{"id":351,"date":"2023-12-20T11:14:17","date_gmt":"2023-12-20T10:14:17","guid":{"rendered":"https:\/\/aud.ibr.cs.tu-bs.de\/?p=351"},"modified":"2023-12-28T15:36:30","modified_gmt":"2023-12-28T14:36:30","slug":"vorlesung-15","status":"publish","type":"post","link":"https:\/\/aud.ibr.cs.tu-bs.de\/vorlesung-15\/","title":{"rendered":"Vorlesung 15"},"content":{"rendered":"\n

In dieser Vorlesung besch\u00e4ftigen wir uns mit dem Erhalt der AVL-Eigenschaft eines bin\u00e4ren Suchbaumes bei Einf\u00fcge- und L\u00f6schoperationen. Au\u00dferdem werfen wir einen Blick auf die Fibonacci-Zahlen.<\/p>\n\n\n\n

Wir w\u00fcnschen an dieser Stelle allen Beteiligten ein frohes Weihnachtsfest und einen guten Rutsch ins neue Jahr!<\/p>\n\n\n\n

Folien: VL15.pdf<\/a>
Notizen:
[PDF]<\/a>
Video:
[YouTube]<\/a>, [IBR]<\/a><\/p>\n\n\n\n

Literatur<\/h3>\n\n\n\n

Goodrich\/Tamassia – Data Structures and Algorithms in Java Elektronische Ausgabe der 4.Auflage; hier: Kapitel 10.2, Seiten 599ff.<\/a><\/p>\n\n\n\n

Weitere Links<\/h3>\n\n\n\n

Wikipedia \u00fcber AVL-B\u00e4ume<\/a>
AVL-Baum bei Idea Instructions<\/a>
Gemeine Schafgarbe: Eine Pflanze, deren Bl\u00fctenstand aussieht wie ein AVL-Baum<\/a>
Wikipedia \u00fcber Rotation in Suchb\u00e4umen (englisch)<\/a>
Wikipedia \u00fcber Fibonacci-Zahlen<\/a>
Fibonacci Numbers and Nature: Seite mit vielen Bildern und Beziehungen<\/a>
Fibonacci Numbers in Nature: Viele weitere Beispiele, z.B. auch in St\u00fcrmen<\/a>
Dr. Steel’s Fibonacci Sequence (“Clickin’ and tickin’ with the equation of phi!” – “Make me Fibonacci!” – Rappin’ for the sake of science…)<\/a>
BBC Artikel: Verbindung zwischen Fibonacci, Al Chwarizmi und den arabischen Zahlen<\/a><\/p>\n\n\n\n

\"\"\/<\/a><\/figure>\n","protected":false},"excerpt":{"rendered":"

In dieser Vorlesung besch\u00e4ftigen wir uns mit dem Erhalt der AVL-Eigenschaft eines bin\u00e4ren Suchbaumes bei Einf\u00fcge- und L\u00f6schoperationen. Au\u00dferdem werfen wir einen Blick auf die Fibonacci-Zahlen.<\/p>\n","protected":false},"author":1,"featured_media":352,"comment_status":"closed","ping_status":"open","sticky":false,"template":"","format":"standard","meta":{"_uag_custom_page_level_css":"","site-sidebar-layout":"default","site-content-layout":"default","ast-site-content-layout":"default","site-content-style":"default","site-sidebar-style":"default","ast-global-header-display":"","ast-banner-title-visibility":"","ast-main-header-display":"","ast-hfb-above-header-display":"","ast-hfb-below-header-display":"","ast-hfb-mobile-header-display":"","site-post-title":"","ast-breadcrumbs-content":"","ast-featured-img":"","footer-sml-layout":"","theme-transparent-header-meta":"default","adv-header-id-meta":"","stick-header-meta":"","header-above-stick-meta":"","header-main-stick-meta":"","header-below-stick-meta":"","astra-migrate-meta-layouts":"set","ast-page-background-enabled":"default","ast-page-background-meta":{"desktop":{"background-color":"var(--ast-global-color-4)","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-gradient":""},"tablet":{"background-color":"","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-gradient":""},"mobile":{"background-color":"","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-gradient":""}},"ast-content-background-meta":{"desktop":{"background-color":"var(--ast-global-color-5)","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-gradient":""},"tablet":{"background-color":"var(--ast-global-color-5)","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-gradient":""},"mobile":{"background-color":"var(--ast-global-color-5)","background-image":"","background-repeat":"repeat","background-position":"center center","background-size":"auto","background-attachment":"scroll","background-type":"","background-media":"","overlay-type":"","overlay-color":"","overlay-gradient":""}},"footnotes":""},"categories":[6,13,8],"tags":[],"uagb_featured_image_src":{"full":["https:\/\/aud.ibr.cs.tu-bs.de\/wp-content\/uploads\/2020\/11\/balance.png",824,600,false],"thumbnail":["https:\/\/aud.ibr.cs.tu-bs.de\/wp-content\/uploads\/2020\/11\/balance-150x150.png",150,150,true],"medium":["https:\/\/aud.ibr.cs.tu-bs.de\/wp-content\/uploads\/2020\/11\/balance-300x218.png",300,218,true],"medium_large":["https:\/\/aud.ibr.cs.tu-bs.de\/wp-content\/uploads\/2020\/11\/balance-768x559.png",768,559,true],"large":["https:\/\/aud.ibr.cs.tu-bs.de\/wp-content\/uploads\/2020\/11\/balance.png",824,600,false],"1536x1536":["https:\/\/aud.ibr.cs.tu-bs.de\/wp-content\/uploads\/2020\/11\/balance.png",824,600,false],"2048x2048":["https:\/\/aud.ibr.cs.tu-bs.de\/wp-content\/uploads\/2020\/11\/balance.png",824,600,false]},"uagb_author_info":{"display_name":"Matthias Konitzny","author_link":"https:\/\/aud.ibr.cs.tu-bs.de\/author\/konitzny\/"},"uagb_comment_info":0,"uagb_excerpt":"In dieser Vorlesung besch\u00e4ftigen wir uns mit dem Erhalt der AVL-Eigenschaft eines bin\u00e4ren Suchbaumes bei Einf\u00fcge- und L\u00f6schoperationen. Au\u00dferdem werfen wir einen Blick auf die Fibonacci-Zahlen.","_links":{"self":[{"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/posts\/351"}],"collection":[{"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/posts"}],"about":[{"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/types\/post"}],"author":[{"embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/users\/1"}],"replies":[{"embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/comments?post=351"}],"version-history":[{"count":10,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/posts\/351\/revisions"}],"predecessor-version":[{"id":4730,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/posts\/351\/revisions\/4730"}],"wp:featuredmedia":[{"embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/media\/352"}],"wp:attachment":[{"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/media?parent=351"}],"wp:term":[{"taxonomy":"category","embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/categories?post=351"},{"taxonomy":"post_tag","embeddable":true,"href":"https:\/\/aud.ibr.cs.tu-bs.de\/wp-json\/wp\/v2\/tags?post=351"}],"curies":[{"name":"wp","href":"https:\/\/api.w.org\/{rel}","templated":true}]}}