
appeared in \New Results and New Trends in Computer Science", (H. Maurer, Ed.),Lecture Notes in Computer Science 555 (1991) 359-370.Smallest enclosing disks (balls and ellipsoids)Emo Welzl�Institut f�ur Informatik, Freie Universit�at BerlinArnimallee 2-6, W 1000 Berlin 33, Germanye-mail: emo@tcs.fu-berlin.deAbstractA simple randomized algorithm is developed which computes the smallest enclosingdisk of a �nite set of points in the plane in expected linear time. The algorithm isbased on Seidel's recent Linear Programming algorithm, and it can be generalized tocomputing smallest enclosing balls or ellipsoids of point sets in higher dimensions ina straightforward way. Experimental results of an implementation are presented.1 IntroductionDuring the recent years randomized algorithms have been developed for a host of problemsin computational geometry. Many of these algorithms are not only attractive because oftheir e�ciency, but also because of their appealing simplicity. This feature makes themeasier to access for non-experts in the �eld, and for actual implementation. One of thesesimple algorithms is Seidel's Linear Programming algorithm, [Sei1], which solves a LinearProgram with n constraints and d variables in expected O(n) time, provided d is constant;see also [DyF] and [Cla] for randomized LP algorithms, where Clarkson [Cla] o�ers the bestconstant in dependence on d. The expectation is not dependent on the input distribution;it averages over random choices (`coin
ips') made by the algorithm. In particular, thereis no input which may force the algorithm to perform badly (like a sorted sequence causesan implementation of Quicksort to take quadratic time).The goal of this paper is to show that the basic idea of Seidel's LP algorithm can beapplied to a broader class of optimization problems, including the computation of smallestvolume enclosing balls (or ellipsoids) of point sets in d-space in expected linear time for�xed d. The dependence of the constant in d is O(� �!), where � = d + 1 in the case ofballs, and � = (d+ 3)d=2 in the case of ellipsoids.A deterministic linear time algorithm for computing smallest enclosing balls has alreadybeen presented by Megiddo in [Meg]. However his method is not nearly as easy to describeand to implement, and the dependence of the constant in d falls far behind the one achievedby our method. In the plane, a simple O(n logn) algorithm can be found in [Sky]. There�Work partially supported by the ESPRIT II Basic Research Action Program of the EC under contractno. 3075 (project ALCOM) 1

are several other methods described in the literature, mostly without time analysis; seee.g. [D�oF], where three approaches are compared.The best previous method, due to Post [Pos], for computing smallest volume enclosingellipsoids has running time O(n2); see also [ST], [Tit].The presentation in Section 2 will concentrate on the case of smallest enclosing disksin the plane, but the extensions will be obvious as soon as the principle is revealed. InSection 3 we describe a few variations; perhaps most important, we provide a heuristicwhich leads to a signi�cant improvement of the performance of the procedure and allowsto compute the smallest enclosing ball for a set of 5000 points in 10-space, say, which isout of reach for the original method. Experimental results are presented.2 The algorithmGiven a set P of n points in the plane, let md(P) denote the closed disk of smallest radiuscontaining all points in P . We allow also P = ;, when md(P) = ;, and P = fpg, whenmd(P) = p.It is easy to see that such a disk is unique: Suppose D1 and D2 are smallest enclosingdisks of equal radius r with centers z1 and z2, respectively. If P � D1 and P � D2, thenP � D1 \D2, and D1 \D2 is contained in the disk D with center 12(z1 + z2) and radiuspr2 � a2, where a is half the distance between z1 and z2. Hence a = 0, since otherwiseD has a radius smaller than r contradicting the fact that D1 and D2 are smallest disks.Consequently, D1 and D2 coincide.We will need also the fact that md(P) is already determined by at most three points inP which lie on the boundary of md(P). That is, there is a subset S of P on the boundaryof md(P) such that jSj � 3 and md(P) = md(S); so if p 62 S, then md(P �fpg) = md(P),or equivalently, if md(P �fpg) 6= md(P) then p 2 S and p lies on the boundary of md(P).These are known facts; a somewhat more general version of these claims as we need ithere will be proved below.For a set P of n points, we compute md(P) in an incremental fashion, starting withthe empty set and adding the points in P one after another while maintaining the smallestenclosing disk of the points considered so far. Let P = fp1; p2; : : : ; png and suppose wehave already computed D = md(fp1; p2; : : : ; pig) for some i, 1 � i < n. If pi+1 2 D,then D is also the smallest enclosing disk of the �rst i+ 1 points, and we can proceed tothe next point. Otherwise we use the fact that pi+1 has to lie on the boundary of D0 =md(fp1; p2; : : : ; pi+1g) (as claimed above), and we compute D0 by a call to a procedureb minidisk(A; p) which computes the smallest disk enclosing A = fp1; p2; : : : ; pig withp = pi+1 on its boundary.The intuition is that the problem becomes easier as we �x a point p to be on theboundary of the disk, since this can be seen as a decrease in the degrees of freedom wehave. So, for the time being, let us assume that b minidisk exists already. Then theabove algorithm can be formulated as a recursive procedure as follows.2

function procedure minidisk(P); comment: returns md(P)if P = ; thenD := ;elsechoose p 2 P;D := minidisk(P � fpg);if p 62 D thenD := b minidisk(P � fpg; p);return D;Before we provide a description of b minidisk(A; p), let us assume that it needs cjAjsteps to compute its output. What is the time complexity of our algorithm? We choosep 2 P randomly, each point in P with equal probability 1=jP j. Let t(n) be the expectednumber of steps taken by minidisk(P) for jP j = n. Then t obeyst(n) � 1 + t(n� 1) + Prob(p 62 md(P � fpg)) � c (n� 1);where `1' accounts for the constant work required, and the two other terms refer to theexpected work caused by the calls to minidisk and b minidisk, respectively. There are atmost three points p in P such that md(P) 6= md(P�fpg); for all other points we have thatp 2 md(P � fpg) and so Prob(p 62 md(P � fpg)) � 3n . We conclude that t(n) � (1+ 3c)n.The algorithm for b minidisk(A; p) follows roughly the same lines as minidisk pro-vided above, but now we need as a subroutine a procedure that computes the smallestdisk enclosing a set of points with two speci�ed points on its boundary, and so on. Beforewe give a full description of these procedures, we introduce a notion and prove a basiclemma.For P and R �nite sets of points in the plane, let b md(P;R) be the closed disk of small-est radius which contains all points in P with all points in R on its boundary. Obviously,b md(P; ;) = md(P), and b md(P;R) may be unde�ned as soon as R is nonempty.Lemma 1 Let P and R be �nite point sets in the plane, P nonempty, and let p be a pointin P .(i) If there exists a disk containing P with R on its boundary, then b md(P;R) is well-de�ned (unique).(ii) If p 62 b md(P � fpg; R) then p lies on the boundary of b md(P;R), provided it exists,i.e., b md(P;R) = b md(P � fpg; R[fpg).(iii) If b md(P;R) exists, there is a set S of at most maxf0; 3�jRjg points in P such thatb md(P;R) = b md(S;R).Proof. We prepare the proof with a de�nition of a convex combination of two disks.A closed disk with center z and radius r > 0 can be written as the set of points xsatisfying f(x) � 1 for f(x) = 1r2 kx � zk2; the points on the boundary are those whichsatisfy equality. Let D0 and D1 be disks with de�ning functions f0 and f1, respectively.For each �, 0 � � � 1, the set of points x satisfyingf�(x) = (1� �)f0(x) + �f1(x) � 1is again a disk D�; if D0 and D1 are distinct, then, for 0 < � < 1, the radius of D� issmaller than the maximum of the radii of D0 and D1. These facts can be checked by3

elementary calculations. Moreover, it can be directly read o� the de�nition of f� thatD� � D0 \D1 and that the boundary of D� contains the intersection of the boundariesof D0 and D1.For a proof of (i), let us �rst observe that the in�mum of all radii which allow closeddisks containing P with R on the boundary can actually be realized by a closed disk.Suppose now that there are two distinct disks D0 and D1 which attain this minimum.Then D�, de�ned for � = 12 as above, is also a disk containing P with R on its boundary,but with a smaller radius; contradiction.The proof of (ii) assumes �rst that p 62 D0 = b md(P � fpg; R) and p does not lie onthe boundary of D1 = b md(P;R). As D� continuously deforms D0 into D1 as � goesfrom 0 to 1, there is a value �0 < 1 for which p lies on the boundary of D�0. This diskcovers P , has p on its boundary (in addition to R), and it has a radius smaller than theone of D1; contradiction.Finally let us settle (iii). If jRj � 3, then b md(P;R) = b md(;; R), providedb md(P;R) exists. So let us assume that R contains two points at most. Note that(ii) shows already, that b md(P;R) = b md(S;R), for S the set of points in P which lieon the boundary of b md(P;R). So if the points in P [R are in general position, i.e., nofour cocircular, then we are done. Otherwise perform an in�nitesimal perturbation on thepoints in P , so that for the resulting point set P 0, we have P 0 [R in general position (thisis possible, since jRj � 2). Then the preimages of the at most 3 � jRj points S 0 on theboundary of b md(P 0; R) provide the set S as required (details omitted).Note that in general the set S is not unique. The important implication of (iii) isthat there are at most maxf0; 3� jRjg points in P for which p 62 b md(P � fpg; R). Thereader may �nd a shorter proof of the lemma (perhaps less `notational'), but the intentionwas to allow an almost verbatim generalization to balls in higher dimensions (and even toellipsoids).Point (ii) of the lemma suggests how to compute b md(P;R). If P = ;, the problemis easy, and we compute b md(;; R) directly. Otherwise we choose a random p 2 P andcompute D = b md(P�fpg; R). If p 2 D, then b md(P;R) = D; otherwise, b md(P;R) =b md(P�fpg; R[fpg). In a �rst reading of the following procedure, the reader is supposedto neglect the bracketed part `or jRj = 3'; but `D defined and' should be observed.function procedure B MINIDISK(P;R); comment: returns b md(P;R)if P = ; [or jRj = 3] thenD := b md(;; R)elsechoose random p 2 P;D := B MINIDISK(P � fpg; R);if [D defined and] p 62 D thenD := B MINIDISK(P � fpg; R[fpg);return D;Our original problem of computing md(P) can be solved by:function procedure MINIDISK(P); comment: returns md(P)return B MINIDISK(P; ;);Note that since b md(P; ;) is always de�ned, in the whole computation initiated byMINIDISK no call to B MINIDISK returns an unde�ned result. What does that mean for4

the case when we call B MINIDISK with a boundary set R of cardinality 3? The disk isalready determined by these points, so the only thing that remains to be done is to checkwhether all points to be covered are in this disk. If the test fails for a point p, we makea call to B MINIDISK with boundary set R [fpg | four points which are not cocircular| and the returned value will be unde�ned. This cannot happen in a computation ofb md(P; ;). So there was no reason to check!The conclusion is that if we use procedure B MINIDISK as a subroutine of MINIDISKonly, then we can speed it up by inserting the bracketed part `or jRj = 3', and leave outthe test for `D defined'.It remains to analyze the procedure MINIDISK considering the version of B MINIDISKusing the shortcut for jRj = 3. The analysis is basically identical to the one given in [Sei1],and it is an instance of backwards analysis of which many examples can be found in [Sei2].We want to count the expected number how often we execute the test `p 62 D'. The actualnumber of steps will be a constant multiple of this value (as long as P is nonempty). Tothis end, for 0 � j � 3, let tj(n) be this number for a call B MINIDISK(P;R) with jP j = nand jRj = 3� j. Then observe that t0(n) = 0; this might be irritating, but the constantamount of work needed in this case is accounted for by the test which lead to the respectivecall. Obviously, also tj(0) = 0.For j > 0 and n > 0, we do one call B MINIDISK(P � fpg; R) | p a randompoint in P |, one test `p 62 D', and one call B MINIDISK(P � fpg; R [fpg), providedb md(P;R) 6= b md(P � fpg; R). The probability that the latter happens is at most jnas it follows from Lemma 1(iii): there is a set S of at most 3 � jRj = j points in P withb md(P;R) = b md(S;R); so out of the n choices we have for p, at most j will cause thissecond subroutine call. Note that not even all points p in such a set S need to satisfyb md(P;R) 6= b md(P �fpg; R), and actually this probability may be as small as 0 (evenwhen R is empty), e.g., if the points are the vertices of a regular 6-gon.We obtain the recursiontj(n) � tj(n� 1) + 1 + jntj�1(n� 1); (1)and so t1(n) � n, t2(n) � 3n, and t3(n) � 10n. `10' is the constant observed for point setsuniformly distributed in the unit disk (see experimental results in Section 3).Theorem 2 MINIDISK computes the smallest enclosing disk of a set of n points in theplane in expected O(n) time.3 Variations, extensionsAs indicated in the Introduction, we now can easily extend the algorithm to problems alsoin higher dimensions, as smallest enclosing balls and ellipsoids.Balls. The algorithm of the previous section may be used for computing the ball ofsmallest radius enclosing a set P of n points in IRd. The only di�erence (except forperhaps renaming the procedure to MINIBALL) is that the constant 3 is replaced by d+ 1,since a sphere in IRd is determined by d + 1 points. Of course, we have to rede�ne alsob md(P;R) in the obvious way. Lemma 1 generalizes with `3' replaced by `d+1'; actually,its proof can be taken over almost verbatim, see also [Jun].5

The recursion (1) is still valid, with the di�erence that the running time is now deter-mined by t�(n) (instead of t3(n)) for � = d+1. Note that a test for a point in a ball takesnow O(�) arithmetic operations. A simple proof by induction demonstratestj(n) � 0@ jXk=1 1k!1A j! n = b(e� 1)j!cnfor j � 1. The bound can be shown to be tight (up to low order terms), e.g. for sets ofn points in IRd, with buckets of n=(d+ 1) points clustered around the d + 1 vertices of aregular simplex.Leaving the veri�cation of our claims to the reader (perhaps via a second reading ofSection 2), we state our result.Theorem 3 The smallest enclosing ball of a set of n points in d-space can be computedin expected time O(��!n), � = d+ 1, by a randomized algorithm.Ellipsoids. An ellipsoid is the a�ne image of the unit ball centered at the origin. Sowe can de�ne such an ellipsoid in IRd as the set of points x 2 IRd satisfying f(x) � 1,f(x) = (x� z)TA(x� z), where z is the center of the ellipsoid, and A is a positive de�nitematrix. Note that f does not change, if we vary a pair of elements symmetric along themain diagonal, as long as its sum remains the same. Consequently, we may as well assumethat A is symmetric. This leads to the known fact that an ellipsoid is determined by(d+ 3)d=2 points on its boundary.For a point set P in IRd we de�ne me(P) as the ellipsoid in the a�ne hull of P whichcontains all points in P , and has smallest volume. Unicity of me(P) was proven in [Beh],[DLL]. Again the algorithm from the previous section can be adapted to compute thesmallest ellipsoid enclosing a point set in a straightforward way. Now the `parameter 3'has to be replaced by � = (d+ 3)d=2. Lemma 1 also generalizes, although a few facts inits proof are somewhat more tedious to verify (see also [Pos], [Juh]).Theorem 4 The smallest volume enclosing ellipsoid of a set of n points in d-space canbe computed in expected time O(��!n), � = (d+ 3)d=2, by a randomized algorithm.It is perhaps worthwhile to mention here that the smallest volume enclosing ellipsoidof a convex polytope P | also called L�owner{John ellipsoid | has the property, that if itis scaled by a factor 1d about its center, then it is contained in P , [Joh], [Lei]. This showsthat the L�owner{John ellipsoid approximates a polytope P with some guaranteed quality,which makes it attractive for a bounding `box'{heuristic, e.g. in motion planning. Smallestenclosing ellipsoids are also used in statistics for peeling o� outliers in multidimensionaldata, [Bar].There are a number of other problems which can be solved with the method, as e.g.computing the largest ball or ellipsoid in the intersection of halfspaces bounded by hy-perplanes, or convex programming in general. The main ingredients needed are a notioncorresponding to `lies on the boundary', and an analogue of Lemma 1.Expensive operations. When it comes to actually implementing the algorithm, mostof the e�ort goes to the solution of the basic case, i.e., the realization of the statement`D := b md(;; R)'; in particular, in higher dimensions, and already for ellipses in the6

plane, this is a nontrivial task (see, e.g. [Tit], [ST]). Since the actual execution of thisstatement is much more costly than a simple containment test, we are interested howoften we have to go through this basic step. Let us consider the case of computing thesmallest enclosing ball in d-space. We denote by sj(n) the expected number of executionsof `D := b md(;; R)' for a call where there are n points to cover and ��j points are forcedon the boundary, � = d + 1. Then s0(n) = 1, sj(0) = 1, and for all j > 0 and n > 0, wehave sj(n) � sj(n� 1) + jnsj�1(n� 1): (2)We claim that sj(n) � (1 +Hn)j ; Hn = 1 + 12 + � � �+ 1n:This is obviously true for j = 0 and for n = 0 (with the convention H0 = 0). For j > 0and n > 0 the claim follows from the induction stepsj(n) � (1 +Hn�1)j + jn (1 +Hn�1)j�1� jXk=0 jk!(1 +Hn�1)j�k(1n)k = (1 +Hn�1 + 1n)j = (1 +Hn)j ;the �rst inequality uses (2) and the induction hypothesis, and the second inequality holdssince the left hand side represents the �rst two summands of the sum on the right handside. Since Hn � 1 + lnn for n � 1, we conclude that the expected number of executionsof the basic case is bounded by (2 + lnn)�.One permutation su�ces. We investigate how many random choices our algorithmneeds and show that it su�ces to choose one random permutation of 1 : : :n in the be-ginning of the computation. The following considerations | although technical | willfurther simplify the algorithm and lead us to a heuristic which considerably speeds up thealgorithm in practice | in particular, in higher dimensions.Let us, in a �rst step, change the view of our procedure B MINIDISK(P;R) by assumingthat the argument P is actually a (randomly) ordered sequence of points; the `else'{partof procedure B MINIDISK is reformulated as follows....choose last p in P;D := B MINIDISK(P � fpg; R);if p 62 D thenchoose a random permutation � of 1 : : : (jP j � 1);D := B MINIDISK(�(P � fpg); R[fpg);...The operation `P �fpg' removes the element p in the sequence P and leaves the orderof the remaining elements unchanged. We let MINIDISK also choose a random permutationof the points before it calls B MINIDISK: 7

function procedure MINIDISK(P); comment: returns md(P)choose a random permutation � of 1 : : : jP j;return B MINIDISK(�(P); ;);It is clear that nothing changes in the expected running time: choosing the last elementin a random order of the elements in a set is the same as choosing a random element in theset. We want to argue that if the only random permutation is the one chosen in MINIDISK,still nothing changes in the expected running time.For a sequence P and a set R of points in the plane, jRj � 3, let T (P;R) be theexpected running time of the call B MINIDISK(P;R) in the formulation above. Then theexpected running time of MINIDISK(P) ist(P) = 1n! X�2Sn T (�(P); ;);for n = jP j and Sn the set of all permutations of 1 : : :n.If P is nonempty and p is the last point in �(P), thenT (�(P); R) = T (�(P)� fpg; R) + 1+ 1(n� 1)! X�2Sn�1 �(p 62 b md(P � fpg; R))T (�(P � fpg); R[fpg);where �(�) is 1, if its argument is true, and 0, otherwise. We gett(P) = 1n!Pp2P X�2Snp last in �(P) T (�(P); ;)= 1n!Pp2P X�2Sn�1 [T (�(P � fpg); ;) + 1+ 1(n� 1)! X�2Sn�1 �(p 62 b md(P � fpg; ;))T(�(P � fpg); fpg)]= 1n!Pp2P [X�2Sn�1 T (�(P � fpg); ;)+ (n� 1)!+ X�2Sn�1 �(p 62 b md(P � fpg; ;))T(�(P � fpg); fpg)]= 1n!Pp2P X�2Sn�1 [T (�(P � fpg); ;)+ 1+ �(p 62 b md(P � fpg; ;))T (�(P � fpg); fpg)]:The last expression in this derivation represents the expected time in case B MINIDISK(P;R)does not choose a new permutation for its calls if R = ;, and similar transformations showthe fact for R arbitrary.Consequently, the revised version of MINIDISK has the same expected running timein terms of the number of containment queries, if it uses B MINIDISK with the following`else'{part. 8

...choose last p in P;D := B MINIDISK(P � fpg; R);if p 62 D thenD := B MINIDISK(P � fpg; R[fpg);...The actual running time of the procedure decreases, of course, since we save the gen-eration of random numbers except for those needed for the �rst permutation.A move-to-front heuristic. Considering the just developed one-permutation-version,what would be a good permutation to begin with? Of course, if the �rst elements are thosewhich determine the solution, then we have the optimal situation, and the algorithmwill not make more than n + O(1) containment queries. Somewhat less ambitious, wewould like to have points early in the sequence which determine a disk with few pointsoutside. Although we are not given such a sequence, we can gradually update the sequenceduring the computation by moving points to the front of the sequence which we considerimportant. Intuitively, these are the points p which satisfy the test `p 62 D'. This leadsus to the �nal iteration of our algorithm with the move-to-front heuristic implemented.Here we assume that the point set is stored in a global sequence, preferably in a linkedlist which enables us to move points to the front in constant time.function procedure MTFDISK(P); comment: returns md(P)choose a random permutation � of 1 : : : jP j;return B MTFDISK(�(P); ;);function procedure B MTFDISK(P;R); comment: returns b md(P;R)if P = ; or jRj = 3 thenD := b md(;; R)elsechoose last p in P;D := B MTFDISK(P � fpg; R);if p 62 D thenD := B MTFDISK(P � fpg; R[fpg);move p to the first position;return D;At this point we do not know how to analyze MTFDISK (see Discussion), but the im-provement in the performance in experiments is striking.Experimental results. The one-permutation- and the move-to-front-versions of thealgorithm have been implemented for balls in arbitrary dimensions, and for ellipses inthe plane. Table 1 displays the number of containment queries divided by n (number ofpoints), both the average and the maximum over 100 runs (� = only 40 runs) for pointsrandomly chosen in the unit ball (indicated by `
') and in the unit cube (indicated by`2'). The MINIBALL procedure reaches its limits in 5 dimensions, while MTFBALL allows tocompute smallest enclosing balls for 5000 points in 10 dimension. Another aspect we wantto point out is the high variance of MINIBALL compared to MTFBALL which we observed in9

Smallest enclosing ball for n points in d dimensions {number of containment queries divided by n, average and maximum.
MINIBALL
MTFBALL 2MINIBALL 2MTFBALLd b(e� 1)(d+ 1)!c n av. max. av. max. av. max. av. max.1000 9.8 30 4.2 8.1 7.5 18 3.7 6.82 10 5000 10.5 26 4.1 8.7 7.7 18 3.5 8.01000 33 101 5.6 13 22 114 4.6 10.23 41 5000 36 123 5.6 12 21 82 4.9 111000 627 2748 9.5 17 265 1226 7.7 165 1237 5000 �944 �2367 8.9 16 360 2277 7.0 141000 { { 59 85 { { 19 3910 6:7 � 107 5000 { { �30 �37 { { 15 24Smallest enclosing ellipse for n points in the plane {number of containment queries divided by n, average and maximum.
MINIELL
MTFELL 2MINIELL 2MTFELLb(e� 1)5!c n av. max. av. max. av. max. av. max.1000 145 441 7.2 13 71 306 5.4 9.4206 5000 193 708 6.8 13 70 304 5.0 9.010000 �172 �586 7.0 13 �75 �255 5.2 9.1Table 1: Number of containment queries for one-permutation-version (MINIBALL andMINIELL) and move-to-front-version (MTFBALL and MTFELL).our experiments.Although little attempts have been made to tune the performance of the program, weprovide in Table 2 the average runtime on a personal computer (80386, 20MHz). It isinteresting to observe the `sublinear' behaviour of the runtime for ellipses, which can beexplained by the fact that much of the time is spent for the basic case, which grows onlypolylogarithmically in n, as we have shown. For example, for MTFELL, the average numberof executions of the basic case is 514, 725, and 816 for n = 1000, 5000, and 10000 randompoints, respectively, in the unit disk. For MINIELL the corresponding numbers are 11700,37000, and 50000, respectively.4 DiscussionWe have described algorithms for the computation of smallest enclosing balls and ellipsoids:a simple algorithm with provably linear running time, and a heuristic which appears to runfast in practice. The move-to-front heuristic has been developed in an interplay betweenanalyzing several features of the original algorithm on the one hand, and phenomenaobserved in experiments on the other hand.Clarkson's algorithm for Linear Programming, [Cla], can also be turned in an algorithmfor computing smallest enclosing balls and ellipsoids, and the dependence of the constant10

Smallest enclosing ball for 5000 pointsin d dimensions { average runtimed
MINIBALL
MTFBALL 2MINIBALL 2MTFBALL2 3.3 sec 1.3 sec 2.4 sec 1.1 sec3 23 sec 2.4 sec 14 sec 2.1 sec5 35 min 18 sec 8 min 10 sec10 { �20 min { 4 minSmallest enclosing ellipses for n pointsin the plane { average runtimen
MINIELL
MTFELL 2MINIELL 2MTFELL1000 5 min 7.8 sec 2 min 3 sec5000 15 min 19 sec 5 min 10 s10000 �22 min 31 sec �8.5 min 17 sTable 2: Average runtime on a PC (80386, 20 MHz).in the dimension is better than the one for Seidel's method we have used here; however,it is not as simple. Nevertheless, it would be interesting to compare implementations ofseveral methods including Clarkson's or the ones described in [D�oF], and we plan to pursuethis line in the future.An interesting open problem is the analysis of the move-to-front heuristic. There are�rst steps in this direction in [SW], where we show that a variant closely related to move-to-front has expected running time O(�2�n), with � = d+ 1 for balls; actually, this yieldsa new `combinatorial bound' also for Linear Programming for certain values of d and n.In addition, the paper o�ers also a formal framework for the class of problems which canbe solved by these methods.Acknowledgements. The author thanks Raimund Seidel for several discussions on thesubject. Special thanks also to Bernd G�artner for implementing the algorithms, and foraccepting my ongoing requests for new variants of the algorithm and new test data.References[Bar] V. Barnett, The ordering of multivariate data, J. Roy. Statist. Soc. Ser. A 139 (176)318{354[Beh] F. Behrend, �Uber die kleinste umbeschriebene und die gr�o�te einbeschriebene Ellipseeines konvexen Bereiches, Math. Ann. 115 (1938) 379{411[Cla] K. L. Clarkson, Las Vegas algorithms for linear and integer programming when thedimension is small, manuscript (1989)[DLL] L. Danzer, D. Laugwitz and H. Lenz, �Uber das L�ownersche Ellipsoid und sein Analogonunter den einem Eik�orper eingeschriebenen Ellipsoiden, Arch. Math. 8 (1957) 214{21911

[DyF] M. E. Dyer and A. M. Frieze, A randomized algorithm for �xed-dimensional linear pro-gramming, manuscript (1987)[D�oF] J. D�or
inger and W. Forst, Approximation durch Kreise: Verfahren zur Berechnung derH�ullkugel, manuscript (1991)[Joh] F. John, Extremum problems with inequalities as subsidiary conditions, in CourantAnniversary Volume (1948) 187{204, New York[Juh] F. Juhnke, L�owner ellipsoids via semiin�nite optimization and (quasi-) convexity theory,Technische Universit�at Magdeburg, Sektion Mathematik, Report 4/90 (1990)[Jun] H. Jung, �Uber die kleinste Kugel, die eine r�aumliche Figur einschlie�t, J. Reine Angew.Math. 123 (1901) 241{257[Lei] K. Leichtwei�, �Uber die a�ne Exzentrizit�at konvexer K�orper, Arch. Math. 10 (1959)187{199[Meg] N. Megiddo, Linear-time algorithms for linear programming in IR3 and related problems,SIAM J. Comput. 12 (1983) 759{776[Pos] M. J. Post, Minimum spanning ellipsoids, in \Proc. 16th Annual ACM Symposium onTheory of Computing" (1984) 108{116[Sei1] R. Seidel, Linear programming and convex hulls made easy, in \Proc. 6th Annual ACMSymposium on Computational Geometry" (1990) 211{215[Sei2] R. Seidel, Backwards analysis of randomized algorithms, manuscript (1991)[ST] B. W. Silverman and D. M. Titterington, Minimum covering ellipses, SIAM J. Sci. Stat.Comput. 1 (1980) 401 { 409[SW] M. Sharir and E. Welzl, A new combinatorial bound for linear programming and relatedproblems, in preparation (1991)[Sky] S. Skyum, A simple algorithm for computing the smallest circle, Aarhus University,Report DAIMI PB-314[Tit] D. M. Titterington, Estimation of correlation coe�cients by ellipsoidal trimming, Appl.Statist. 27 (1978) 227{234
12

