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Abstract

We study the problem of computing a minimum-width annulus with outliers. Specifically,
given a set of n points in the plane and an integer k with 1 ≤ k ≤ n, the problem asks to find
a minimum-width annulus that contains at least n− k input points. The k excluded points
are considered as outliers of the input points. In this paper, we are interested in particular
in annuli of three different shapes: circular, square, and rectangular annuli. For the three
cases, we present first and improved algorithms to the problem.

1 Introduction

An annulus is a region bounded by two concentric circles. There are a few applications of
computing the minimum annulus enclosing a set of points in the plane. For instance, one of the
topics in metrology is to measure the roundness of an object, which is done mostly by measuring
points obtained from the boundary of the object. If the width of the annulus that covers the
measured points is close to zero or below a predefined threshold, then one can say that the
object is (almost) round. Otherwise, the object is not round enough, and therefore it should
be rejected. Another application is to locate an obnoxious or undesirable facility for a set of
sites that use or get served by the facility in the plane. No one wants to have an obnoxious
facility such as a garbage dump in his/her backyard but it should be located within a reasonable
distance from the sites. A good location for such an obnoxious facility is the one whose closest
site is far enough and whose farthest site is not too far.

The minimum-width annulus that encloses a set P of points reflects the roundness of the
point set P well. There has been a fair amount of work on the minimum-width annulus for a
set of points in the plane. However, the data we obtain in applications often contains outliers
which are due to variability in the measurement or errors in transmission. Outliers can be seen
as violation of constraints in the minimum-width annulus problem: the points of P are to be
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Figure 1: Minimum-width (a) circular, (b) square, and (c) rectangular annuli with k = 7 outliers
for a given set of points.

covered by the annulus but some of them are allowed to be violated. In this paper, we study
the minimum-width annulus problem for points allowing outliers in the plane.

The minimum-width annulus problem has been studied in computational geometry. Moti-
vated by the roundness test in metrology, Ebara et al. [9] presented a simple quadratic time
algorithm that computes a minimum-width circular annulus enclosing a given set of n points in
the plane using Voronoi diagrams. Later, Agarwal, Sharir, and Toledo [3] presented an algorithm
that uses Megiddo’s parametric search technique and computes the minimum-width circular an-
nulus in O(n8/5+ε) time for any ε > 0. The problem was reconsidered by Agarwal et al. [4] as an
application of computing the vertices, edges and 2-dimensional faces of the lower envelopes of
multivariate functions. Their algorithm takes O(n17/11+ε) expected time for any ε > 0. Then,
Agarwal and Sharir [2] simplified and improved their previous algorithm by using vertical de-
composition to O(n3/2+ε) expected time for any ε > 0. Chan gave an (1 + ε)-approximation
algorithm for the problem [7]. However, there is no exact algorithm known for the problem in
the presence of outliers, except an approximation algorithm by Har-Peled and Wang [11].

There also has been work on variations of the minimum-width annulus problem in the plane,
depending on the shape of the annulus as well as the distance metric for measuring the width.
A square or rectangular annulus is the region bounded by two concentric axis-parallel squares or
rectangles, respectively. Abellanas et al. [1] presented an O(n)-time algorithm for the rectangular
annulus problem and considered several variations of the problem. Gluchshenko, Hamacher,
and Tamir [10] gave an optimal O(n log n)-time algorithm for a minimum-width square annulus.
Later, Mukherjee et al. [14] presented an O(n2 log n)-time algorithm that computes a minimum-
width rectangular annulus over all orientations, and Bae [6] showed that a minimum-width
square annulus over all orientations can be computed in O(n3 log n) time.

In this paper, we study the problem of computing a minimum-width annulus that contains
at least n − k input points, when n points are given as input points and 1 ≤ k ≤ n is also a
part of input. Since the input points not covered by the resulting annulus are considered as the
outliers of the annulus, this problem is also called as the minimum-width annulus problem with
k outliers. We are interested in annuli of three different shapes: circular, square and rectangular
annuli. See Figure 1 for an illustration.

Very recently, Bae [5] considered the square or rectangular annulus problem with k ≥ 1
outliers and presented several first algorithms. Among them, he presented an O(k2n log n+k3n)-
time algorithm for the square annulus with k outliers and O(nk2 log k+k4 log3 k)-time algorithm
for the rectangular annulus with k outliers. It is worth noting that, when k is a constant, these
running times match the lower bounds of the problems. On the other hand, no nontrivial
algorithm for the minimum-width circular annulus with outliers is known so far.

Our results in this paper are threefold:

2



• We give an O(k(kn)3/2+ε)-time algorithm for the minimum-width circular annulus with k
outliers. This is the first nontrivial algorithm for the circular variant of the problem.

• We present anO(k2n log n)-time algorithm for the minimum-width square annulus problem
with k outliers. This improves the previously best algorithm by Bae [5], which takes
O(k2n log n+ k3n) time.

• We also present two algorithms for the minimum-width rectangular annulus with k outliers
whose running times are O(n log n + k4 log2 n) and O(nk2 log k + k4 log2 k). Both of our
algorithms are faster than the previously best known ones [5], which take O(n log2 n +
k4 log k log2 n) time and O(nk2 log k + k4 log3 k) time, respectively.

2 Preliminaries

In this paper, we are interested in annuli of three different shapes: circular, square, and rect-
angular annuli. A circular annulus is a closed region in the plane bounded by two concentric
circles. The bigger circle that bounds a circular annulus A is called the outer circle of A, while
the other is called the inner circle of A. The width of a circular annulus is the difference between
the radii of its outer and inner circles.

For the square and rectangular cases, we consider only axis-parallel squares and rectangles.
So, throughout the paper, any square or rectangle we discuss is supposed to be axis-parallel,
unless stated otherwise. Consider a rectangle, or possibly a square, R in the plane R2. We call
the intersection point of its two diagonals the center of R.

An (inward) offset of R by δ > 0 is a rectangle obtained by sliding the four sides of R inwards
by δ. If the shorter side of R is of length r, then the offset of R by δ = 1

2r is degenerated to a
line segment or a point. For any positive δ ≤ 1

2r, consider an inward offset R′ of R by δ. Then,
the closed region A between R and R′, including its boundary, is called a rectangular annulus
with the outer rectangle R and the inner rectangle R′. When R is a square and so is R′, the
annulus A is called a square annulus, and R and R′ are called its outer square and inner square,
respectively. The offset value δ is called the width of the annulus.

Consider an annulus A, regardless of its shape. The complement R2 \ A of the annulus A
consists of two connected components. We shall call the component enclosed by A the inner
part of A and the other component the outer part of A.

Given a set P of n points in R2 and an integer k with 1 ≤ k ≤ n, our problem asks a
minimum-width circular, square, or rectangular annulus that contains at least n − k points of
P . The input points that are not covered by the resulting annulus are called outliers. We call
such an annulus that contains at least n− k point of P an annulus of P with k outliers. In the
following sections, we address the problem of computing a minimum-width circular, square, and
rectangular annuli separately, in this order.

3 Circular Annulus with Outliers

In this section, we consider the problem of finding a minimum-width circular annulus with k
outliers for a given set P of n points. As observed in [2, 3, 4], the outer and inner circles of
a minimum-width circular annulus (without outliers) are determined by four points of P : (1)
one of its outer and inner circles has three points on it and the other has one, or (2) both have
two points on each. This implies the following lemma for minimum-width circular annuli with
outliers.
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Lemma 1 There exists a minimum-width circular annulus A of P with k outliers such that one
of the following conditions holds:

(1) Three points of P lie on one of the inner and outer circles of A, and one point in P lies on
the other circle.

(2) Both the inner and outer circles of A have two points of P on each.

Proof. Let A be any minimum-width circular annulus of P with k outliers. Let P ′ := P ∩ A
be the set of points in P that are contained in A. Note that |P ′| ≥ n− k by the requirement of
the problem.

Now, consider a minimum-width circular annulus A′ (without outliers) that contains all
points in P ′ and satisfies one of the conditions (1) and (2). Such an annulus A′ exists as ob-
served in [2, 3, 4]. On one hand, by definition, the width of A′ is not larger than that of A. On
the other hand, since |P ∩A′| ≥ |P ′ ∩A′| = |P ′| ≥ n− k, A′ is a circular annulus with at most
k outliers. Therefore, A′ is another minimum-width circular annulus of P with k outliers that
satisfies the desired condition.

Consider a minimum-width circular annulus A of P with k outliers that satisfies one of
conditions (1) and (2) stated in Lemma 1. Let kin be the number of points in P that lie in the
inner part of A and kout = k − kin be the number of points in P that lie in the outer part of
A. In the following, we will show that the center of A is related to the higher-order Voronoi
diagrams of P . The order-t Voronoi diagram of P , denoted by Vt(P ), decomposes the plane
R2 into Voronoi regions such that all points in each Voronoi region share the common t nearest
points among those in P [12]. Note that the ordinary nearest-neighbor Voronoi diagram of P is
the order-1 diagram V1(P ), while the farthest-neighbor Voronoi diagram of P is the order-(n−1)
diagram Vn−1(P ). For more details on the order-t Voronoi diagrams, refer to Lee [12] and Liu
et al. [13].

Back to our discussion on annulus A, first assume that the annulus A falls in case (1), so one
of the inner and outer circles of A has three points on it. If the inner circle Cin of A has three
points of P on it, then observe that the center of Cin, so the center of A, coincides with a vertex
of the order-(kin + 1) Voronoi diagram of P , since Cin contains kin points of P in its interior.
If the outer circle Cout of A has three points of P on it, then the center of A coincides with a
vertex of the order-(n− kout − 1) diagram of P since Cout encloses exactly n− kout points of P .

Next, we assume case (2), so both the inner and outer circles of A have two points of P on
each. Since the inner circle Cin of A contains kin points in its interior and two points on Cin, the
center of Cin lies on an edge of the order-(kin + 1) Voronoi diagram of P . On the other hand,
since the outer circle Cout of A encloses all but kout points of P and two points of P lie on Cout,
the center of Cout lies on an edge of the order-(n − kout − 1) diagram of P . This implies that
the center of A coincides with the intersection point of two edges of the Voronoi diagrams, one
edge from each diagram.
Lemma 2 There exists a minimum-width circular annulus of P with k outliers such that its
center lies on a vertex of the overlay of the order-(k′ + 1) Voronoi diagram and the order-
(n− 1− k + k′) Voronoi diagram of P for some 0 ≤ k′ ≤ k.

This already yields a nontrivial algorithm: For each 0 ≤ k′ ≤ k, compute the two diagrams,
compute the overlay of them, and check every vertex of the overlay. Since the diagram Vt(P )
has complexity O(t(n− t)) and can be computed in O(t(n− t) log n) time [13], we can compute a
minimum-width circular annulus of P with k outliers roughly in time O(k3n2). In the following,
we give a better solution.

Again, consider two cases stated in Lemma 1. As discussed above, in case (1), the center of
our annulus A lies on a vertex of a higher-order Voronoi diagram. Thus, solutions falling into
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this case can be found without computing the overlay. For the purpose, we compute the order-t
diagrams of P for t = 1, 2, . . . , k+1 and t = n−1, n−2, . . . , n−k−1 in O(k2n log n) time [12, 13].
After processing each of the diagrams for a standard point location structure [8], we check for
each vertex of the order-(k′ + 1) Voronoi diagram its location on the order-(n − 1 − k + k′)
Voronoi diagram, which takes O(log n) time per vertex. Hence, this case can be handled in total
O(k2n log n) time.

Case (2) is relatively tricky. As above, consider a minimum-width circular annulus A of P
with k outliers. Assume that this is case (2) and that kin points of P lie in the inner part of
A and kout = k − kin points of P lie in the outer part of A. Here, we can directly extend the
algorithm by Agarwal and Sharir [2] of computing the minimum-width annulus in O(n3/2+ε)
time as follows. In this case, as discussed above, each of the outer and inner circles passes
through two points, thus its center lies on an edge of the corresponding higher-order Voronoi
diagram. Using the lifting transformation that maps a point (px, py) of P in the xy-plane into
the point (px, py, p

2
x + p2y) on the paraboloid z = x2 + y2 in three dimension, a circle C with

center (a, b) in the xy-plane is mapped to a plane H(C) which is parallel to the plane tangent
to the paraboloid at point (a, b, a2 + b2) in three dimension. The plane H(C) intersects the
paraboloid in a closed curve whose orthogonal projection onto the xy-plane coincides with C.
Furthermore, a point lies on, inside, outside C in the xy-plane if and only if its lifted point is on,
below, above H(C) in three dimension, respectively. Thus, if our annulus A misses kin points in
its inner part and kout points in its outer part, then it is mapped to a pair of parallel planes in
three dimension such that kin points lie below the plane mapped from the inner circle and kout
points above the plane mapped from the outer circle, that is, n − kin − kout points lie in the
strip between the two parallel planes.

A minimum-width annulus in the xy-plane is transformed into a pair of two parallel planes
in three dimension that minimizes a (properly defined) distance function between the planes
under the lifting [2]. In case (2), we observe that each of the two parallel planes contains two
lifted points, thus its projected circle has its center on the bisector of the two points, i.e., on an
edge of the higher-order Voronoi diagram in the xy-plane. By the same argument of Agarwal
and Sharir [2], the problem of finding two parallel planes, each containing a line connecting two
(lifted) points, with a minimum distance can be reduced to the problem of computing a closest
pair of bichromatic lines in three dimension. This type of the closest line-pair problem can be
solved in O((|U |+ |L|)3/2+ε) expected time for any positive ε > 0 by a randomized divide-and-
conquer algorithm [2], where U is a set of the candidate lines contained in the upper plane (pairs
of points lying on the outer circle) and L is a set of the candidate lines contained in the lower
plane (pairs of points lying on the inner circle). Since U is obtained from the edges of the order-
(n−kout−1) Voronoi diagram of P and L is obtained from the edges of the order-(kin+1) Voronoi
diagram of P , we have |U | = O(kout(n − kout)) = O(kn) and |L| = O(kin(n − kin)) = O(kn).
Thus, it takes O((kn)3/2+ε) expected time.

In order to handle case (2), we compute all those higher-order Voronoi diagrams, and for each
0 ≤ k′ ≤ k, we invoke the above algorithm for the closest line-pair problem. This correctly finds
a minimum-width circular annulus with k outliers in case (2), and takes in total O(k(kn)3/2+ε)
expected time. Hence, we conclude the following theorem.
Theorem 1 Given a set P of n points in the plane and an integer k with 1 ≤ k ≤ n, a minimum-
width circular annulus of P with k outliers can be computed in O(k(kn)3/2+ε) expected time
for any ε > 0.
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4 Square Annulus with Outliers

In this section, we study the minimum-width square annulus problem with outliers, and present
an O(k2n log n)-time algorithm that computes a minimum-width square annulus of a set P of n
points with k outliers. Throughout this section, for a point p, we denote by x(p) and y(p) the
x-coordinate of p and the y-coordinate of p, respectively.

4.1 Configuration of optimal solutions

Bae [5] showed the following configuration of an optimal solution.
Lemma 3 (Bae [5]) There exists a minimum-width square annulus of P with k outliers that
contains two points of P lying on the opposite sides of its outer square.

Moreover, the following lemma holds.
Lemma 4 There exists a minimum-width square annulus of P with k outliers such that either

(1) one side of its inner square contains a point in P and three sides of its outer square contain
points of P , or

(2) two sides of its inner square contain points of P and two opposite sides of its outer square
contain points of P .

Proof. Consider a minimum-width square annulus A of P with k outliers that satisfies the
condition stated in Lemma 3. Without loss of generality, we assume that the left and right sides
of the outer square Sout of A contain a point in P on each. In addition, it is clear that the inner
square Sin of A also has at least one point p0 ∈ P on its boundary due to the minimality of the
width of A.

Suppose that A satisfies none of conditions (1) and (2) stated in the lemma. Here, we
describe how to transform A into another minimum-width square annulus A′ of P with k outliers
satisfying condition (1) or (2). There are two cases: (i) when the point p0 lies on the left or
right side of Sin, or (ii) on its top or bottom side.

Consider the former case (i). In this case, we can slide A locally in a vertical direction,
downwards or upwards. We slide A upwards (a) until the top or bottom side of Sout hits a point
in P or (b) until the top or bottom side of Sin hits a point in P . Let A′ be the resulting square
annulus obtained from the above transformation. If this is case (a), then three sides of the outer
square of A′ contains a point in P on each; if this is case (b), then two sides of the inner square
of A′ contains a point in P on each. Since A′ contains all the points in P ∩ A, A′ is indeed
another minimum-width square annulus of P with k outliers.

Next, we consider case (ii). Without loss of generality, we assume that p0 lies on the top side
of Sin. Then, there exists a sufficiently small positive real ε > 0 such that the translate A′ of A
downwards by ε contains all the points in P ∩A, and no point in P lies on the boundary of the
inner square of A′. This implies that we can enlarge the inner square of A′ while containing all
the points in P ∩ A′. This is a contradiction to the minimality of the width of A. So, case (ii)
cannot happen.

Consider a minimum-width square annulus of P with k outliers satisfying the condition in
Lemma 4. We assume without loss of generality that both the left and right sides of its outer
square contain points pL and pR in P , respectively. In the following, we describe how to find
such an optimal solution, if any.
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Figure 2: (a) The set of centers of the squares containing pL and pR on their left and right sides,
respectively, form a vertical line segment ` = q1q2. (b) Candidate side lengths of inner squares with
respect to `. For each point p, its x-distance to ` and y-distance to each of the endpoints q1 and q2 of `
are candidate side lengths of inner squares. Precisely, 2|x(p) − x(`)|,2|y(p) − y(q1)|, and 2|y(p) − y(q2)|
are candidate side lengths of inner squares for a point p ∈ P .

4.2 Finding candidate outer squares

We observe that there are at most k points of P lying to the left of pL. Similarly, there are at
most k points lying to the right of pR. To use this observation, we compute the set C of pairs
(p′L, p

′
R) of points in P such that there are at most k points in P lying to the left of p′L and

at most k points of P lying to the right of p′R. Clearly, the size of C is O(k2) and (pL, pR) is
contained in C.

In the following subsection, we present an algorithm that computes a minimum-width square
annulus of P with k outliers in O(n log n) time, provided we are given pL and pR. To obtain a
minimum-width square annulus, we apply this procedure with each pair of C. Then we obtain
O(k2) square annuli one of which is an optimal solution. We simply choose the one with smallest
width.

4.3 Finding the largest inner square for a candidate pair

Assume that we know pL and pR. We present an O(n log n)-time algorithm for computing a
minimum-width square annulus of P with k outliers such that pL lies on the left side of its outer
square and pR lies on the right side of its outer square.

Consider any square whose left side contains pL and whose right side contains pR. Then
it has the side length r0, that is, r0 = x(pR) − x(pL), the difference of the x-coordinates of
pL and pR. Moreover, its center lies on a vertical line segment ` that connects two points
q1 and q2 such that: x(q1) = x(q2) = x(pL) + r0/2, y(q1) = min{y(pL), y(pR)} + r0/2, and
y(q2) = max{y(pL), y(pR)} − r0/2. Furthermore, for any point t ∈ `, there is a square centered
at t that contains pL and pR on its left and right sides, respectively. See Figure 2(a) for an
illustration.

For any point t ∈ `, we denote the square centered at t with side length r0 by Sout(t). By
definition, it contains pL and pR on its left and right sides, respectively. We use Sin(t, r) to
denote the inner square centered at t with side length r for r ≤ r0.

In the following, we find a largest possible inner square for a candidate pair (pL, pR) on the
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outer square whose corresponding annulus contains at least n− k points. That is, we maximize
r ∈ [0, r0] such that a square annulus formed by Sout(t) and Sin(t, r) contains at least n − k
points of P for some t ∈ `. This determines the minimum-width square annulus for the fixed
pair (pL, pR).

For the purpose, we compute the set of O(n) candidate side lengths of inner square. We
then apply a binary search on the sorted list L of the candidate side lengths using the decision
algorithm to find the interval I of two consecutive side lengths in L containing the side length
r∗ of the largest inner square whose corresponding annulus contains at least n− k points of P .
To finally determine r∗, we apply a constant number of linear searches by scanning certain lists
of selected points of P . Details will be given below.

4.3.1 Decision algorithm.

First, we describe our decision algorithm that tests whether r ≤ r∗ or not for a given side length
r ∈ [0, r0]. Assume that the points of P are sorted with respect to their y-coordinates. This
allows us to sort the points in any subset P ′ of P with respect to their y-coordinates in O(n)
time. Here, r is given as input.

Imagine that a point t translates from one endpoint to the other endpoint of ` along `. As t
translates along `, a point in P enters into Sout(t) or Sin(t, r), or exits from Sout(t) or Sin(t, r).
We call a point t ∈ ` such that a point in P lies on the boundary of Sout(t) or Sin(t, r) an event.

Clearly, there are O(n) such events, and we can compute and sort them along ` in O(n) time
since we maintain the sorted list of points in P in their y-coordinates. Imagine that we translate
t along ` continuously. Any change in the number of points lying in the translated annulus
occurs at an event. In other words, for a point t lying between any two consecutive events along
`, the set P ∩ Sout(t) and the set P ∩ Sin(t, r) remain the same. Thus, we compute the number
of points of P lying in the annulus with outer square Sout(t) and inner square Sin(t, r) for every
event in the sorted order by scanning the sorted list of events linearly and updating the number
of points of P lying in the annulus in O(1) time per event.

Hence, we can determine whether there is some t ∈ ` such that the number of points of P
lying in the square annulus determined by Sout(t) and Sin(t, r) is at least n− k in O(n) time in
total.

The above discussion is summarized into the following lemma.
Lemma 5 Given pL, pR ∈ P and r > 0, we can check in O(n) time whether there is a square
annulus of P with k outliers such that the outer square contains pL and pR on its the left side
and on its right side, respectively, and its inner square has side length at least r for any input
r > 0, provided that points in P are sorted with respect to their y-coordinates.

4.3.2 Binary search on candidate side lengths.

We first compute O(n) candidate side lengths of the largest inner square whose corresponding
annulus contains n−k points of P . We then apply a binary search on the sorted list of these can-
didate side lengths. This gives us an interval I defined by two consecutive candidate side lengths
in the sorted list containing the side length r∗ of the largest inner square whose corresponding
annulus contains n− k points of P .

We consider the distance between each point p ∈ P and the line containing `, and take twice
the value as a candidate side length. We also consider the difference between y(p) for each
p ∈ P and y(q) for each q ∈ {q1, q2}, and take twice the value as a candidate side length as
well. (Recall that q1 and q2 are the two endpoints of `.) Precisely, 2|x(p)−x(`)|, 2|y(p)−y(q1)|,
and 2|y(p)− y(q2)| are candidate side lengths of the largest inner square for a point p ∈ P . See
Figure 2(b) for an illustration. We reject all distances larger than r0 as no inner square of such

8



`
pL

pR

(a) (b)

t

Sout(t)
σ

r1 r1

pL

pRt

σ

y(t) + r/2

y(t)− r/2

Sin(t, r)

Figure 3: (a) The open region (strip) σ between the two vertical lines at distance r1 from the line
containing `. (b) We have kin(t, r) = |P ∩ σ| −m+(y(t) + r/2)−m−(y(t)− r/2).

a large side length defines a square annulus. We apply a binary search on the sorted list of all
candidate side lengths using the decision algorithm above. As a result, we obtain the interval
I = [r1, r2) bounded by two consecutive candidate side lengths in the sorted list such that I
contains the side length r∗ of the largest inner square whose corresponding annulus contains
n− k points of P .

4.3.3 Linear search for r∗ in I.

Now we have the interval I = [r1, r2) containing the side length r∗ of the largest inner square. For
a side length r ∈ I, consider the square Sin(t, r) of side length r centered at point t ∈ `. Imagine
that we translate t from one endpoint of ` to the other endpoint (and therefore the square
Sin(t, r) is translated accordingly.) Then the top side of Sin(t, r) hits points in P . Observe that
the set of points in P hit by the top side during the translation remains the same for any value
r ∈ I because there is no point p in P with r1 < 2|x(p)−x(`)| < r2. This implies that the order
of the points hit by the top side of Sin(t, r) during the translation remains the same even for
varying r ∈ I. This also holds for the bottom side of Sin(t, r).

Let Tout (and Bout) be the list of points in P hit by the top side (and the bottom side) of
Sout(t) sorted by their y-coordinates while t translates along ` from its lower endpoint q2 to its
upper endpoint q1. Also, let Tin (and Bin) be the list of points in P hit by the top side (and the
bottom side) of Sin(t, r) for a fixed value r with r1 < r < r2 sorted by their y-coordinates while
t translate along ` from its lower endpoint q2 to its upper endpoint q1. As discussed above, Tin
and Bin are uniquely determined, regardless of choice of r. The four lists can be computed in
O(n) time, as the points in P are already sorted in their y-coordinates.

For t ∈ `, let kout(t) := |P \ Sout(t)| be the number of points in P that lie strictly outside
of Sout(t). The function kout(t) of t ∈ ` is piecewise constant, and can be explicitly obtained in
O(n) time by performing a linear search using lists Tout and Bout.

For t ∈ ` and r > 0, let kin(t, r) be the number of points in P that lie strictly in the interior
of Sin(t, r). Consider two vertical lines that are r1 distant from the line containing `, and the
open region (strip) σ between the two lines. See Figure 3(a).

Observe that every point contained in the interior of Sin(t, r) is also contained in σ because
there is no point p in P with r1 < 2|x(p) − x(`)| < r2. Let m+(y1) be the number of points
in P ∩ σ whose y-coordinate is at least y1; m−(y2) be the number of points in P ∩ σ whose
y-coordinate is at most y2. Then, for r ∈ I, we have

kin(t, r) = |P ∩ σ| −m+(y(t) + r/2)−m−(y(t)− r/2).
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See Figure 3(b) for an illustration. Note that the functions m+(y1) and m−(y2) are piecewise
constant, and can be explicitly specified in O(n) time using lists Tin and Bin.

Our task here is thus to find a maximum r∗ ∈ I = [r1, r2) such that there exists some t ∈ `
with kout(t) + kin(t, r

∗) ≤ k. For the purpose, we perform a linear search on the precomputed
lists Tout, Bout, Tin, and Bin, according to each of a few possible configurations of an optimal
annulus. By Lemma 4, for an optimal annulus (Sout(t), Sin(t, r

∗)), either (1) an additional point
of P lies on the top or bottom side of the outer square Sout(t), or (2) two points of P lie on the
top and bottom sides of the inner square Sin(t, r

∗). We handle each case separately.
First, we describe how to handle case (1). There are two cases: an additional point of P

lies on the top side of Sout(t) or its bottom side. Assume the former case; the other case can be
handled in a symmetric way. By Lemma 4, there is another point of P that lies on a side of the
inner square Sin(t, r

∗). Again, there are two subcases: a point lies (a) on the top side or (b) on
the bottom side of the inner square Sin(t, r

∗).
Assume the former subcase (a). In this case, we maintain two pointers p and p′ such that p

points to an element in Tout and p′ points to one in Tin. These two pointers p and p′ initially
point to the first ones in Tout and Tin, respectively, and will scan Tout and Tin in a linear way. As
p fixes the top side of Sout(t), it determines the center t ∈ ` of the annulus, while p′ determines
the side length r of the inner square Sin(t, r) since p′ fixes the top side of Sin(t, r). In this way,
a pair (p, p′) determines a square annulus A(p, p′). We also maintain the maximum side length
of a feasible inner square we have had so far by a variable rmax, initially being rmax = r1. For
the current pair (p, p′) of pointers, we repeat the following until p′ reaches the last point in Tin:
If r ≥ r2, then we ignore A(p, p′) and move p to the next point in Tout. If r ≤ rmax, then we
ignore A(p, p′) and move p′ to the next point in Tin. Otherwise, we have rmax < r < r2, and we
test if kout(t) + kin(t, r) ≤ k. If kout(t) + kin(t, r) ≤ k, then we set rmax to be r, keep A(p, p′)
as the best solution we have had so far, and move p′ to the next point in Tin; otherwise, if
kout(t) + kin(t, r) > k, then we move p to the next point in Tout.

Each iteration of the above procedure can be implemented inO(1) time as follows: Evaluating
kout(t) can be done in O(1) time per iteration since t translates upwards as p scans the points
in Tout. To evaluate kin(t, r) in O(1) time, we also maintain two variables y1 and y2 and update
them to have y1 = y(p′) and y2 = y(t)− r at each iteration whenever the evaluation of kin(t, r)
is performed. Note that y1 and y2 are the y-coordinates of the top and bottom sides of Sin(t, r).
We observe that y1 and y2 are also non-decreasing, and hence that m+(y1) and m−(y2) can be
evaluated in O(1) time at every iteration whenever necessary.

Subcase (b), where a point lies on the bottom side of the inner square, can be handled in an
analogous way with two pointers p and p′ scanning Tout and Bin, respectively. Consequently, if
an optimal annulus falls in case (1), then we can find it in O(n) time.

Next, we consider case (2), in which two points of P lie on the top and bottom sides of the
inner square Sin(t, r

∗). In this case, note that the side length r∗ of the inner square is determined
by the two points on its top and bottom sides. Similarly to the above case, we maintain two
pointers p+ and p− scanning two lists Tin and Bin, respectively. Then, the side length r is
determined by the difference y(p+) − y(p−) of the y-coordinates of p+ and p−, and t ∈ ` is
also determined such that y(t) = (y(p+) + y(p−))/2. Thus, a pair (p+, p−) determines a square
annulus as above, denoted by A(p+, p−). As done for case (1), we maintain the maximum side
length rmax of a feasible inner square we have had so far, initially being r′ = r1. For the current
pair (p+, p−) of pointers, we repeat the following until p+ reaches the last point in Tin: If r ≥ r2,
then we ignore A(p+, p−) and move p− to the next point in Bin. If r < rmax, then we ignore
A(p+, p−) and move p+ to the next point in Tin. Otherwise, we have rmax ≤ r < r2, and we test
if kout(t)+kin(t, r) ≤ k. If kout(t)+kin(t, r) ≤ k, then we set rmax to be r, keep A(p+, p−) as the
best solution we have had so far, and move p+ to the next point in Tin; if kout(t) + kin(t, r) > k,
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then we move p− to the next point in Bin.
Each iteration of the above procedure can be implemented in O(1) time. We observe that

y(t) = (y(p+) + y(p−))/2 is non-decreasing, as rmax is non-decreasing and both p+ and p− scan
the points in Tin and Bin linearly. Therefore, kout(t) can be evaluated in O(1) time per iteration.
To evaluate kin(t, r) in O(1) time, we also maintain two variables y1 and y2, and update them
to have y1 = y(p+) and y2 = y(p−) at each iteration whenever the evaluation of kin(t, r) is
performed. We observe that y1 and y2 are non-decreasing, so evaluation of m+(y1) and m−(y2)
can be done in O(1) time. Consequently, if an optimal annulus falls in case (2), then we can
find it in O(n) time.

We finally conclude the following result.
Theorem 2 Given a set P of n points in the plane and an integer k with 1 ≤ k ≤ n, a
minimum-width square annulus of P with k outliers can be computed in O(k2n log n) time.

5 Rectangular Annulus with Outliers

In this section, we present two algorithms for computing a minimum-width rectangular annulus
of a set P of n points with k outliers for 1 ≤ k ≤ n. Our first algorithm takes O(n log n+k4 log2 n)
time and the second one takes O(k2n log k + k4 log2 k) time.

Our algorithm is based on the following lemma given by Bae [5].
Lemma 6 (Bae [5]) There exists a minimum-width rectangular annulus of P with k outliers
such that each side of its outer rectangle contains a point in P .

Due to this lemma, we can find O(k4) candidates of the outer rectangle of an optimal annulus
as we did in Section 4.2.

5.1 Finding the smallest-width annulus for a fixed outer rectangle

We assume that we are given a data structure constructed on P that allows us to count the
number of points of P lying on a query rectangle in O(log n) time [8]. Such a data structure can
be constructed in O(n log n) time and has O(n log n) size. We also assume that we are given two
balanced binary search trees constructed on P , one with respect to their x-coordinates and the
other with respect to their y-coordinates. Let Tx denote the balanced binary search tree with
respect to the x-coordinates.

Let R be a candidate outer rectangle. Our goal in this subsection is to find the minimum-
width annulus whose outer rectangle is R. In other words, we find the inner rectangle with
respect to R containing at most k − kout points of P , where kout is the number of points in
P lying outside of R. Recall that a rectangular annulus is determined by its outer and inner
rectangles and the inner rectangle is an inward offset of the outer rectangle.

Given a value δ ≥ 0, we can determine in O(log n) time whether the annulus with outer
rectangle R of width at most δ contains at least n − k points by checking whether the inward
offset of R by δ contains less than or equal to k − kout points of P using the data structure for
counting queries. This is our decision algorithm for a fixed width δ ≥ 0.

Let δ∗ be the minimum width such that our decision algorithm returns a positive answer,
and R∗ be the inward offset of R by δ∗. That is, the annulus determined by R and R∗ is the
optimal solution for fixed outer rectangle R, and its width is δ∗. To reduce the search space for
δ∗, we make use of the observation that at least one side of R∗ contains a point of P . Consider
the case that the left side of R∗ contains a point p∗ ∈ P . Let x1 be the x-coordinate of the left
side of R and x2 be the x-coordinate of the center of R. Then, it is obvious that the x-coordinate
of p∗ lies in the interval [x1, x2].
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Now, we are ready to describe our algorithm to find p∗ and δ∗. It starts with two stan-
dard queries for x1 and x2 on the balanced binary search tree Tx on P with respect to the
x-coordinates, resulting in two paths from the root to a leaf in Tx. The two search paths share a
common part from the root and then split at some node v of Tx. We traverse Tx again from the
split node v. By the construction, the x-coordinate xv corresponding to v lies in [x1, x2]. We
then apply our decision algorithm for δ = xv − x1. If the result is positive, we proceed to the
left child of v; otherwise, we proceed to the right child of v. We apply our decision algorithm
for the next node repeatedly until we reach a leaf of Tx. Then, the leaf node corresponds to
the point p∗, in this case. Since the height of Tx is O(log n) and our decision algorithm takes
O(log n) time, this procedure terminates in O(log2 n) time.

The other cases, where p∗ lies on the right, top, or bottom side of R∗, can be handled in a
symmetric way by traversing the binary search tree on P with respect to the x-coordinates or
y-coordinates.

The following summarizes the above discussion.
Lemma 7 Given a fixed outer rectangle R, we can compute in O(log2 n) time the smallest
width δ∗ such that R and its inward offset by δ∗ form a rectangular annulus with k outliers after
O(n log n) time preprocessing.

5.2 Putting it all together

Since we have O(k4) candidate outer rectangles by Lemma 6, we obtain the following by the
above discussion.
Theorem 3 Given a set P of n points in the plane and an integer k with 1 ≤ k ≤ n, a minimum-
width rectangular annulus of P with k outliers can be computed in O(n log n+ k4 log2 n) time.
Proof. As a preprocessing, we build a data structure on P that allows orthogonal range counting
queries in O(log n) time, and build two balanced binary search trees on P with respect to the x-
coordinates and the y-coordinates, respectively. This can be done in O(n log n) time by standard
data structures [8].

Then we gather the set of O(k4) candidate outer rectangles by Lemma 6. For each candi-
date outer rectangle, we apply our algorithm described in Section 5.1 to compute the smallest
possible width in O(log2 n) time. By choosing the smallest one among the computed widths, we
find a minimum-width rectangular annulus of P with k outliers. The total time complexity is
O(n log n+ k4 log2 n).

The time bound in Theorem 3 has a term of n log n, and this does not match the case of
k = 0 in which one can solve the problem in O(n) time [1]. In order to reduce the running time
for small k, we exploit the approach by Bae [5].

A subset K ⊆ P is called a kernel for P if a minimum-width rectangular annulus of K with
k outliers is also a minimum-width rectangular annulus of P with k outliers. Bae [5] presented
a procedure to compute a kernel K of size O(k4) in O(nk2 log k + k4) time. After computing
such a kernel K, we compute a minimum-width rectangular annulus of K with k outliers in
O(k4 log2 k) time using Theorem 3. Hence, we conclude the following theorem.
Theorem 4 Given a set P of n points in the plane and an integer k with 1 ≤ k ≤ n, a minimum-
width rectangular annulus of P with k outliers can be computed in O(nk2 log k+k4 log2 k) time.
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