal (oriented at _+45~ Even with this
nice structure, we find it difficult to keep track of the exact wavefront. Instead,
we consider "wavefronts" propagating in each of the four directions 6 e ~ =
{SE, NE, NW, SW}, and we allow these wavefronts to "run over" each other. In
particular, we do not actually keep track of when one portion of the wavefront
(say, propagating northwest) first runs into another portion of the wavefront (say,
propagating southeast), as these events may be difficult to detect. Instead, we only
detect collisions of wavefronts with obstacles, doing the necessary "clipping" of
wavefronts only after we discover that two of them have hit the same obstacle
vertex.

We allow a vertex to be hit from each of the four directions, possibly several
times. By allowing wavefronts to sweep over the same portion of the plane more
than once, we are being conservative (with respect to "clipping") but potentially
wasteful (with respect to inflating the number of events). The goal of our complexity
analysis (Section 6) is to show that our wasteful strategy does not yield a huge
number of events. In particular, we will show that the number, E, of events has
an upper bound of O(n log n) and that the update time per event is only O(log n).

By considering wavefronts separately in each of the four directions, we have
decomposed the problem in much the same way as was done in [MMP] for the
problem of computing discrete geodesics, where points on an edge were "hi t"
independently by waves coming from each side of the edge. In the discrete geodesic
problem, two subdivisions of each edge were built, according to the structure of
the shortest paths to points on the edge, one subdivision corresponding to each
of the two directions from which the paths may be incident to the edge. (Paths
may hit an edge by passing through either of the two faces adjacent to the edge.)
In the problem considered here, the shortest path to a point may come from one
of four directions 6 e ~ = {SE, NE, NW, SW}.

Dragged Segments. First, we define more formally what is meant by a dragged
segment. A dragged segment is a line segment that makes up a portion of a
wavefront. There are nine basic types of dragged segments of each of the four
inclinations (0e {re/4, 3~/4, 5~/4, 7~/4}, corresponding to propagation SE, NE,
NW, and SW, respectively), depending on the nature of the left and right
rays. Each track ray may be a horizontal ray, a vertical ray, or an obstacle edge.
These cases are illustrated in Figure 10 for a dragged segment of inclination 5rc/4

68 J.S.B. Mitchell

NW(H,H) NW(O,H)

i

L i

NW(V,H)

.... Z
NW(H,O) NW(O,O) NW(V,O)

l

A i /
i
l

1

NW(O,V) NW(H,V) NW(V,V)

Fig. 10. Nine cases of dragged segments propagating NW.

(propagating NW), where names are assigned to each of the cases. For example,
NW(left-ray, right-ray) indicates a NW dragged segment whose left track ray
is of type left-ray e {H, V, O} and whose right track ray is of type right-ray
e {H, V, O}, with "H," "V," and " O " indicating a track ray that is horizontal,
vertical, or obstacle, respectively. All points on a dragged segment are at the same
L1 distance from the root of the segment. This is why the dragged segments are
thought of as "wavefronts," and, in this sense, we can think of the roots of dragged
segments as "virtual" sources that act to propagate the wavefront from the original
SOUrCe s.

The data structure for a dragged segment has the following information
associated with segment qq':

�9 Its inclination, 0, which is the angle from the positive x-axis to the oriented
segment q'q, and will always be either To/4, 3~/4, 5~/4, or 7~/4 in the case of the
L t metric.

�9 Its endpoints q and q', which are the positions of the segment's endpoints at the
moment the segment is first instantiated, before it starts being "dragged."

�9 Its left and right track rays--these are the rays along which q and q' must be

L l Shortest Paths Among Polygonal Obstacles in the Plane 69

dragged, and they may be horizontal or vertical rays through free space or rays
containing obstacle edges.

�9 The stop points L and R of the left and right track rays--these are the first
obstacle points "hi t" by the left and right track rays. (If the track rays intersect
each other at point u before they hit obstacles, then L = R = u, where u is the
inside corner of the corresponding segment dragging query.)

�9 Its root r, which is an obstacle vertex that is responsible for propagating the
portion of the wavefront to which the segment belongs.

�9 Its contact list, which is the set of (at most four) obstacle edges that the dragged
segment touches (including the obstacle edges on which its endpoints may be
sliding).

�9 Its event position qeq'e, which is the next position of the segment at which the
contact list changes.

�9 Its event point p, which is the point that is responsible for the change in the
contact list when the segment reaches its event position. The event point p must
lie on the boundary of an obstacle, and it will either be a stop point or a vertex.
(The GPA allows us to assume that the event point is unique.)

�9 The event distance d(r) + d(r, p), which is simply the distance from s at which the
event point is encountered by the segment.

Types of Events. We can now describe the three basic types of events that can
Occur

I. When the event point p is one of the stop points (L or R), we say that the
segment has reached its stop point.

II. When p is interior to the dragged segment in its event position, we say that
there has been an interior collision.

III. When p is a vertex encountered by an endpoint of the dragged segment, we
say there has been an endpoint collision.

We say that a root r hits or collides with an obstacle vertex p if some dragged
segment rooted at r has p as an event point.

We define the region swept out by a dragged segment as the set of points in the
plane that are intersected by the segment at some position of the segment between
the time it is instantiated (at qq') and the time it hits its event, point p.

Other Data Structures. Our algorithm maintains a list of "active" dragged
segments in a priority queue (called the event queue), with the segments ordered
according to their event distances. The next event is the dragged segment whose
event distance is minimum and is obtained by popping the queue. In the case of
ties, we can order the event distances by the lexicographic ordering of the x- and
y-coordinates of their roots.

Each obstacle vertex v ~ V has associated with it a sorted list, the SE-hit list,
~SE(v) = {rl,. rN} of roots r i of dragged segmen/~s that are southeast of v and
are such that the dragged segment has "hi t" point v (i.e., v has been an event point
for a dragged segment rooted at ri, and this event has already occurred). The
points of ~SE(v) are kept in order of increasing y-coordinates (which is also the

70 J.S.B. Mitchell

order of increasing x-coordinates since the points of ~s~(v) form a staircase path
going northeast). Similar definitions apply to the hit lists ~Ne(V), ~NW(v), and
~SW(v). Any particular list ~6(v), 6 c ~ = {SE, NE, SW, NW}, could have O(n)
entries, so it appears that the space requirement could become quadratic (and that
the time to build the lists could become O(n 2 log n)); however, the total size of all
lists will be bounded above by E, the number of events, which we show (Section
6) to be almost linear.

Also associated with each obstacle vertex v ~ ~ is a permanent label, d(v), which,
at the conclusion of the algorithm, gives the length l(s, v) of shortest paths from s
to v. Initially, d(v) --- + oe for all v ~ ~ . We say that v has been permanently labeled
if d(v) < + oe. We say that a non-vertex point x has been permanently labeled if
it lies in the region swept out by some dragged segment. Each vertex v also has
a pointer, parent(v), which, at the conclusion of the algorithm, points to the parent
of v in SPT(s). Initially, parent(v) = NIL.

The algorithm proceeds as follows:

ALGORITHM

(0) (Initialize) Permanently label s with 0. Initialize SEGLIST to be the set of four
dragged segments rooted at s of types NE(V, H), NW(H, V), SW(V, H), and
SE(H, V). Determine the next events for each of these, and initialize the event
queue to consist of these four events (along with their distance labels).

(1) (Main Loop) While there is an entry in the event queue that has a finite label,
remove one, qq', which corresponds to the smallest label and call the procedure
Propagate (qq').

The details of the algorithm are contained in the procedure Propagate. Intuit-
ively, to propagate a dragged segment qq' means to allow a "wavefront" of signals
to advance past the event point p in the direction that qq' is being dragged. This
usually involves creating new dragged segments corresponding to the advancing
wavefront, or in "clipping" the segment qq' so that the continuation of the sweep
of the wavefront does not sweep over regions of the plance that we know to be
better reached from some other root (from the same direction).

The procedure Propagate does different things depending on whether the next
event is of Type I, II, or III and on whether or not the event point p has already
been permanently labeled. The cases are illustrated in Figures 11, 12, and 13. We
now give more details.

m

Procedure Propagate (qq')

(0) Let p = (xp, yp) be the event point, let r = (xr, Yr) be the root, and let L and
R be the left and right stop points of qq'. qeq'e is the event position of the
dragged segment (i.e., its position when it is in contact with p). Assume (without
loss of generality) that the segment qq' is inclined at angle 5n/4 and propagating
northwest, so that r is southeast of p. According to the nature of the event
point p, go to one of the cases (1)-(3) below.

(1) (p is a stop point) (Type I event) If p = L, then insert a dragged segment (of

L 1 Shortest Paths Among Polygonal Obstacles in the Plane

NW(H,H) NW(H,O)

Fig. 11. Type I event: Reaching a stop point.

i

i

i

NW(H,V)

71

type NW(O, H), NW(O, O), or NW(O, V)) rooted at r whose right track ray
is that of qq' and whose left track ray is the obstacle segment containing L.
Otherwise (t9 = R), insert a dragged segment (of type NW(H, O), NW(O, O),
or NW(V, O)) rooted at r whose left track ray is that of qq' and whose right
track ray is the obstacle segment containing R. Figure 11 shows the cases in
which a NW(H, .) segment hits a left stop point p = L. (Charge point p.)

(2) (p is not yet permanently labeled) Permanently label p with the distance d(p) =
d(r) + d(r, p) and set parent(p)= r. Set NSe(p)= {r}. Insert new segments
according to the cases below. (Charge point p.)
(a) (p is interior to qeq'e) (Type II event) In this case, the wavefront "splits" at

p, and we insert two or more new dragged segments, according to the
orientation of the segments (p, p.succ) and (p, p.pred). Below, we enumerate
the possible cases for the orientation, O, of the (directed) segment (t7, p.succ)
and the corresponding new dragged segments that continue the propaga-
tion to the right of the splitting point p; the case analysis based on the
orientation of the segment (p,p.pred) for how to propagate dragged
segments to the left of p is similar.

(i) 0 ~ (~/4, 7r/2). Insert a NW dragged segment rooted at r whose right
track ray is that of qq' and whose left track ray is the obstacle segment
(p, p.succ).

(ii) 0 ~ (re~2, n). Insert a NW dragged segment rooted at r whose right track
ray is that of qq' and whose left track ray is the northward ray through
p. Also insert a dragged segment of type NW(O, V), of initial length
zero, rooted at p whose right track ray is the northward ray through
p and whose left track ray is the obstacle segment (p, p.succ).

(iii) 0 e (n, 5n/4). Insert a NW dragged segment rooted at r whose right
track ray is that of qq' and whose left track ray is the northward ray
through p. Also insert dragged segments of types NW(H, V) and
SW(O, H), rooted at p, whose initial lengths are zero.

Figure 12 shows various cases.
(b) (p = q~) (Type III event) There are four cases, depending on the orientation,

0, of the (directed) segment (p, p.succ), which are almost identical to those
considered in (a) above.

(i) 0 e (re/4, ~z/2). Insert a NW dragged segment rooted at r whose right
track ray is that of qq' and whose left track ray is the obstacle segment
(p, p.succ).

72 J.S.B. Mitchell

i q ' e

- - ~ - ~ - - - - - �9 F

p . p r ~ : " p

qe
NW(H,H)

i

Q �9

NW(O,H) NW(V,H)

NW(H,O)

, i i

i i
i L

NW(O,O) NW(H,V)

Fig. 12. Type II event: Interior collision.

(ii) 0 ~ (~/2, ~). Insert a NW dragged segment rooted at r whose right track
ray is that of qq' and whose left track ray is the northward ray through
p. Also insert a dragged segment of type NW(O, V), of initial length
zero, rooted at p whose right track ray is the northward ray through
p and whose left track ray is the obstacle segment (p, p.succ).

(iii) 0 e (~, 3~z/2). Insert a NW dragged segment rooted at r whose right
track ray is that of qq' and whose left track ray is the northward ray
through p. Also insert dragged segments of types NW(H, V) and
SW(O, H), rooted at p, whose initial lengths are zero.

(iv) 0 ~ (3rr/2, 2~z). Insert a NW dragged segment rooted at r whose right
track ray is that of qq' and whose left track ray is the northward ray
through p. Also insert dragged segments of types NW(H, V), SW(V, H),
and SE(O, V), rooted at p, whose initial lengths are zero.

Figure 13 shows various cases.
(c) (p = q') (Type Ill event) Similar to case 2(b).

(3) (p is already permanently labeled, and ~SE(p) = ~) This is the case in which p
has already been hit from some direction, but not yet hit from the southeast.
Set NSE(p) = {r}, Insert new segments according to the cases below. (Charge
point p.)
(a) (p is interior to qeq'e) (Type II event) As in step 2(a) above, we split the

wavefront at p, and consider cases for propagation on each of the two sides
of p. Again, we present only the details of the cases for the propagation to
the right of p; the left side is handled similarly. The only difference between
what we do now and what we did before is that we omit inserting the
dragged segments that are rooted at p, since further propagation from p
has been considered already when p was first hit. We have two cases,
depending on the orientation, 0, of the (directed) segment (p, p.succ):

L t Shortest Paths Among Polygonal Obstacles in the Plane 73

. i

NW(O,H) NW(O,O)

i

, I
, I

NW(O,V)

NW(O,H) NW(O,O)

i

NW(O,V)

Fig. 13. Type III event: Endpoint collision.

(i) 0 s (n/4, n/2). Insert a NW dragged segment rooted at r whose right
track ray is that of qq' and whose left track ray is the obstacle segment
(p, p.succ).

(ii) 0 e (n/2, 5n/4). Insert a NW dragged segment rooted at r whose right
track ray is that of qq' and whose left track ray is the northward ray
through p.

(b) (p = qe) (Type III event) There are two cases, depending on the orientation,
0, of the (directed) segment (p, p.succ). These are almost exactly the same
as the dragged segments that are inserted to the right of p in case 3(a)
above, except that the second case now applies to the range 0 ~ (n/2, 2n).

(c) (p = q;) (Type III event) Similar to case 3(b).
(4) (p is a l r e a d y p e r m a n e n t l y labe led , and ~Se(p) r ;,?5) This is the case in which p

has already been hit from the southeast. Locate and insert r in the hit list
NSe(p) = {r I rn} by finding the points rl and ri+, (0 _< i < N) such that the
y-coordinate of r lies between that of r i and that of ri+ 1 (where we define the
y-coordinate of r o to be - o e and that of rn+ 1 to be + oe). Refer to Figure 14.
Insert new segments according to the cases below.
(a) (p is inter ior to qq') (Type II event) The propagation of the wavefront

portion represented by qq' will possibly continue, but only after "clipping"
is done on the west or north to account for the fact that other dragged
segments that have previously hit p are sweeping "ahead" of qq'.

(i) (i = N) (Clip on the west) If Xq; > x,N, then insert__a NW dragged
segment rooted at r whose right track ray is that of qq' and whose left
track ray is the northward ray through r N. (Charge the lower left corner
of R(r, p) (namely, point (Xp, Yr)) with a "West Clip (WC).") If xq, <_ xrN,
then no new dragged segment needs to be inserted, since, by the time

74 J . S . B . Mitchell

. . . . ~
u 11

. z . ~ - -~r

l
ri+l

Fig. 14. Cl ipping at p us ing NSE(p).

m
it hits p, qq' has already swept over the necessary portion of free space
to the right of rN.

(ii) (0 < i < N) No new dragged segment needs to be inserted, since, by
the time it hits p, qq--7 has already swept over the necessary portion of
free space to the right of ri and below ri + r

(iii) (i = 0) (Clip on the north) If Yqe < Yql, then insert a NW dragged
segment rooted at r whose left track ray is that of qq' and whose right
track ray is the westward ray through r r (Charge the upper right
corner of R(r, p) (namely, point (xr, yp)) with a "Nor th Clip (NC)." If
Yqe >- Yr,, then no new dragged segment needs to be inserted, since, by
the time it hits p, qq' has already swept over the necessary portion of
free space belo w r 1.

(b) (p = qe) (Type III event) This case is similar to case 4(a), except that there
can be clipping on the west but not on the north (since, necessarily,

Yqe = YP ~ Yr,)"
(c) (p = q'e) (Type III event) This case is similar to case 4(a), except that there

can be clipping on the north but not on the west (since, necessarily,
xq; = xp > x,~).

REMARK (Charging Events). The specification of the procedure includes instruc-
tions to "charge" some point at each event. This accounting scheme will allow us
to give an upper bound on the total number of events that can occur. The analysis
of our charging scheme will be discussed in more detail in Section 6.

Inserting a Dragged Seoment. By "inserting" a dragged segment qq', we mean
to compute its stop points, find its event point, event position, and event distance,
and update the event queue accordingly. When we insert a dragged segment into

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 75

the priority queue, we must determine its event point and corresponding event
distance, by the methods of Section 3. For types NW(H, O), NW(H, V), NW(O,
O), and NW(O, V), this is done simply by locating an appropriate point,
p = (xq, - e, yq + e) (for very small e > 0), in the subdivision S(5~/4, ~, ~/2). This
works, since, in our algorithm, we can easily check that it will always be the case
that the triangle Apqq' is obstacle-free, so we can consider the dragged segment
to have started at point p, with zero length. For types NW(H, H) and NW(V, V),
the segment insertion is done by checking each of the two track rays for stop
points and doing an appropriate range query by the methods of [Ch2].

The remaining three types of segment dragging queries (NW(O, H), NW(V, H),
and NW(V, O)) are potentially problematic, since, as mentioned in Section 3, we
do not know how to preprocess in time O(n log n) to do them in O(log n) time. We
determine the next event for a type NW(V, H) dragged segment by calling the
procedure Find-Next-Event-NW(V, H) (qq'), which we now define. Similar proce-
dures can be defined for the types NW(O, H) and NW(V, O), and for the other
three directions 6 6 {SE, NE, SW}. If a method is found for doing the segment
dragging queries "into a corner" directly, then these procedures will be un-
necessary for our algorithm.

Procedure Find-Next-Event-NW(V, H) (qq')

(0) Let c be the corner into which (qq') is being dragged. (For a NW(V, H) segment,
point c is the intersection of the vertical line through q with the horizontal
line through q'.)

(1) Drag (qq') northward until (a) q reaches c, or (b) q' hits a stop point, or (c) a
vertex w is hit by the dragged segment at position qeq'e. In case (a), we can
stop, since no obstacle vertex is hit by a NW(V, H) dragged segment; the
procedure returns with a message that no event point exists. In case (b), we
continue dragging the segment northward, now with q' sliding along the
appropriate obstacle segment; then, case (a) or (c) must occur. In case (c), we
check the point w: If w6 R(r, c), the procedure stops and returns point w;
otherwise, we let q = qe, q ' = w, and we return to (1) to continue dragging
northward. ("Charge" point w.)

The basic idea of the above procedure is to drag the segment ~7 northward
instead of dragging it into the corner. If we are /ucky enough to hit first a point
that lies inside the corner, then we are done. Otherwise, we clip the northward
dragging segment on the right at the obstacle that stopped us, and we continue
dragging the clipped segment northward. The fact that the above procedure will
eventually find the next point hit by a dragged segment of type NW(V, H) is clear,
since the region swept out by the segments we drag northward contains the triangle
/~qcq'. But the fact that, before arriving at the desired event point p, we may hit
many points w that are outside (above) the corner into which we should be
dragging is a potential source of problems. However, each such point that we hit
is "charged," and we are able to show (in Lemma 5 of Section 6) that no point is
charged more than once by the calling of this procedure.

76 J.s.B. Mitchell

Note that, since the left and right track rays for a NW(V, H) segment dragging
query cross each other, it is possible that there is no event point detected (case (a)
of step 1), in which case there is no change to the event queue when we "insert"
the segment. In essence, the dragged segment simply "dies" into the corner,
encountering no vertices along the way.

5. Correctness of the Algorithm. The correctness of our algorithm follows directly
from Lemma 1 and two simple observations:

(1) Let v be a vertex with parent r in SPT(s), and let 6 6 ~ be the direction from
r to v. Then, once vertex r is encountered by the advancing wavefront, dragged
segments rooted at r are created in such a way as to sweep out all of the region
acc~(r), except those points of ~ that are missed due to clipping (in step 4 of
Propagate).

(2) The clipping that is done in step 4 of Propagate is done conservatively: When
a dragged segment is clipped and replaced by a new dragged segment that
sweeps out a smaller region, this smaller region includes all points that are
best reached by the root r.

The first observation follows from checkiilg each case of the procedure Propa-
gate, making certain that the wavefront is advanced in all possible directions.

The proof of the second observation is also straightforward. Assume that a NW
dragged segment rooted at r is clipped on the west along the vertical line through
point r N, as a result of a collision with event point p. We claim that no point v
in the region accNW(rN)~ accNW(r) has parent r in SPT(s). Otherwise, point v is
better reached from r than from rN, which would imply that point p is better
reached from r than from r N, contradicting the fact that r N hit p before r did.

LEMMA 2. Propagate correctly assigns distance labels, d(v), and parent pointers,
parent(v), to vertices v ~ ~U. Thus, our algorithm correctly constructs the shortest
path tree, SPT(s).

PROOF. The proof proceeds by induction on the iteration count of the main loop
of the algorithm and mimics the usual proof of correctness of Dijkstra's algorithm
[Di]. We claim that each time we permanently label an obstacle vertex p = v (done
in step 2 of Propagate), we label it with the correct shortest path length from s.
Assume that v is labeled with the distance d(v)= d(r)+ d(r, v) in step 2 of
Propagate, due to a collision of a dragged segment rooted at r with the vertex
p = v. Let D be the event distance at which the collision takes place. Assume
inductively that all distance labels of vertices at distance less than D from s have
been assigned correctly. If we were incorrect in labeling v with d(r) + d(r, v), then
there must exist a different root, r' ~ r, with the property that v is immediately
accessible from r' and d(r') + d(r', v) < D = d(r) + d(r, v). Thus, r' is at a distance
less than D from s, implying (by the induction hypothesis) that it has already been
(correctly) permanently labeled and (by observations (1) and (2) above) that there

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 77

must be a dragged segment in the event queue that is rooted at r' and that has
an event distance less than D, a contradiction. []

6. Complexity of the Algorithm. In Section 3 we showed that each of the segment
dragging queries that we require can be performed in time O(log n) after an
O(nlog n) preprocessing, using O(n) storage. Furthermore, stop points can be
computed in overall time O(n log n). Updates to the hit lists can also be done in
logarithmic time. Thus, the overall running time of our algorithm is bounded by
O(E log n), where E is the number of events.

Our goal in this section is to bound E, the total number of events. We do this
by bounding the total number of dragged segments that are ever created, since
each dragged segment corresponds to exactly one event. In each call to the
procedure Propagate, we create a small number (at most 4) of new dragged
segments according to the several cases outlined. In each case involving a segment
creation, we "charge" some point for the creation.

Let us review the charging scheme specified in Propagate. We consider, without
loss of generality, the case of propagating a dragged segment to the northwest:

(1) If event point p is a stop point, then we charge the event to p. There are at
most 4n stop points, and each is charged at most twice--once because of a
left track ray, and once because of a right track ray.

(2) If vertex p is permanently labeled in Propagate, then we charge p, and this is
done only once for each vertex.

(3) If vertex p has been permanently labeled, but has not yet been hit from the
southeast (NSE(p): ~) , then we charge p. This results in at most three
additional charges to vertex p.

(4) If vertex p has previously been hit from the southeast, then, if a new dragged
segment is created, we either charge the southwest corner of the rectangle
R(r, p) with a West Clip (WC), or we charge the northeast corner of the
rectangle with a North Clip (NC). (Note that these points that we charge may,
in some cases, not lie in free space. This will not matter in our arguments that
bound the number of charged points.)

It is easy to bound the number of charges in cases (1)-(3) by O(n): there are
only a linear number of points that can be charged and each is charged only a
constant number of times. In case (4), however, we charge "grid points": a grid
point is a point at the intersection of a horizontal line through a vertex and a
vertical line through a vertex. There are a quadratic number of grid points, so we
must be careful in counting the number of grid charges. Our objective is to show
that only a very small number (at most O(n log n)) of the grid points can be charged
in the worst case. The proof of this claim relies crucially on the fact that certain
patterns of "charge" are not possible on the grid. We restrict our attention to
bounding the number of West Clips (WC's) that are charged to grid points when
propagating dragged segments to the northwest; other cases are handled similarly.

An example of the charging of WC's to grid points is shown in Figure 15. Here,
it is assumed that the length of the shortest paths from s to the roots r i (i = 1, 2,

78 J.S.B. Mitchell

12' r 4

.... i~i~iiiiii!iiil d
!

I

I

I
!

I

: !
!

I

' 9

~ b
I

I I

,10
I
I

I
I

I

7 r 2

1 2 4 5 r
1

Fig. 15. Example of charging of WC's to grid points.

11 r 3

3, 4) are ordered asfoUows: d(rl) ~ d(r2) ,~ d(r3) ~ d(r4). With this assumption, we
get the West Clip charges as shown by small hollow circles. The numbers by the
charges indicate the order in which the collisions take place. The large circles with
the " x " indicate the positions of the actual clip points. (The vertical lines through
the clip points are the new left track rays that are implied by the West Clips.)

We bound the number of WC's by relating it to the number of ones that can
occur in a binary matrix in which certain "violated patterns" cannot exist.

Our first claim is that rectangles are violated patterns:

LEMMA 3. In propagating dragged segments to the northwest, procedure Propagate
will not charge the four corners of a rectangle with a West Clip.

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 79

P~"

1

~'2 '~

~r
2

r 1

Fig. 16. Proof of Lemma 3.

PROOF. To see that the four corners of a rectangle cannot be charged WC,
assume the contrary. (Refer to Figure 16.) If r 1 hit Pl first, then when r 2 hits p~,
it will be clipped to the right of r~, and would then never hit P2- Similarly, if r2
hits PI first, then r 1 would be clipped above when it hits p~, so it would never hit
P2. But a rectangle of WC charges implies that all four collisions must occur, a
contradiction. []

Now, think of the grid points as defining elements of an n-by-n matrix, whose
rows correspond to horizontal grid lines through vertices (which are distinct by
the GPA) and whose columns correspond to vertical grid lines through vertices.
Let the entry of the matrix be one if the corresponding grid point is charged WC
and let it be zero otherwise. Note that each grid point can be charged WC at most
once .

We say that a binary matrix contains no rectangles (or is "rectangle-free") if
there do not exist distinct rows i and i' and distinct columns j and f such that all
four matrix elements at (i,j), (i,j'), (i',j), and (i',j') are ones. It is not difficult to
show that an m-by-n binary matrix with no rectangle of ones can have at most
O((m + n) 1"5) ones. (See [Bo], or see [Lo], Problem 10.36(a).) In fact, the bound
of O((m + n) 15) is best possible, since there are rectangle-free matrices achieving
this density of ones (see [Lo]). These facts can also be interpreted as results from
extremal graph theory (as in [Bo], [Lo]).

Thus, an immediate corollary of Lemma 3 is that the number of WC's (and,
hence, the number of events E) is bounded by 0(n1"5), To get a better bound on
the number of WC's, we examine a larger class of violated patterns of WC charges.
Let x 1 < x 2 ~ x 3 and yl < yz. Then we will show that it is not possible for the
four points (xt, Yl), (x3, Y0, (x~, Y2), and (x2, Y2) all to be charged with a West
Clip. (We call such a set of four points a trapezoid.)

LEMMA 4. In propagating dragged segments to the northwest, procedure Propagate
will not charge the four corners of a trapezoid with a West Clip.

8 0 J . S . B . M i t c h e l l

P3

P2 ~

p

m
r

2

~ ~ ' r
1

Fig. 17. A trapezoid of West Clip charges.

PROOF. Refer to Figure 17. Assume that a trapezoid exists, as shown in the
figure. Note that the order in which points Pl, P2, and P3 are hit by a diagonal
line dragged to the northwest must be Pl, P2, P3. (This follows since, if for example,
P3 were to be the first one hit, then when rl hits P3 and gets west clipped, it is cut
off from being able to hit Px or P2.) Then, r 1 must have hit px before r 2 did
(otherwise, r 1 would have been north clipped when it hit PI, rather than being
west clipped). But then, when r 2 does hit Pl, it is west clipped at a point at or east
of point rl, meaning that it could not have gone on to collide with P2. This is a
contradiction. []

If we again interpret the grid points as elements of a binary matrix in which
there is a one corresponding to grid points that are charged with a West Clip and
a zero otherwise, then we can get a bound on the number of charges by studying
the density of trapezoid-free binary matrices. Bienstock and Gy6ri [BG] have
studied such matrices (motivated, in fact, by our application) and have shown the
following result:

PROPOSITION 1 (Bienstock and Gy6ri). The number of ones in a trapezoid-free
binary n-by-n matrix is O(n log n).

In fact, the stated upper bound is tight: examples exist of trapezoid-free binary
matrices with f~(n log n) ones [Sch]. An immediate corollary is then:

COROLLARY 1. The number of West Clips (and, hence, the number of events E) is
O(n log n).

We can continue to find other violated patterns of charges in hopes of obtaining
tighter bounds on the number of WC's. In an earlier draft of this paper [Mi2],
we showed, for example, that there can be no "L-quadrilateral" of charges on the
grid points. (An L-quadrilateral is given by the four points (ibjO, (i2,Jl), (il,j2),

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 81

(i',j') for indices il _< i' < i 2 and j l < j ' -<J2.) In [Mi2], we claimed an upper bound
of O(n(log n/log log n)) on the number of ones in an L-quadrilateral-free binary
matrix, but there was an error in the proof, so this question remains open. [BG]
have shown a lower bound of f~(n(log n/log log n)), which we conjecture to be tight.
The example of a matrix that yields the lower bound in [BG], however, cannot
occur as a set of WC charges in our problem, so it does not imply a corresponding
lower bound on the number of events for our-algorithm. It remains to be seen
whether other violated patterns of charges can be found that will lead to a linear
bound on the number of WC's and hence a proof of optimality of our algorithm.

Boundin 9 Collisions of Find-Next-Event-NW(V, H). In order to complete the
complexity analysis of our algorithm, we must show that the procedure we use to
perform queries of dragging segments into corners does not consider too many
collisions. Recall that Find-Next-Event-NW(V, H) determines the next collision
caused by dragging a segment into a corner c to the northwest. This is a type of
segment dragging query that we do not know how to answer in optimal time, so
it was simulated by actually dragging the segment northward and checking the
collision point for being inside the corner (that is, inside the rectangle R(r, c)). If
it is not, we clip the segment on the right at the collision point, and we drag it
northward again, continuing until we either hit a point that is inside the corner
or we discover that no such point exists. Each time we hit a point w that lies
outside the corner, we charge it. How many such charges are there? Our next
lemma shows that no vertex w will be charged more than once, inplying that the
total amount of work expended in calls to Find-Next-Event-NW(V, H) is O(n log n).

LEMMA 5. Each obstacle vertex w is hit by procedure Find-Next-Event-NW(V, H)
at most once. A similar chaim holds for procedures Find-Next-Event-NW(O, H) and
Find-Next-Event-NW(V, O).

PROOF. We prove only the claim for NW(V, H) dragged segments; similar proofs
can be written for the other two cases. The proof is by contradiction. Assume that
w is hit twice by one or more calls to procedure Find-Next-Event-NW(V, H): once
when qq', rooted at r, is dragged into corner c, a n d once when pp, rooted at r ,
is dragged into corner c'. Let qeq', and P~P'e be the corresponding event positions
when the dragged segments are in contact with w.

If c r c', then we assume, without loss of generality, that c' is south of c, implying
that c' is southwest of c, since our propagation rules imply that c is immediately
accessible from r. Also, then, if r r r', it follows that r' must be southwest of r.

First, note that in order for w to have been hit, we must have xq < xw < xq, and
Xp < x,~ < Xp,. This means that w is to the right ofc and c' and to the left o f t and r'.

We consider two cases, depending on whether or not r = r':

(a) If r = r', then we get a contradiction as follows. We can immediately rule out
the case c = c', since this would imply that the point w is hit twice by the same
call to Find-Next-Event-NW(V, H). Thus, we can assume we have a situation
as depicted in Figure 18.

82 J.S.B. Mitchell

w q,
c L i

i C~ ~ -

P
r ~ i -I

Fig. 18. Proof of Lemma 5: Case r = r'.

The right track ray of pp' (which is the horizontal line through c') can only
come about due to a vertex v on this ray that is left of r = r' and right of p',
and that is immediately accessible from r. But this implies that c cannot be
immediately accessible from r, a contradiction.

(b) If r 4: r', then we get a contradict ion as follows. We consider two cases,
according to whether c' is nor th or south of r:
(i) If c' is nor th of r, we get the case shown in Figure 19. The right track for

pp----7 must pass through a vertex v that is immediately accessible f rom r' and
that lies left of r' and right of p' (x v, < x~, < xr,). Then, the only way that
c can be immediately accessible from r is for v not to lie in the connected
componen t of R(r, c) c~ ~ that contains r and c. This implies that there is
an obstacle boundary segment cutt ing through R(r, c), such that w lies
above the segment and r' lies below it. Such an obstacle prevents the
procedure f ind-Next-Event-NW(V, H) (pp') from being able to hit vertex
w. (Note that this argument remains valid when c = c'.)

W q'
C -~

- - - i i r

P
. �9 r j

Fig. 19. Proof of Lemma 5: Case r ~ r' and c' lies above r.

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 83

C .

' q' I

, I

I

C' ' ~ r

P

................................... ~ r'

Fig. 20. Proof of Lemma 5: Case r 4= r' and c' lies below r.

(ii) If c' is south of r, we get the picture in Figure 20. The left track ray of
must pass through a vertex v that is immediately accessible from r and
that lies above r and below q (y, < y~ < Ya). But this implies that a call to
Find-Next-Event-NW(V, H) (pp') cannot cause a collision with w, since the
obstacle containing v will "shield" w: when we drag northward an inclined
segment whose left endpoint slides along x = xc,, the obstacle containing
v must be hit before w is hit, and then, as the procedure trims the dragged
segment on the right, the dragged segment can progress further northward
only once it makes it around the westernmost corner of the obstacle
containing v. This contradiction concludes the proof. []

We can finally state our main result as a theorem:

THEOREM 1. Given a source point s and a set of polygonal obstacles with a total
of n vertices, one can build an L1 shortest path tree SPT(s) rooted at s in time
O(E log n) and space O(E), where E = O(n log n) is the number of events in the main
algorithm. The shortest path tree SPT(s) can be extended to a shortest path map
SPM(s) in time O(nlog n), so that queries for the shortest path length to any
destination t can be answered in time O(log n) and a shortest path from s to t can
be reported in time O(k + log n), where k is the number of turns in the path.

PROOF. The correctness of the algorithm for generating the SPT(s) was estab-
lished in the previous section. Thus, we must now argue only the time and space
complexity of the algorithm.

Each call to Propagate will require at most a constant number of segment
dragging queries, each of which costs us O(log n) time (not counting dragging into

84 J.S.B. Mitchell

corners). Each iteration of the loop in Find-Next-Event-NW(V, H) requires time
O(log n) to drag the segment northward, and, by Lemma 5, there will be at most
O(n) iterations in total. Each insertion or lookup into a list .~a(v) costs O(log n),
and there will be at most O(E) insertions and lookups. Thus, the total time
complexity of our algorithm is O(E log n). Also, clearly, the data structures will
require O(E) space. Corollary 1 shows that E = O(n log n). This proves the claimed
bounds for the SPT problem.

The extension to the SPM can be done by at least two methods. One method
is to modify our existing algorithm to do more bookkeeping, so that we compute
bisectors as we go, and can output the SPM directly. A second method is to use
our existing algorithm to compute the SPT(s), which yields the lengths of shortest
paths from s to every other vertex v. We can then construct the SPM(s) by
considering each vertex v to be a weighted source, with (additive) weight d(v), and
applying a weighted constrained Voronoi diagram algorithm according to the L1
metric, constrained by the set of obstacles. This can be done, for instance, by the
sweep method of Fortune [Fo], enhanced to handle obstacles, as in Seidel [Se].
(Seidel considers only the unweighted case, but, as pointed out in Fortune [Fo],
the (additive) weighted case can be handled by imagining that the "cones" erected
on each source point are raised by an amount equal to the weight.) []

Backtracin9 a Shortest Path. There are two possibilities for the path we output:
we can require that it be rectilinear, or we can allow it to be any polygonal path,
while we measure its length according to the L 1 metric. In either case, we begin
by locating the query point t in the SPM(s). We then follow back pointers from
the root r of the cell containing t to the root of the cell containing r, etc., until
we reach point s. The path obtained in this way is the polygonal path from s to
r in the shortest path tree SPT(s), together with the segment from r to t. If we
require a rectilinear path from s to t, we now simply replace each line segment in
the polygonal path by a staircase path in free space. These staircase paths are easy
to identify in time proportional to their size (see [LL]).

Note that if we require that the path from s to t be rectilinear, then we must
be prepared to have the number of its links very large. In fact, it may have a
countably infinite number of links in the case that s (or t) lies at a vertex of a
polygon whose interior angle is greater than 3Tc/2. If the cone of free space at s
does not include any of the four coordinate directions, then a rectilinear path from
s to any other feasible point will require a countably infinite number of links (see
ILL]).

Multiple Sources. An immediate generalization of our algorithm is to the case
of multiple sources. We simply modify the initialization of the main algorithm
(Step 0) to insert the four dragged segments that surround each source point at
the beginning. This allows us to build a Voronoi diagram for multiple source
points that lie among a collection of polygonal obstacles in the L~ plane. It is
important that each source point be considered to be a vertex of the free space
so that the source points are included as if they were point obstacles, thereby

L i Shortest Paths Among Polygonal Obstacles in the Plane 85

allowing collisions to be detected that result in clipping propagation from various
different source points.

THEOREM 2. We can construct the L 1 Voronoi diagram of a set of K sites among
a set of simple polygonal obstacles in time O(Elog N)= O(N log 2 N), where
N = K + n and E = O(N log N) is the number of events.

Note that this then solves the problem of [LL] with m origin-destination pairs
in time O((m + n) logZ(m + n)), improving the previous bound of O(m(m 2 + n2)).

Fixed Orientations. Another generalization of our algorithm allows us to solve
shortest path problems involving distances with fixed orientations (see [WWW]).
Basically, a fixed orientation metric defines the distance between two points to be
the length of the shortest path that travels only along a given set A of fixed
orientations. The L~ metric is the special case in which the fixed orientations are
0 and n/2: it measures lengths of rectilinear paths. A "circle" with respect to a
distance function with k = I AJ fixed orientations is given by a 2k-gon. Thus,
wavefronts among obstacles in this distance function are piecewise-linear with
(oriented) segments of 2k different inclinations. There has been nothing special
about the orientations 0 and n/2 in our discussions; in particular, the segment
dragging query problems of Section 3 were discussed for arbitrarily inclined
segments sliding along arbitrarily inclined track rays. The complexity of our
algorithm gets multiplied by a factor of k when we pass from LI metrics to
distances with k fixed orientations.

THEOREM 3. Consider distances between points of the plane to be measured
according to a fixed orientation distance function defined by a set of k directions.
Then, within a multiply-connected polygonal space ~, one can build a shortest path
map or a Voronoi diagram in time O(kE log n) and space O(kE), where E = O(n log n)
is the number of events in our main algorithm.

If the fixed orientations A that define a distance function are evenly spaced in
the range [0, re), then as k grows large, the fixed orientation distance becomes a
close approximation to the Euclidean distance (the percentage error decreases like
l/k2). This implies the following corollary, which compares favorably to the recent
results of [C1], who finds an e-optimal path in time O(n/e + n log n), after spending
O((n/e) log n) time to build a data structure of size O(n/e).

COROLLARY 2. One can compute e-optimal shortest paths and geodesic Voronoi
diagrams in the Euclidean plane cluttered with polygonal obstacles in time
O(ne- i/2 log2 n) and space O(ne- 1/2 log n).

7. Conclusion. We have presented an algorithm for computing shortest paths
and Voronoi diagrams according to the L 1 metric (and more generally, fixed
orientation metrics) in a planar environment with polygonal obstacles. The

86 J.s.B. Mitchell

algorithm runs in time O(E log n) and space O(E), where E has been shown to be
O(n log n) and is conjectured to be O(n).

Our complexity analysis applied combinatorial bounds on the densities of
certain sparse binary matrices. This two-dimensional "Davenport-Schinzel" rea-
soning is likely to continue to be a tool in other geometric algorithms. It is an
interesting area of research to explore other combinatorial bounds on sparse
matrices; several specific open questions were suggested in Section 6. Very recently,
Fiiredi and Hajnal [FH] have addressed several related questions concerning
densities of sparse matrices, adding to the results of Bienstock and Gy6ri [BG],
which were motivated by our geometric application.

It should be possible to extend our method to give an efficient algorithm for
the construction of the L1 (or fixed orientation metric) Voronoi diagram of a set
of pairwise-disjoint polygonal sources.

It would be interesting to apply our continuous Dijkstra method to the
three-dimensional problem of finding L 1 shortest paths among orthohedral ob-
stacles. The goal is to get a subquadratic time algorithm, thereby improving the
naive grid-based algorithm discussed in [Mi2].

REMARK. There has been some recent work on the problems addressed here that
has taken place since the writing of this paper: I-CKV] have independently
obtained an algorithm with time and space bounds similar to ours, although by
very different methods. Also, [Wi] has recently obtained bounds (by a similar
method to that of [CKV]) that are nearly optimal, especially in some special cases.
Both [CKV] and [Wi] use a technique that involves computing a sparse "shortest
paths preserving" graph, which is guaranteed to include shortest paths between
pairs of vertices.

Acknowledgments. This research was partially supported by NSF Grants IRI-
8710858 and ECSE-8857642 and by a grant from Hughes Research Laboratories.
Much of the work was done while the author was aff• with the Hughes
Research Laboratories, Malibu, California. The author would like to thank his
advisor, Christos Papadimitriou, and D. T. Lee for helpful discussions and
suggestions on these problems, and to thank Bernard Chazelle for pointing out
the use of his data structures [Ch2] for solving segment dragging queries in linear
space. Many fruitful discussions on the density of trapezoid-free matrices were
with Esther Arkin, Dan Bienstock, Alan Hoffman, Offer Kella, Ed Schmeichel,
and Karel Zikan.

[As]

[AAGHI]

References

T. Asano, Rectilinear shortest paths in a rectilinear simple polygon, Trans. IECE of
Japan, E69 (1985), 750-758,
T. Asano, T. Asano, L. Guibas, J. Hershberger, and H. Imai, Visibility of disjoint
polygons, Algorithmica, 1 (1986), 49-63.

L 1 Shortest Paths Among Polygonal Obstacles in the Plane 87

[BG]

[Bo]
[Chl]

[Ch2]

[CEGS]

[Cl]

[CKV]

[DLW]

[Di]

lEGS]

[EOS]

[Fo]

[FH]

[KM]

[Ki]

[LL]

[Le]

[LCY]

[LP]

[LWo]

[Lo]
[LW]

[Mil]

[Mi2]

D. Bienstock and E. Gy6ri, An extremal problem on sparse 0-1 matrices, SIAM
Journal on Discrete Mathematics, 4 (1991), 17-27.
B. Bollobfis, Extremal Graph Theory, Academic Press, New York, 1978.
B. Chazelle, A functional approach to data structures and its use in multidimensional
searching, SIAM Journal on Computing, 17 (1988). 427-462.
B. Chazelle, An algorithm for segment dragging and its implementation, Algorithmica,
3 (1988), 205-221.
B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Lines in space--Combinatorics,
algorithms and applications, Proc. 21st Annual ACM Symposium on Theory of Compu-
ting, 1989, pp. 382-393.
K. Clarkson, Approximation algorithms for shortest path motion planning, Proc. 19th
Annual ACM Symposium on Theory of Computing, New York City, May 25-27, 1987,
pp. 56-65.
K. Clarkson, S. Kapoor, and P. Vaidya, Rectilinear shortest p~ths through polygonal
obstacles in O(n log 2 n) time, Proc. Third Annual ACM Symposium on Computational
Geometry~ Waterloo, Ontario, 1987, pp. 251-257.
P. J. de Rezende, D. T. Lee, and Y. F. Wu, Rectilinear shortest paths with rectangular
barriers, Proc. First Annual ACM Symposium on Computational Geometry, 1985,
pp. 204-213.
E. W. Dijkstra, A note on two problems in connexion with graphs, Numerische
Mathematik, 1 (1959), 269-271.
H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone
subdivision, SIAM Journal on Computing, 16 (1986), 317-340.
H. Edelsbrunner, M. H. Overmars, and R. Seidel, Some methods of computational
geometry applied to computer graphics, Computer Vision, Graphics, and Image Process-
ing, 28 (1984), 92-108.
S. J. Fortune, A sweepline algorithm for Voronoi diagrams, Algorithmica, 2 (1987),
153 174.
Z. Ffiredi and P. Hajnal, Davenport-Schinzel theory of matrices, Manuscript, Depart-
ment of Mathematics, MIT, October, 1989.
S. Kapoor and S. N. Maheshwari, Efficient algorithms for Euclidean shortest path and
visibility problems with polygonal obstacles, Proc. Fourth Annual A CM Symposium on
Computational Geometry, Urbana-Champaign, IL, June 6-8, 1988, pp. 172-182.
D. G. Kirkpatrick, Optimal search in planar subdivisions, SIAM Journal of Computing,
12 (1983), 28-35.
R. C. Larson and V. O. Li, Finding minimum rectilinear distance paths in the presence
of barriers, Networks, 11 (1981), 285 304.
D. T. Lee, Proximity and reachability in the plane, Ph.D. Thesis, Technical Report
R-831, Dept. of Electrical Engineering, University of Illinois, November 1978.
D. T. Lee, T. H. Chen, and C. D. Yang, Shortest rectilinear paths among weighted
obstacles, Proc. Sixth Annual ACM Symposium on Computational Geometry, 1990,
pp. 301-310.
D. T. Lee and F. P. Preparata, Euclidean shortest paths in the presence of rectilinear
boundaries, Networks, 14 (1984), 393410.
D. T. Lee and C. K. Wong, Voronoi diagrams in L 1- (Lo0-) metrics with 2-dimensional
storage applications, SIAM Journal of Computing, 9(1) (1980), 200-211.
L. Lovfisz, Combinatorial Problems and Exercises, North-Holland, Amsterdam, 1979.
T. Lozano-Perez and M. A. Wesley, An algorithm for planning collision-free paths among
polyhedral obstacles, Communications of the ACM, 22 (1979), 560-570.
J. S. B. Mitchell, Planning shortest paths, Ph.D. Thesis, Department of Operations
Research, Stanford University, August, 1986.
J. S. B. Mitchell, Shortest rectilinear paths among obstacles, Technical Report No. 739,
School of Operations Research and Industrial Engineering, Cornell University, April,
1987.

88 J.S.B. Mitchell

[Mi3]

[MMP]

[MP]

[Ni]

[PaS]

[Pa]

[Pr]

[PrS]

[RS]

[Sch]

[Se]

[Sh]

[SCKLPS]

[ss]

[We]

[Wi]

[www]

J. S. B. Mitchell, A new algorithm for shortest paths among obstacles in the plane,
Annals of Mathematics and Artificial Intelligence, 3 (1991), 83 106.
J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou, The discrete geodesic problem,
SIAM Journal on Computing, 16(4) (1987), 647-668.
J. S. B. Mitchell and C. H. Papadimitriou, The weighted region problem: Finding shortest
paths through a weighted planar subdivision, Journal of the ACM, 38(1) (1991), 18-73.
N. J. Nilsson, Principles of Artifical Intelligence, Tioga Publishing Co., Palo Alto, CA,
1980.
J. Pach and M. Sharir, On vertical visibility in arrangements of segments and the queue
size in the Bentley-Ottman line sweeping algorithm, First Canadian Conference on
Computational Geometry, Montreal, Quebec, August 21-25, 1989. To appear: SIAM
Journal on Computin 9.
C. H. Papadimitriou, An algorithm for shortest-path motion in three dimensions,
Information Processin 9 Letters, 20 (1985), 259-263.
F. P. Preparata, A new approach to planar point location, SIAM Journal on Computing,
10 (1981), 473482.
F. P. Preparata and M. I. Shamos, Computational Geometry, Springer-Verlag, New York,
1985.
J. H. Reif and J. A. Storer, Shortest paths in Euclidean space with polyhedral obstacles,
Technical Report CS-85-121, Computer Science Department, Brandeis University, April,
1985.
E. Schmeichel, Private Communication, Department of Mathematics and Computer
Science, San Jose State University, 1986.
R. Seidel, Constrained Delaunay triangulations and Voronoi diagrams with obstacles,
Technical Report Rep. 260, Institute flit Information Processing, Graz, pp. 178 191, June,
1988.
M. Sharir, Davenport-Schinzel Sequences and their Geometric Applications, NATO ASI
Series, Vol. F40, Theoretical Foundations of Computer Graphics and CAD (R. A.
Earnshaw, ed.), Springer-Verlag, Berlin, 1988, pp. 253-278.
M. Sharir, R. Cole, K. Kedem, D. Leven, R. Pollack, and S. Sifrony, Geometric
applications of Davenport-Schinzel sequences, Proc. 27th Annual IEEE Symposium on
Foundations of Computer Science, 1986, pp. 77-86.
M. Sharir and A. Schorr, On shortest paths in polyhedral spaces, SIAM Journal on
Computing, 15 (1) (1986), 193-215.
E. Welzl, Constructing the visibility graph for n line segments in O(n 2) time, Information
Processing Letters, 20 (1985), 167-171.
P. Widmayer, Network design issues in VLSI, Manuscript, lnstitut ffir Informatik,
University Freiburg, RheinstraBe 10-12, 7800 Freiburg, West Germany, 1989.
P. Widmayer, Y. F. Wu, and C. K. Wong, On some distance problems in fixed
orientations, SIAM Journal on Computing, 16 (4), (1987), 728-746.

