
t
GEOMETRIC INTERSECTION PROBLEMS

Michael Ian Shamos
Departments of Computer Science and Mathematics

Carnegie-Mellon University
Pittsburgh, PA 15213

and

Dan Hoey
Department of Computer Science

Yale University
New Haven, CT 06520

Abstract

We develop optimal algorithms for forming the intersection of geometric objects in the plane and apply them

to such diverse problems as linear programming, hidden-line elimination, and wire layout. Given N line segments

in the plane, finding all intersecting pairs requires O(N2) time. We give an O(N log N) algorithm to determine

i to detect whether two simple plane polygons intersect. We employ anwhether any two intersect and use t

O(N log N) algorithm for finding the common intersection of N half-planes to show that the Simplex method is not

h i On obtaining upper and lower bounds and relating these results to otheroptimal. The emphasis throug out s

problems in computational geometry.

I. Introduction

The task of computational geometry is to relate the

geometric properties of figures to the complexity of

algorithms that manipulate them. One important benefit

of such a study is the development of efficient algor­

ithms for applications in which geometry plays a major

role, such as computer graphics and operations research.

In an earlier paper! on closest-point problems, we

showed how a number of seemingly unrelated questions

could be answered by a single algorithm based on a

common underlying geometric theme. In this paper we

will again try to be economical a~d exploit one uni­

fying idea to solve a variety of problems.

Geometric applications frequently involve finding

the intersection of objects. A plane polygon is simple

if and only if n~ two of its edges intersect, a printed

circuit can be realized without crossovers if no two

conductors cross, and a pattern can be cut from a sin­

gle piece of stock if no two parts of the l~yout over­

lap. In computer graphics, an object to be displayed

obscures another if their projections on the viewing

plane intersect. The importance of efficient algor­

ithms for these problems is becoming more and more

apparent as industrial applications grow increasingly

ambitious: a single integrated circuit may contain

tens of thousands of components, a complicated scene

for graphic display can involve a hundred thousand

vectors, and data bases for architectural design must

be able to store upwards of one million distinct elem­

ents. For these purposes even quadratic algorithms

are impractical.

The common theme of the above problems is that

they can all be solved quickly if a fast algorithm is

available for detecting whether any two of N line seg­

ments in the plane intersect. The first part of this

paper deals with the development of such an algorithm.

In some cases we must form the common intersection

of N objects. The convex hull of a figure is the

intersection of its supporting half-spaces. The kernel

of a polygon (the locus of points from which all points

of the polygon are visible) is the intersection of the

half-planes determined by its sides2 • Determining

whether N linear inequalities are simultaneously satis­

fiable and linear programming are further examples.

When the objects are convex, forming their common

intersection is particularly easy and we borrow an alg­

orithm for the intersection of N half-planes to solve

a number of problems of this type. The emphasis

throughout is on relating these results to basic ques­

tions in geometric complexity.

t This work was supported in part by the Office of Naval Research under contracts N00014-75-C-0450 and N00014-76­

C-0829. For a portion of the time during which this research was in progress the first author held an IBM

Fellowship at Yale University.

208



II. Problems and Methods

In this section we will pose four fundamental int­

ersection problems and outline the methods that will be

used to obtain upper and lower bounds on the time

required for their solution.

11. Given N objects, do any two intepsect ?

Lower bounds: In general, we will obtain O(N log N)

lower bounds on this problem by showing that either

sorting or element uniqueness is reducible to it. The

element uniqueness problem is to determine whether any

two ofN real numbers are equal and the lower bound is

proved in a model allowing comparisons between linear

functions of the inputs 3 •

Upper bounds: Suppose that two of the objects can

be checked for intersection in constant time. Then

determining whether any two of the N given objects

intersect can be done naively in O(N2 ) time. In fact,

if the only operation allowed is pairwise checking for

intersection, no better algorithm is possible. This is

analogous to the problem, described by Reingold4 , of

determining whether two sets A and B, each containing

N real numbers, are equal. If comparisons are not

allowed between two elements of A.or between two elem­

ents of B, then we are unable to take advantage of the

fact that A and Bcan be totally ordered, and O(N2 )

comparisons are required. On the other hand, if the

sets can be ordered, then O(N log N) comparisons suf­

fice. In the intersection problem, we will reduce the

running time to O(N log N) by defining an order "rela­

tion on the objects and using a height-balanced tree to

manipulate them.

12. Given N objects, how many paips intepseat ?

Lower bounds: Since 12 answers the question posed

in II, the same lower bounds apply.

Upper bounds: Even though all pairs of objects may

intersect, it may be possible to count the number of

intersections without explicitly listing them. A sim­

ilar si~uation arises in counting the number of inver­

sions of a permutation, which can be accomplished with

O(N log N) comparisons even if there are O(N2 ) inver­

sions.

13. GivenN objeats, find aLl interseating pairs.

Lower bounds: If k pairs intersect, then a lower

b01l1ld of O(max(k, N log N»" follows from II.

Upper bounds: The outstanding question is whether

O(max(k, N logN» time suffices. This problem will

not be treated in any detail but is included for the

sake of completeness.

209

14. Given N objects, form their aorrunon intepsection.

Lower bounds: If the objects are half-planes, then

an O(N log N) lower bound can be obtained by showing

that any such algorithm can be used to sort. This

result can be extended to circles and a variety of

other objects •.

Upper bounds: We make use of the associative prop­

erty of the intersection operation to rearrange the

order in which the operation is applied so that a div­

ide-and-conquer strategy may be used. In this way we

will obtain O(N log N) algorithms.

The model of computation we shall assume is the

random-access machine (RAM)5, generalized to allow

real arithmetic and the storage of real numbers. If

the reader is troubled by this generalization she may

prefer to work with a traci'itional RAM operating on

objects whose coordinates are integral or rational,

but our lower bounds will tllen not apply.

Tlte question Of how objects are to be represented

arises frequently in computational geometry but causes

no difficulty. We will restrict our attention to the

Cartesian plane but any other coordinate system in

which it is possible to transform a point to Cartesian

coordinates in constant time may be imposed without

affecting the asymptotic order of our results. Even

problem-dependent systems such as center-of-mass coord­

inates may be used without fear because N points in

such a system can be transformed to rectangular coord­

inates in linear time. The authors are unaware of any

coordinate system for which this is not the case.

A line segment is represented by the coordinates

of its endpoints. A polygon is represented by a list

of its vertices, in the order in which they occur as

the boundary is traversed. Note that while a polygon

is a plane figure consisting of a polygonal boundary

and its interior, we represent it unambiguously by

specifying only the boundary. A polygon is simple if

no non-consecutive segments comprising its boundary

intersect. (Checking for this property is a non-triv­

ial matter.) A point lies above a line segment if it

lies above the line containing the segment. It is

below if it lies below that line. Some special cases

arise, which we may settle by definition: If the line

segment s is vertical and the point p-is not collinear

with it, we say by convention thatp 'is above s if it

lies in the right half-plane determined by s. If sis

vertical andp is collinear, then plies abdve s only

if it lies above all points of' 8. Similarly, if s is

horizontal andp is collinear with it, then by conven-



Figure 1. An or~er relation between line segments.

u V

--

Note that the relation * is transitive and lience def­

ines a total order. Imagine sweeping a vertical line

from left to right across a field oft" line segments. At

each point the segments intersected by the line are

totally ordered by t. When can this ordering change?
x

Certainly when the moving line L encounters the left

endpoint of a new segment, that segment must enter the

total order. Also, when L passes to 'the -tight of the

right endpoint of a segment J that segment must .leave

the total order. The ease of interest to us, however,

is when L passes through the intersection of two seg­

ments, for then the p~sitions of the two segments :In

the total order :i~re reversed. It is important to real­

ize that if segr·'nts A and B intersect,. then there is

some x for wIlie" _A and Bare consecutive in the total

order t. If we are able' to maintain the total order
x

as x moves along, we will eertainly detect all inter-

sections. However, since there may be O(N2) inter­

section points, it ~t take at least O(N2) QperatioDl

to do the updating. 6elow we describe an algoritha

which detect. the presence of an intersection if there

exists one, but does Dot go through the expense of

keeping complete- ··1nformat ion about the ordering.

The algorithm proceeds in a manner similar to the

one-dimeosiona1 algo.rithm given earlier. We will sort

the 2N segment endpoints and 1Iarch from left to right,

inserting a sea-nt in the data structure when its left

endpoint is encountered and deleting a· segment when itS

right endpoint is passed, checking sagments for int~

section when they become consecutive in the total o!!!,!'
This will require a structure T to maintain the order~

ing, on which we can perfora the following operations:

Consider two non-intersecting line segments A aq.~_

in the plane. We say that A and Bare comparable if ..'"

th~re exists a vertical line, say at x, that interse¢.

both of them. In case A and B are comparable, we Sb,.
say that A 1s above B at x, written A *B, 1f the

intersection of A with the vertical line lies above t~

intersection of B with that line. In Figure 1, we h8l*

the following relations among the line segments A, B,.I;
and D: B ~ D, A t B, B t D, A ~ D , and C 1s tlpt
comparable with any ·other segment.

III. Intersection of Line Segments

tion p lies above 8 if it is entirely to the right of

8. Of course, it is possible that a point lies neither

above or below a segment, but £!!. it. The preceding

definition is an example of the painful and boring

attention to detail that' must be paid if our theorems

are to be strictly correct. In this paper we shall

largely ignore such special cases with the promise

that no results will be substantially affected. It

seems pointless to fill these pages with intricate

definitions that do not contribute materially to tbe

questions at hand. Unfortunately, implementors of the

algorithms will be compelled to supply the details,.

In two dimensions the lower b.·nd still applies,

but there is no geometrically-induce~ total order on

line segments in the plane and the above algorithm

fails. We are obliged to define a new order relation

and employ a more complicated data structure. To

clarify the discussion, from this point on we assume

that no segment is vertical and that no three segments

meet in a single point. These assumptions do not

change the asymptotic running ttmes of the algorithms.

Suppose we are given N intervals on 'the real line

and are asked whether any t·~1; Jve:clap. Thi.~ can be

answered easily in O(N2 ) time by ~nspect:ing all pairs

of intervals. We may make use, however,. of the fact

that there is a .natural order relation on 1 ltervals:

either A is to the left of B, A is to the right of B,

or they overlap. Let us sort the endpoints o~ the

intervals in O(N log N) time and set up a (very simple)

data structure that can contain just one object: the

"current" interval. We nOW scan the endpoints from

left to right, inserting an interval into the structure

when its left endpoint is encountered and deleting it

when its right endpoint is encountered. If an attempt

is ever made to insert an interval when the data

structure is non-empty,o an oVelrlap has occurred; other­

wise, no overlap existt:. Since there ar·n 21' endpoints

and the processing of each en'dpoint (a~ ;;er the sort)

requires only constant time, the total time required

is O(N log N). No asymptoti~' improvement is possible:

Theorem 1. O(N log N) is a tObJeZ' 'bound on the time

required to determine blitethezt N inteP1Xlt8_~on .a line are

pairwise disjoint.

Proof: Let all the intervals degenerate into single

points and if there is no overlap then all the points

are distinct; the result follows from the O(N log N)

lower bound for the el ~;.;'ment uniqueness problem3• 0

210



~e algorithm will be given in pseudo-Algol and is

&~ed on an earlier, unpublished version6 •

I. INSERT(s, T) inserts the segment s into the total
order maintained by T.

~. DELETE(s , T) deletes segment s.

~. ABOVE(s,T) returns the name of the segment immed­
iately above s in T.

4. BELOW(s,T) returns the name of the segment immed­
iately below s.

ga,0rithm 1. (Intersection of line segments)
Figure 2. Finding the leftmost intersection.

END;

END;

Theorem 2. AZgoPithm 1 finds an intePB~ection if one

emsts.

E
E

A A A A A A E Intersection is
B A found here, when

B B B +

C D
D

C
C A and C become

C C consecutive in
the total order.

Figure 3. Operation of Algorithm 1.

Proof: We show that Algorithm 1 can be implemented in

O(N log N) time. The sorting of the 2N endpoints can

,-

Theorem 3. Whether any tuJo of N line segments in the

pZane intersect can be determined in O(N log N) time.

Even though Algorithm l,is simple, it has some cur­

ious properties., Fiust of all, even though the left­

most intersection'. found, .dot is not necessarily the

first intersection to be found. Second, since the

algorithm only makesQ(N) intersection tests, it may

fail to find some intersections. The reader may occupy

some idle moments constructing···..i1lustrative examples.

Figure 3 shows ROW Algor6~t,hm 1 .'perates in finding an

intersection. i.there are,fiv'e sS8lllents, labeled A, B, C,

D and E, in oriet by lefit endpoint.

whos~ intersection is p. Consider the leftmost point

at which A and B becom~ consecutive in the total order.

This can occur in only two ways:

1. Either A ar B is inserted and the other is either
immediatelY ABOVE or ~~LOW it in T. This case is
detected ~y the f\rsl tfblock in Algorithm 1.

2. A and B ar~ alreaay in T and an intervening segment
,is, deleted, ·~eav:Lng A and B consecutive. This case
is successfully detected by the ELSE block in alg­
orithm ct. ~,."'." :.

Thus in either ~vent the" intersection is found. 0THEN RETURN(A,S);

THEN RETURN(B,S);IF B int~rsects S

SORT the endpoints lexicographically on x and y so
that POINT[l] is leftmost and POINT[2N] is
rightmost.

FOR 1:=1 UNTIL 2N 00 BEGIN

P:=POINT[I]; Let S be the segment of which p
is an endpoint.

IF P is the left endpoint of S THEN BEGIN

INSERT(S,T);

A:=ABOVE(S,T);

B:=BELOW(S,T) ;

IF A intersects S

END;

ELSE (~ is t~e right endpoint of S) BEGIN;

A:=ABOVE(3,T);

B:=J3ELOW(S,T) ;

IF A intersects B THEN RETURN(A,B);

DELETE(S,T);

If an intersection exists, Algorithm i.:l returns the

n~es of two intersecting segmenfs; ot~erwise it ret­

urns nothing.

Proof: We show that the algorithm succeSSIU~~Y rinds

the leftmos t intersection point. ~4-nce Algorithm 1

only reports an intersection if i'-' finds QQ.e, it will

never falsely claim the existence qf an int~rsection,

md we may turn our attention to the possibility that

an intersection exists but remains undetect~d. If an

intersection exists, then there is a leftmost one at

,POint p. If several leftmost intersections exist, let

P be the one with least y-coordinate. The half-plane

~ the left of p is free of intersections. (Figure 2)

~ a vertical line moves from _00 to p, the total order

being maintained in T only changes when segments are

l~erted or deleted. Since no intersections occur

~efore p, the order represented by T is correct at all

~ints to the left of p. Let A and B be the segments

211



be accomplished in O(N 10gN) time. Using a balanced

tree scheme we may implement the operations INSERT,

DELETE, A~OVE, and BELOW so that each can be performed

in O(log N) time. The FOR-loop of Algorithm 1 contains

a constant number of these operations and the loop is

executed 2N times, hence O(N log N) time suffices. 0

IV. Applications of the Intersection Algorithm.

Algorithm 1 is of direct use in testing wire and

integrated circuit layouts. Normally, circuit design

is performed by human engineers or heuristic design

programs,neither of which is guaranteed to produce

circuit with no intersections. The cost of testing

each conductor against every other, even mechanically,

is prohibitive,but Algorithm 1 performs an equivalent

test quite rapidly. - Likewise, we can determine in

O(N log N) time whether a straight-line embedding of a

planar graph is proper (that is, has no intersecting

edges).

Detecting whether or not a polygon is simple is of

some importance because some geometric algorithms can

operate much more quickly on simple polygons than on

non-simple ones. For example, the convex hull of a

simple N-gon can be found in O(N) time 7 8 but forming

the hull of a non-simple polygon requires O(N log N)

time. A direct application of Theorem 3 gives

Theorem 4. Whether a plane N-gon is sinrple or not can

be determined in O(N log N) time. 0

Computing the intersection of two ,polygons is a

fundamental operation in the hidden-line problem and in

certain optimization problems. The intersection of two

convex N-gons can be found in O(N) time, but the inter­

section of general (non-convex) polygons may eonsist of

0(N2) disjoint parts containing a total of 0(N2) edges,

so we have a trivial quadratic lower. bound on the time

needed to intersect such polygons. If we abandon the

requirement of finding the entire intersection and are

satisfied with knowing merely whether the intersection

is non-empty, the situation is brighter:

Theorem 5. Whether two sinrplepZane N-gons intersect

can be determined in O(N log N) time.

Proof: Let the polygons be A and B. If they inter­

sect, then either A contains B, B contains A, or some

edge of A intersects an edge of B. Since A andB are

simple, any edge intersection that exists must be

between edges of different polygons. Execute Algorithm

1 on the set of 2N line segments comprising the edges

of A and B. If an intersection is found, then A and B

intersect and we are done. If no intersection is

212

found, then test any vertex of A to see whether it is

interior to B. This can be done, for an arbitrary

polygon, in O(N) time8 • If a vertex of A is interior

to B and there are no edge intersections, then A itself

lies wholly within B (Jordan Curve Theorem). Perform

an identical test to see whether B lies within A. 0

Even though 0(N2 ) time is required to form the

intersection of polygons in the worst case, it is

wasteful to spend this much time if the polygons are

in fact disjoint. The algorithm of Theorem 5 may be

used as a pre-screen to determine whether the more

expensive algorithm will be necessary.

A useful generalization is the problem of determin­

ing whether any two of N k-gons intersect. We shall

treat the convex case first. In earlier times (i.e.

more than two years ago), when no algorithm for inter­

secting two convex k-gons in less than O(k4) time was

known and no algorithm faster than the obvious quad­

ratic one was known for detecting whether any two of N

objects intersect, this problem would have required

O(N2k 2 ) time. We will make use of both improvements

to reduce the running time drastically.

The crucial observation is that an order relation

can be defined on polygons, not just on line segments.

A vertical line intersects the boundary of a convex

polygon in at most two points (unless an edge of the

polygon is vertical, but this is a minor detail). We

say that two non-intersecting convex polygons are comp­

arable if they are both intersected by some vertical

line. Given comparable polygons A and B, either A lies

above B, B lies above A, or one contains the other.

Furthermore, the intersection points of A and B with

the vertical line L partitions L into intervals which

lie either wholly within or entirely outside a polygon.

This relationship is illustrated in Figure 4.

Figure 4. Order relations among convex polygons

We may thus proceed by analogy to Algorithm 1, depend­

ing on the fact that, if two polygons intersect, they

must at some point be consecutive in the total order.

The only complication is that one polygon may contain



another.

Theorem 6. Whether any two of N convex k-gons inter­

sect can be determined in O(N(k + log N log k)) time.

Proof: We will first sort the polygons by leftmost and

rightmost extreme points, then proceed from left to

right, inserting and deleting polygons, and performing

intersection tests whenever two polygons become adja-

cent.

1. Sorting. There are a total of Nk edges in all of

the polygons. For each polygon we can find the

leftmost and rightmost vertices in O(k) time, for

a total of O(Nk) time overall. The result is 2N

vertices, which we may sort in O(N log N) time,

so this step requires at most O(Nk + N log N) time.

2. Insertions. We insert a polygon when its leftmost

endpoint is encountered. To do this, we must be

able to tell whether a point lies above, below, or

within a convex polygon. This test can be per­

formed on a convex k-gon in O(log k) time by

binary search2 , if O(k) preprocessing is allowed.

If we use a balanced tree to maintain the order of

the polygons, O(log N) such tests will suffice to

accomplish an insertion or deletion. Since at most

N insertions and N delet~ons will be made,

O(Nk + N log N log k) time is sufficient.

3. Inclusion and intersection tests. When a polygon

is inserted, it must be tested against its immed­

iate neighbors for inclusion or intersection. As

we have seen before, each such test can be done in

O(k) time. Similarly, when a polygon is deleted,

the two polygons that become consecutive must be

tested. There are at most O(N) tests overall, for

a cost of O(Nk) operations.

The desired result is obtained by adding the times

required by steps 1, 2, and 3. The correctness of

this algorithm can be proved by methods nearly ident­

ical to those used in Theorem 2: the leftmost inter­

section is certain to be found. 0

Theorem 7. Whether any two of N simple (but possibly

non-convex) k-gons intersect can be determined in

O(Nk log Nk) time.

Proof: This is a straightforward modification of alg­

otithm 1, using the ideas of Theorem 6. We can sort

the endpoints of all the edges of the polygons in

O(Nk log Nk) time. Perform the same scan as before,

inserting and deleting the edges (not polygons) sep­

arately. The reason that we do not attempt to insert

whole polygons is that non-convex polygons are not

totally ordered by the "above" relation, as can be seen

from Figure 5. The region of the plane lying above a

segment is either inside some polygon or outside all

polygons. As segments are inserted into the data

structure, we associate with each segment two pieces of

information, UP and DOWN. Each of these is either zero

or the number of the polygon to which the segment

belongs, zero indicating "outside". If, proceeding

upwards from the segment s, we pass out of its polygon,

then UP(s) is zero. If, on the other hand, we move into

polygon P, then UP(s) = P'. On inserting or deleting a

segment we perform the same intersection tests as in

Algorithm 1, with the following check for inclusion: if

a segment is inserted into a region belonging to a dif­

ferent polygon then trouble has occurred. Suppose that

segment s, belonging to polygon P, is to be inserted

below segment t and above segment u, both belonging to

polygon Q. Then eitherQ contains P entirely, or they

intersect. Thus Nk insertions and Nk deletions will be

made and O(Nk) segment intersection tests performed.

The height-balanced tree never holds more than Nk seg­

ments, so O(Nk log Nk) time suffices. 0

Figure 5. Non-convex polygons in the plane.

Theorem 8. Whether any two of N circles in the plane

intepsect can be determined in O(N log N) time~ and

this is optimal.

Proof: Non-intersecting circles are totally ordered by

the "above" relation and Algorithm 1 can be used with

one modification. A circle is inserted when its left­

most point is encountered and deleted when its right­

most point is encountered. As usual, circles which

become consecutive are checked for intersection. When

inserting a circle it is necessary to see whether that

circle is contained in either of its neighbors in the

total order. To show that O(N log N) is optimal, allow

the circles to shrink to single points and the element

uniqueness problem results. 0

213



Theorem 8 may be applied to the facilities location

problem of determining whether" any of.a number of radio

transmitters will interfere and to checking the layout

of circular patterns.

orem 9 does not apply directly, since the edges cannot

be in arbitrary positions. We currently have no better

than a linear lower bound for the kernel problem. Note

that a non-simple polygon cannot have a kernel.

v. Common Intersection

Theorem 9. The corronon intersection of N half-planes

can be found in O(Nlog N) time., and this is optimal.

Proof: The intersection of k half-planes is.a convex

polygonal region of at most k sides. Let Hi be the

half planes, so we are trying to form the N-fold
N

intersection n H. • Using the associative prop-
i=l 1.

erty of the intersection operator, we may rearrange

terms to give

Theorem 11. Whether N linear inequalities in two vari­

ables are consistent can be determined in O(N log N)

time.

Proof: The inequalities are of the form ai x + biy $ ci

where ai' bi and c i are constants. The inequalities

are consistent iff there exists at least one pair x,y

satisfying all'inequalities simultaneously. Each ineq­

uality determines a half-plane within which such a

point (x,y) must lie. If the intersection of all of

these half-planes is non-empty, the inequalities are

consistent. Thus Theorem 9 applies. 0

If the polygon is simple, the lower bound of The-

Theorem 10. The kernel of polygon can be found in

O(N log N) time2 •

Proof: Each side of the polygon determines a half­

plane within which the kernel must lie. The kernel

itself is the intersection of these half-planes, and

Theorem 9 applies. 0

Pavlidis 9 10 uses half-planes as primitives for

descriqing the syntax of patterns and decomposes fig­

ures into convex subsets by taking various ~ntersec­

tions of half-planes. Theorem 9 applies directly to

these problems.

Proof: The feasible region of a two-variable linear

program is the intersection of the half-planes defined

by the constraints. By Theorem 9, this region may be

constructed explicitly in O(N log N) time. Since the

objective function attains a maximum at some vertex of

the feasible region, we need only compute it at most N

times. 0

The Simplex method requires O(N2) time to solve a

two-variable problem because it finds extreme points

the feasible region one at a time rather than collect­

ively. Thus, Simplex is not optimal. In fairness,

however, we must point out that, in higher dimensions,

forming the entire feasible polytope (which Simplex

avoids) is a distinctly inferior method because the

number of extreme points may grow exponentially with

dimension (the number of variables). It is not yet

known whether Simplex can be beaten in three dimensions.

We would like to proceed along the lines of Theorem 9,

finding the intersection of N half-spaces, but this

requires a fast algorithm for intersecting two convex

polyhedra, and no such algorithm is known.

Returning to the two~dimensional proble~J it is

often of interest to solve the same linear program many

times, with the same set of constraints but different

objective functions. Having solved the linear program

once, Simplex may spend O(N2 ) time maximizing a new

objective function. If we have found the feasible

region as in Theorem 12 (using only O(N log N) time), a

new objective function can be maximized in O(log N)

time by finding a line of support of the feasible

region parallel to the line defined by the new con­

straint2 •

Theorem 12. A linear program in t:l.Uo variab les and N

constraints can be solved in O(N log N) time.

(Hl +N/ 2 nn(HI n • • • n ~/2)

The term on the left (in parentheses) is an inter­

section of N/2 half-planes and hence is a convex poly­

gonal region of at most N/2 sides. The same is true

of the term on the right. Since two convex polygonal

regions of k sides can be intersected in O(k) time2 ,

the middle intersection operation above can be per­

formed in O(N) time. If T(N) represents the time suf­

ficient to form the intersection of N half-planes, then

we have T(N) = 2T(N/2) + O(N), so T(N) = O(N log N).

This is a textbook example of divide and conquer.

To prove the lower bound, we will show that any

algorithm which finds "an intersection of half-planes

can sort. Given N\real numbers xl' • • • , xN ' let

Hi be the half-plane containing the origin defined by

a line of slo.pe xi that is tangent to the unit circle.

The intersection of these half-planes is a convex

polygonal reg:ion whose successive edges are ordered by

slope. Once the intersection polygon is formed, we

may immediately read off the xi in sorted order, so

O(N log N) comparisons must have been performed. 0

214



Theorem 13. The common intersection of N circZes can

be found in O(N Zog N) time, and this is optimaZ.

Proof: Substantially identical to the proof of The­

orem 9. A linear algorithm for the intersection of two

convex circular polygons {figures whose boundaries are

piecewise circular} is a direct generalization of the

convex polygon intersection algorithm. 0

Theorem 14. The common intersection of N convex

k-gons can be found in O(Nk Zog N) time.

Proof: There are a total of Nk polygon edges. Each of

these defines a half-plane within which the final

intersection must lie. By Theorem 9, the intersection

of Nk half-planes can be accomplished in O{Nk log Nk)

time. We can reduce the work required by operating on

polygons as units, rather than manipulating single

edges. Let T{N,k} be the time sufficient to solve the

problem. The intersection of N/2 convex k-gons is a

convex polygon having at most Nk/2 sides. Two of these

can be intersected in time ckN, for some constant c.

Thus, by recursively splitting the problem, we have

T(N,k} = 2T{N/2,k} + ckN, giving T{N,k} = O{Nk log N}.

VI. Conjectures and Unsolved Problems

1. Prove that O{N log N} time is required to deter­

mine whether a polygon is simple.

2. Prove that detecting whether two simple polygons

intersect requires O(N log N} time.

for linear programming in three variables. Very little

is known about the complexity of linear programming in

more than two variables.

VII. Summary

Intersection problems play a fundamental role in

computational geometry, computer graphics, and linear

programming. They seem to divide naturally into. two

classes: those requiring the detection of intersection

and those requiring the formation of a common inter­

section. Fast algorithms for the former can be obtained

by imposing an order relation on the objects to speed

processing. In the latter class, the associative prop­

erty of intersection permits a divide and conquer

strategy to be employed effectively. Lower bounds are

obtained by demonstrating a reducibility with known

problems.

VIII. Acknowledgements.

Stan Eisenstat was the first to suggest that a lin­

ear algorithm for the intersection of two convex poly­

gons would lead to an O{N log N) algorithm for inter­

secting half-planes, and this observation was the

starting-point of our work. As always, the first

author's wife, Julie, provided the spark necessary to

to keep inspiration kindling.

References

3. Suppose that the intersection of two simple N-gons

has k edges. Is there an O{max(k, N log N}} algorithm

to construct it ?

Shamos, M.I •. , and Hoey, D. Closest-Point Problems.
Proc. Sixteenth Annual Symposium on Foundations of
Computer Science (1975), 151-162.

is required to count the number of intersecting pairs?

5. Of N line segments, suppose that k pairs intersect.

Is there an O(max{k, N log N» algorithm to list them?

4. Given N line segments in the plane, how much time
2 Shamos, M.I. Geometric Complexity. Proc. Seventh

Annual ACM SIGACT Symposium (1975), 224-233.

Dobkin, D. and Lipton, R. On the Complexity of
Computations under Varying Sets of Primitives.
Yale Computer Science Research Report #42 (1975).

requires O(N log N) operations.

7. Prove that determining whether N linear inequal­

ities in two variables are consistent requires

6. Prove that finding the kernel of a simple polygon
4

5

Reingold, E.M. On the Optimality of Some Set Alg­
orithms. JACM 19,4(1972), 649-659.

Aho, A.V., Hopcroft, J.E. and Ullman, J.D. The
Design and Analysis of Computer Algorithms.
Addison-Wesley(1974), 470 pp.

Shamos, M.I. Problems in Computational Geometry.
Springer-Verlag, to appear.

Hoey, D. On Dete~ining Whether Line Segments in
the Plm~e are Disjoint. (1975) unpublished ms.

Sklansky, J. Measuring Concavity on a Rectangular
Mosaic. IEEE Trans. Comp. C-2l(1972), 1355-1364.

Pavlidis, T. Representation of Figures by Labeled
Graphs. Pattern Recognition 4(1972),5-17.

PatternPavlidis, T. Analysis of Set Patterns.
Recognition 1(1968),165-178.

7

6

8

9

10

O(N log N) time.

8. Prove that solving a linear program in two vari­

ables and N constraints requires O(N log N) time. It

is true that Theorem 9 proves that O(N log N) time is

required to form the feasible region, but this may not

be necessary to solve the linear prograh.

9. Find an algorithm for intersecting two three­

dimensional convex polyhedra, each having N vertices,

in less than 0(N2). Such an algorithm could be used

215


