

Computational Geometry – Exercise Meeting #1

November 18th, 2021

Could Red have won?

If so, why and how? Otherwise, why not?

(Are things different if there are more x's at the start?)

Convex Hulls

Let \mathcal{P} be a finite point set and let $p, q \in \mathcal{P}$ be **two points**, such that their Euclidean **distance is maximum** among all pairs of points of \mathcal{P} .

Show that p and q are points on the convex hull of \mathcal{P} .

Convex Layers

The **convex layers** of a finite set of points \mathcal{P} are defined by repeatedly computing the convex hull of \mathcal{P} and removing its vertices from \mathcal{P} , until there are no points left.

Figure: A point set and its convex layers.

Convex Layers

Describe a simple $\mathcal{O}(n^2)$ algorithm which computes the convex layers of

a set of n points.

Figure: A point set and its convex layers.

