APPEARED IN “New Results and New Trends in Computer Science”, (H. Maurer, Ed.),
Lecture Notes in Computer Science 555 (1991) 359-370.

Smallest enclosing disks (balls and ellipsoids)

EvMo WELZL*

Institut fiur Informatik, Freie Universitat Berlin
Arnimallee 2-6, W 1000 Berlin 33, Germany

e-mail: emo@tcs.fu-berlin.de

Abstract

A simple randomized algorithm is developed which computes the smallest enclosing
disk of a finite set of points in the plane in expected linear time. The algorithm is
based on Seidel’s recent Linear Programming algorithm, and it can be generalized to
computing smallest enclosing balls or ellipsoids of point sets in higher dimensions in
a straightforward way. Experimental results of an implementation are presented.

1 Introduction

During the recent years randomized algorithms have been developed for a host of problems
in computational geometry. Many of these algorithms are not only attractive because of
their efficiency, but also because of their appealing simplicity. This feature makes them
easier to access for non-experts in the field, and for actual implementation. One of these
simple algorithms is Seidel’s Linear Programming algorithm, [Seil], which solves a Linear
Program with n constraints and d variables in expected O(n) time, provided d is constant;
see also [DyF] and [Cla] for randomized LP algorithms, where Clarkson [Cla] offers the best
constant in dependence on d. The expectation is not dependent on the input distribution;
it averages over random choices (‘coin flips’) made by the algorithm. In particular, there
is no input which may force the algorithm to perform badly (like a sorted sequence causes
an implementation of Quicksort to take quadratic time).

The goal of this paper is to show that the basic idea of Seidel’s LP algorithm can be
applied to a broader class of optimization problems, including the computation of smallest
volume enclosing balls (or ellipsoids) of point sets in d-space in expected linear time for
fixed d. The dependence of the constant in d is O(646!), where § = d + 1 in the case of
balls, and 6 = (d 4 3)d/2 in the case of ellipsoids.

A deterministic linear time algorithm for computing smallest enclosing balls has already
been presented by Megiddo in [Meg]. However his method is not nearly as easy to describe
and to implement, and the dependence of the constant in d falls far behind the one achieved
by our method. In the plane, a simple O(nlogn) algorithm can be found in [Sky]. There

*Work partially supported by the ESPRIT II Basic Research Action Program of the EC under contract
no. 3075 (project ALCOM)

are several other methods described in the literature, mostly without time analysis; see
e.g. [D6F], where three approaches are compared.

The best previous method, due to Post [Pos], for computing smallest volume enclosing
ellipsoids has running time O(n?); see also [ST], [Tit].

The presentation in Section 2 will concentrate on the case of smallest enclosing disks
in the plane, but the extensions will be obvious as soon as the principle is revealed. In
Section 3 we describe a few variations; perhaps most important, we provide a heuristic
which leads to a significant improvement of the performance of the procedure and allows
to compute the smallest enclosing ball for a set of 5000 points in 10-space, say, which is
out of reach for the original method. Experimental results are presented.

2 The algorithm

Given a set P of n points in the plane, let md(P) denote the closed disk of smallest radius
containing all points in P. We allow also P = @, when md(P) = 0, and P = {p}, when
md(P) = p.

It is easy to see that such a disk is unique: Suppose Dy and Dy are smallest enclosing
disks of equal radius r with centers z; and z9, respectively. If P C Dy and P C Dy, then
P C DyN Dy, and Dy N Dy is contained in the disk D with center %(21 + z2) and radius
Vr? —a?, where a is half the distance between z; and z3. Hence a = 0, since otherwise
D has a radius smaller than r contradicting the fact that Dy and Dy are smallest disks.
Consequently, Dy and D coincide.

We will need also the fact that md(P) is already determined by at most three points in
P which lie on the boundary of md(P). That is, there is a subset S of P on the boundary
of md(P) such that |S| < 3 and md(P) = md(9);soif p ¢ 9, then md(P —{p}) = md(P),
or equivalently, if md(P —{p}) # md(P) then p € S and p lies on the boundary of md(P).
These are known facts; a somewhat more general version of these claims as we need it
here will be proved below.

For a set P of n points, we compute md(P) in an incremental fashion, starting with
the empty set and adding the points in P one after another while maintaining the smallest
enclosing disk of the points considered so far. Let P = {py,p2,...,p,} and suppose we
have already computed D = md({p1,p2,...,pi}) for some 7, 1 < i < n. If pjy; € D,
then D is also the smallest enclosing disk of the first ¢ + 1 points, and we can proceed to
the next point. Otherwise we use the fact that p;1q has to lie on the boundary of D' =
md ({p1, p2, .-, Pi+1}) (as claimed above), and we compute D’ by a call to a procedure
bminidisk(A4, p) which computes the smallest disk enclosing A = {p1,pa,...,p;} with
p = p;41 on its boundary.

The intuition is that the problem becomes easier as we fix a point p to be on the
boundary of the disk, since this can be seen as a decrease in the degrees of freedom we
have. So, for the time being, let us assume that b.minidisk exists already. Then the
above algorithm can be formulated as a recursive procedure as follows.

function procedure minidisk(P); comment: returns md(P)
if P=1{ then

D:=1
else
choose p € P;

D :=minidisk(P — {p});
if p & D then
D :=bminidisk(P — {p},p);
return D;

Before we provide a description of bminidisk(A4, p), let us assume that it needs c|A|
steps to compute its output. What is the time complexity of our algorithm? We choose
p € P randomly, each point in P with equal probability 1/|P|. Let t(n) be the expected
number of steps taken by minidisk(P) for |P| = n. Then ¢t obeys

{(n) < L4 t(n — 1)+ Prob(p & md(P - {p})) - ¢ (n - 1),

where ‘17 accounts for the constant work required, and the two other terms refer to the
expected work caused by the calls tominidisk and b_minidisk, respectively. There are at
most three points p in P such that md(P) # md (P —{p}); for all other points we have that
p € md(P — {p}) and so Prob(p ¢ md(P — {p})) < 2. We conclude that ¢(n) < (1+ 3c)n.

The algorithm for bminidisk(A4, p) follows roughly the same lines as minidisk pro-
vided above, but now we need as a subroutine a procedure that computes the smallest
disk enclosing a set of points with two specified points on its boundary, and so on. Before
we give a full description of these procedures, we introduce a notion and prove a basic
lemma.

For P and R finite sets of points in the plane, let b_md (P, R) be the closed disk of small-
est radius which contains all points in P with all points in R on its boundary. Obviously,
b_md(P, () = md(P), and b_md (P, R) may be undefined as soon as R is nonempty.

Lemma 1 Let P and R be finite point sets in the plane, P nonempty, and let p be a point
n P.

(i) If there exists a disk containing P with R on its boundary, then b_md(P, R) is well-
defined (unique).

(ii) If p € bomd(P — {p}, R) then p lies on the boundary of b_md (P, R), provided it exists,
i.e., bomd(P, R) = b_md(P — {p}, RU {p}).

(iii) If bomd (P, R) exists, there is a set S of at most max{0,3 — |R|} points in P such that
b_md(P, R) = bomd(S, R).

Proof. We prepare the proof with a definition of a convex combination of two disks.
A closed disk with center z and radius » > 0 can be written as the set of points x
satisfying f(z) < 1 for f(z) = %[z — 2||?; the points on the boundary are those which

satisfy equality. Let Dg and D be disks with defining functions fy and fi, respectively.
For each A, 0 < A < 1, the set of points z satisfying

)= 1= folz)+ Afi(z) <1

is again a disk Dj; if Dy and Dy are distinct, then, for 0 < A < 1, the radius of D) is
smaller than the maximum of the radii of Dy and D;. These facts can be checked by

elementary calculations. Moreover, it can be directly read off the definition of f) that
Dy D Dogn Dy and that the boundary of Dy contains the intersection of the boundaries
of Dy and D;.

For a proof of (i), let us first observe that the infimum of all radii which allow closed
disks containing P with R on the boundary can actually be realized by a closed disk.

Suppose now that there are two distinct disks Dy and Dy which attain this minimum.
Then D), defined for A = % as above, is also a disk containing P with R on its boundary,
but with a smaller radius; contradiction.

The proof of (ii) assumes first that p € Do = b_md(P — {p}, R) and p does not lie on
the boundary of Dy = b_md(P, R). As D, continuously deforms Dy into Dy as A goes
from 0 to 1, there is a value A’ < 1 for which p lies on the boundary of D,/ This disk
covers P, has p on its boundary (in addition to R), and it has a radius smaller than the
one of Dy; contradiction.

Finally let us settle (iii). If |R| > 3, then b.md(P,R) = b.md((}, R), provided
b_md (P, R) exists. So let us assume that R contains two points at most. Note that
(ii) shows already, that b_md(P, R) = b_md (S, R), for S the set of points in P which lie
on the boundary of b_md (P, R). So if the points in P U R are in general position, i.e., no
four cocircular, then we are done. Otherwise perform an infinitesimal perturbation on the
points in P, so that for the resulting point set P/, we have P’ U R in general position (this
is possible, since |R| < 2). Then the preimages of the at most 3 — |R| points S’ on the
boundary of b_md(F’, R) provide the set S as required (details omitted).

Note that in general the set S is not unique. The important implication of (iii) is
that there are at most max{0,3 — |R|} points in P for which p &€ b_md(P — {p}, R). The
reader may find a shorter proof of the lemma (perhaps less ‘notational’), but the intention
was to allow an almost verbatim generalization to balls in higher dimensions (and even to
ellipsoids).

Point (ii) of the lemma suggests how to compute b_md(P, R). If P = (), the problem
is easy, and we compute b_md(@, R) directly. Otherwise we choose a random p € P and
compute D = b_md(P—{p}, R). If p € D, then b.md(P, R) = D; otherwise, b_md(P, R) =
b_md(P—{p}, RU{p}). In a first reading of the following procedure, the reader is supposed
to neglect the bracketed part ‘or |R|=3"; but ‘D defined and’ should be observed.

function procedure B_MINIDISK(P, R); comment: returns b.md(P, R)
if P=0 [or |R|=3] then
D :=b_md(#, R)
else
choose random p € P;
D := BMINIDISK(P — {p}, R);
if [D defined and] p¢& D then
D :=BMINIDISK(P — {p}, RU{p});

return D;
Our original problem of computing md(FP) can be solved by:

function procedure MINIDISK(P); comment: returns md(P)
return BMINIDISK(P,0);

Note that since b_md(P, () is always defined, in the whole computation initiated by
MINIDISK no call to BIMINIDISK returns an undefined result. What does that mean for

the case when we call B MINIDISK with a boundary set R of cardinality 37 The disk is
already determined by these points, so the only thing that remains to be done is to check
whether all points to be covered are in this disk. If the test fails for a point p, we make
a call to BLMINIDISK with boundary set R U {p} — four points which are not cocircular
— and the returned value will be undefined. This cannot happen in a computation of
b_md(P, (). So there was no reason to check!

The conclusion is that if we use procedure B_MINIDISK as a subroutine of MINIDISK
only, then we can speed it up by inserting the bracketed part ‘or |R| = 3’, and leave out
the test for ‘D defined’.

It remains to analyze the procedure MINIDISK considering the version of B MINIDISK
using the shortcut for |R| = 3. The analysis is basically identical to the one given in [Seil],
and it is an instance of backwards analysis of which many examples can be found in [Sei2].
We want to count the expected number how often we execute the test ‘p ¢ D’. The actual
number of steps will be a constant multiple of this value (as long as P is nonempty). To
this end, for 0 < j < 3, let ¢;(n) be this number for a call BMINIDISK(P, R) with |P| =n
and |R| = 3 — j. Then observe that to(n) = 0; this might be irritating, but the constant
amount of work needed in this case is accounted for by the test which lead to the respective
call. Obviously, also ¢;(0) = 0.

For j > 0 and n > 0, we do one call BMINIDISK(P — {p}, R) — p a random
point in P —, one test ‘p ¢ D’, and one call BMINIDISK(P — {p}, RU {p}), provided
b_md(P, R) # b_md(P — {p}, R). The probability that the latter happens is at most %
as it follows from Lemma 1(iii): there is a set S of at most 3 — |R| = j points in P with
b_md(P, R) = b_md(S, R); so out of the n choices we have for p, at most j will cause this
second subroutine call. Note that not even all points p in such a set S need to satisfy
b_md(P, R) # b_md(P — {p}, R), and actually this probability may be as small as 0 (even
when R is empty), e.g., if the points are the vertices of a regular 6-gon.

We obtain the recursion

£(n) < tin =) 4 14 Lty - 1), 1)

and so ty(n) < n, t3(n) < 3n, and t3(n) < 10n. ‘107 is the constant observed for point sets
uniformly distributed in the unit disk (see experimental results in Section 3).

Theorem 2 MINIDISK computes the smallest enclosing disk of a set of n points in the
plane in expected O(n) time.

3 Variations, extensions

As indicated in the Introduction, we now can easily extend the algorithm to problems also
in higher dimensions, as smallest enclosing balls and ellipsoids.

Balls. The algorithm of the previous section may be used for computing the ball of
smallest radius enclosing a set P of n points in IR?. The only difference (except for
perhaps renaming the procedure to MINIBALL) is that the constant 3 is replaced by d + 1,
since a sphere in IR? is determined by d + 1 points. Of course, we have to redefine also
b_md(P, R) in the obvious way. Lemma 1 generalizes with ‘3’ replaced by ‘d+ 1’; actually,
its proof can be taken over almost verbatim, see also [Jun].

The recursion (1) is still valid, with the difference that the running time is now deter-
mined by ts5(n) (instead of t3(n)) for 6 = d + 1. Note that a test for a point in a ball takes
now O(d) arithmetic operations. A simple proof by induction demonstrates

1) < (2 %) jin=1(e—1)j!n

k=1 """

for 7 > 1. The bound can be shown to be tight (up to low order terms), e.g. for sets of
n points in IR, with buckets of n/(d 4 1) points clustered around the d 4 1 vertices of a
regular simplex.

Leaving the verification of our claims to the reader (perhaps via a second reading of
Section 2), we state our result.

Theorem 3 The smallest enclosing ball of a set of n points in d-space can be computed
in expected time O(88!n), § =d+ 1, by a randomized algorithm.

Ellipsoids. An ellipsoid is the affine image of the unit ball centered at the origin. So
we can define such an ellipsoid in IR? as the set of points 2 € IR? satisfying flz) <1,
f(z) = (z —2)T A(z — 2), where z is the center of the ellipsoid, and A is a positive definite
matrix. Note that f does not change, if we vary a pair of elements symmetric along the
main diagonal, as long as its sum remains the same. Consequently, we may as well assume
that A is symmetric. This leads to the known fact that an ellipsoid is determined by
(d+ 3)d/2 points on its boundary.

For a point set P in IR we define me(P) as the ellipsoid in the affine hull of P which
contains all points in P, and has smallest volume. Unicity of me(P) was proven in [Beh],
[DLL]. Again the algorithm from the previous section can be adapted to compute the
smallest ellipsoid enclosing a point set in a straightforward way. Now the ‘parameter 3’
has to be replaced by 6 = (d + 3)d/2. Lemma 1 also generalizes, although a few facts in
its proof are somewhat more tedious to verify (see also [Pos], [Juh]).

Theorem 4 The smallest volume enclosing ellipsoid of a set of n points in d-space can
be computed in expected time O(66'n), 6 = (d+ 3)d/2, by a randomized algorithm.

It is perhaps worthwhile to mention here that the smallest volume enclosing ellipsoid
of a convex polytope P — also called Lowner—John ellipsoid — has the property, that if it
is scaled by a factor 2 about its center, then it is contained in P, [Joh], [Lei]. This shows
that the Léwner—John ellipsoid approximates a polytope P with some guaranteed quality,
which makes it attractive for a bounding ‘box’-heuristic, e.g. in motion planning. Smallest
enclosing ellipsoids are also used in statistics for peeling off outliers in multidimensional
data, [Bar].

There are a number of other problems which can be solved with the method, as e.g.
computing the largest ball or ellipsoid in the intersection of halfspaces bounded by hy-
perplanes, or convex programming in general. The main ingredients needed are a notion
corresponding to ‘lies on the boundary’, and an analogue of Lemma 1.

Expensive operations. When it comes to actually implementing the algorithm, most
of the effort goes to the solution of the basic case, i.e., the realization of the statement
‘D := b_md (0, R)’; in particular, in higher dimensions, and already for ellipses in the

plane, this is a nontrivial task (see, e.g. [Tit], [ST]). Since the actual execution of this
statement is much more costly than a simple containment test, we are interested how
often we have to go through this basic step. Let us consider the case of computing the
smallest enclosing ball in d-space. We denote by s;(n) the expected number of executions
of ‘D :=b_md (0, R)’ for a call where there are n points to cover and § — j points are forced
on the boundary, 6 = d+ 1. Then so(n) =1, s;(0) = 1, and for all j > 0 and n > 0, we
have

() < si(n = D L a(n— 1), (2)

We claim that))

This is obviously true for j = 0 and for n = 0 (with the convention Hy = 0). For 7 > 0
and n > 0 the claim follows from the induction step

S0 € (kP

IA

k=0

the first inequality uses (2) and the induction hypothesis, and the second inequality holds
since the left hand side represents the first two summands of the sum on the right hand
side. Since H, < 14 Inn for n > 1, we conclude that the expected number of executions
of the basic case is bounded by (2 + In n)®.

One permutation suffices. We investigate how many random choices our algorithm
needs and show that it suffices to choose one random permutation of 1...n in the be-
ginning of the computation. The following considerations — although technical — will
further simplify the algorithm and lead us to a heuristic which considerably speeds up the
algorithm in practice — in particular, in higher dimensions.

Let us, in a first step, change the view of our procedure B MINIDISK(FP, R) by assuming
that the argument P is actually a (randomly) ordered sequence of points; the ‘else’part
of procedure B.MINIDISK is reformulated as follows.

choose last p in P;

D := BMINIDISK(P — {p}, R);

if p & D then
choose a random permutation m of 1...(|P|—1);
D :=BMINIDISK(n(P — {p}), RU{p});

The operation ‘P — {p}’ removes the element p in the sequence P and leaves the order
of the remaining elements unchanged. We let MINIDISK also choose a random permutation
of the points before it calls B MINIDISK:

function procedure MINIDISK(P); comment: returns md(P)
choose a random permutation m of 1...|P|;
return B MINIDISK(w(P),0);

It is clear that nothing changes in the expected running time: choosing the last element
in a random order of the elements in a set is the same as choosing a random element in the
set. We want to argue that if the only random permutation is the one chosen in MINIDISK,
still nothing changes in the expected running time.

For a sequence P and a set R of points in the plane, |R| < 3, let T(P, R) be the
expected running time of the call B MINIDISK(P, R) in the formulation above. Then the
expected running time of MINIDISK(P) is

(P) = = 3 T(x(P).0)
" wESy

for n = |P| and S,, the set of all permutations of 1...n.
If P is nonempty and p is the last point in #(P), then

I(x(P),R) = T(x(P)—{p},R)+1

S X b (P = () R) TP~ (). RU (),
T pESn_1

I

where y(-) is 1, if its argument is true, and 0, otherwise. We get

HP) = 5 Y pep Y. T(=(P),0)

=1 S TP - {p)),0)+1

oS5,
n ﬁ pgﬂ:—l X(p & b-md(P = {p}, 0)) T(p(P = {p}), {p})]
=3 Ter | Y T(P-{p}).0)
Sy
X A bR ()N TP~ (). ()]
= 4T ¥ [P = 1)), 0)+1

+x(p & b-md(P = {p},0)) T(r(P — {p}), {p})].

The last expression in this derivation represents the expected time in case B MINIDISK(P, R)
does not choose a new permutation for its calls if R = (), and similar transformations show
the fact for R arbitrary.

Consequently, the revised version of MINIDISK has the same expected running time
in terms of the number of containment queries, if it uses B MINIDISK with the following
‘else’—part.

choose last p in P;
D := BMINIDISK(P — {p}, R);
if p & D then
D :=BMINIDISK(P — {p}, RU{p});

The actual running time of the procedure decreases, of course, since we save the gen-
eration of random numbers except for those needed for the first permutation.

A move-to-front heuristic. Considering the just developed one-permutation-version,
what would be a good permutation to begin with? Of course, if the first elements are those
which determine the solution, then we have the optimal situation, and the algorithm
will not make more than n + O(1) containment queries. Somewhat less ambitious, we
would like to have points early in the sequence which determine a disk with few points
outside. Although we are not given such a sequence, we can gradually update the sequence
during the computation by moving points to the front of the sequence which we consider
important. Intuitively, these are the points p which satisfy the test ‘p ¢ D’. This leads
us to the final iteration of our algorithm with the move-to-front heuristic implemented.
Here we assume that the point set is stored in a global sequence, preferably in a linked
list which enables us to move points to the front in constant time.

function procedure MTFDISK(P); comment: returns md(P)
choose a random permutation m of 1...|P|;
return BMTFDISK(w(P),#);

function procedure B_MTFDISK(P, R); comment: returns b.md(P, R)
if P=0 or |R|=3 then
D :=b_md(#, R)
else
choose last p in P;
D :=BMTFDISK(P — {p}, R);
if p & D then
D :=BMTFDISK(P — {p}, RU {p});
move p to the first position;
return D;

At this point we do not know how to analyze MTFDISK (see Discussion), but the im-
provement in the performance in experiments is striking.

Experimental results. The one-permutation- and the move-to-front-versions of the
algorithm have been implemented for balls in arbitrary dimensions, and for ellipses in
the plane. Table 1 displays the number of containment queries divided by n (number of
points), both the average and the maximum over 100 runs (* = only 40 runs) for points
randomly chosen in the unit ball (indicated by ‘() and in the unit cube (indicated by
‘0’). The MINIBALL procedure reaches its limits in 5 dimensions, while MTFBALL allows to
compute smallest enclosing balls for 5000 points in 10 dimension. Another aspect we want
to point out is the high variance of MINIBALL compared to MTFBALL which we observed in

Smallest enclosing ball for n points in d dimensions —
number of containment queries divided by n, average and maximum.

d (e — 1)(d+1)!] n OMINIBALL OMTFBALL OMINIBALL | OMTFBALL
aV.| max. aV.|maX. aV.| max. aV.|maX.

) 0 1000 | 9.8 30 42 81 75 137 63
5000 | 10.5 26 | 4.1 8.7 7.7 1835 8.0

3 i 1000 | 33 101] 5.6 3] 22 114[46] 10.2
5000 | 36| 123 5.6 2] 21 82 [4.9 1

. 1937 1000 | 627 | 2748 [9.5 17 [265 [1226 | 7.7 16
5000 | 944 | *2367 | 8.9 16 | 360 | 2277 | 7.0 14

1000 - —T 59 85 [- T 19 39

10 6.7- 107 5000 - —[*30 [37| - — 1715 24

Smallest enclosing ellipse for n points in the plane —
number of containment queries divided by n, average and maximum.
(OMINIELL (OMTFELL | OMINIELL OMTFELL
av. | max. | av. | max. | av. | max. | av. | max.

1000 | 145 | 441 | 7.2 13| 71 306 | 5.4 9.4
206 5000 | 193 | 708 6.8 13| 70| 304 5.0 9.0
10000 | *172 | *586 | 7.0 13 | *75 | *255 | 5.2 9.1

L(e — 1)5!] n

Table 1: Number of containment queries for one-permutation-version (MINIBALL and
MINIELL) and move-to-front-version (MTFBALL and MTFELL).

our experiments.

Although little attempts have been made to tune the performance of the program, we
provide in Table 2 the average runtime on a personal computer (80386, 20MHz). It is
interesting to observe the ‘sublinear’ behaviour of the runtime for ellipses, which can be
explained by the fact that much of the time is spent for the basic case, which grows only
polylogarithmically in n, as we have shown. For example, for MTFELL, the average number
of executions of the basic case is 514, 725, and 816 for » = 1000, 5000, and 10000 random
points, respectively, in the unit disk. For MINIELL the corresponding numbers are 11700,
37000, and 50000, respectively.

4 Discussion

We have described algorithms for the computation of smallest enclosing balls and ellipsoids:
a simple algorithm with provably linear running time, and a heuristic which appears to run
fast in practice. The move-to-front heuristic has been developed in an interplay between
analyzing several features of the original algorithm on the one hand, and phenomena
observed in experiments on the other hand.

Clarkson’s algorithm for Linear Programming, [Cla], can also be turned in an algorithm
for computing smallest enclosing balls and ellipsoids, and the dependence of the constant

10

Smallest enclosing ball for 5000 points
in d dimensions — average runtime

d | OMINIBALL | OMTFBALL | OMINIBALL | OMTFBALL
2 3.3 sec 1.3 sec 2.4 sec 1.1 sec
3 23 sec 2.4 sec 14 sec 2.1 sec
5 35 min 18 sec 8 min 10 sec
10 - *20 min - 4 min

Smallest enclosing ellipses for n points

in the plane — average runtime
n | OMINIELL | OMTFELL | DMINIELL | OMTFELL

1000 5 min 7.8 sec 2 min 3 sec
5000 15 min 19 sec 5 min 10 s
10000 | *22 min 31 sec | *8.5 min 17 s

Table 2: Average runtime on a PC (80386, 20 MHz).

in the dimension is better than the one for Seidel’s method we have used here; however,
it is not as simple. Nevertheless, it would be interesting to compare implementations of
several methods including Clarkson’s or the ones described in [D6F], and we plan to pursue
this line in the future.

An interesting open problem is the analysis of the move-to-front heuristic. There are
first steps in this direction in [SW], where we show that a variant closely related to move-
to-front has expected running time 0(52571), with § = d + 1 for balls; actually, this yields
a new ‘combinatorial bound’ also for Linear Programming for certain values of d and n.
In addition, the paper offers also a formal framework for the class of problems which can
be solved by these methods.

Acknowledgements. The author thanks Raimund Seidel for several discussions on the
subject. Special thanks also to Bernd Gértner for implementing the algorithms, and for
accepting my ongoing requests for new variants of the algorithm and new test data.

References

[Bar] V. Barnett, The ordering of multivariate data, J. Roy. Statist. Soc. Ser. A 139 (176)
318-354

[Beh] F. Behrend, Uber die kleinste umbeschriebene und die grofite einbeschriebene Ellipse
eines konvexen Bereiches, Math. Ann. 115 (1938) 379-411

[Cla] K. L. Clarkson, Las Vegas algorithms for linear and integer programming when the
dimension is small, manuscript (1989)

L. Danzer, D. Laugwitz and H. Lenz, Uber das Léwnersche Ellipsoid und sein Analogon
unter den einem Eikorper eingeschriebenen Ellipsoiden, Arch. Math. 8 (1957) 214-219

[DLL]

11

[DyF]

[DSE]

[Joh]

[Juh]

[Jun]

[Lei]

M. E. Dyer and A. M. Frieze, A randomized algorithm for fixed-dimensional linear pro-
gramming, manuscript (1987)

J. Dorflinger and W. Forst, Approximation durch Kreise: Verfahren zur Berechnung der
Hiillkugel, manuscript (1991)

F. John, Extremum problems with inequalities as subsidiary conditions, in Courant
Anniversary Volume (1948) 187-204, New York

F. Juhnke, Lowner ellipsoids via semiinfinite optimization and (quasi-) convexity theory,
Technische Universitat Magdeburg, Sektion Mathematik, Report 4/90 (1990)

H. Jung, Uber die kleinste Kugel, die eine raumliche Figur einschliet, J. Reine Angew.
Math. 123 (1901) 241-257

K. Leichtweif3, Uber die affine Exzentrizitat konvexer Korper, Arch. Math. 10 (1959)
187-199

N. Megiddo, Linear-time algorithms for linear programming in JR* and related problems,

SIAM J. Comput. 12 (1983) 759-776

M. J. Post, Minimum spanning ellipsoids, in “Proc. 16th Annual ACM Symposium on
Theory of Computing” (1984) 108-116

R. Seidel, Linear programming and convex hulls made easy, n “Proc. 6th Annual ACM
Symposium on Computational Geometry” (1990) 211-215

R. Seidel, Backwards analysis of randomized algorithms, manuscript (1991)

B. W. Silverman and D. M. Titterington, Minimum covering ellipses, SIAM J. Sci. Stat.
Comput. 1 (1980) 401 — 409

M. Sharir and E. Welzl, A new combinatorial bound for linear programming and related
problems, in preparation (1991)

S. Skyum, A simple algorithm for computing the smallest circle, Aarhus University,

Report DAIMI PB-314

D. M. Titterington, Estimation of correlation coefficients by ellipsoidal trimming, Appl.
Statist. 27 (1978) 227-234

12

