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Convex hull
Computing the hull of a simple polygon

Theorem E2.1
o P4
LetP :=p,,...,p, beasimple polygon in the P2 -
euclidean plane | > in CCW order. The convex
hull of P can be computed in O(n). . > pr
P9
Pe
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Polygons & Curves



Point sets & Polygons

What's the difference?

2

 Consider a finite point set & := {p, p>, ..., p,} C

e A simplepolygon P € &"is a permutation (i.e., an ordering) of <P that
induces a simple closed curve.

Typically, we describe polygons in CCW order.
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Generalising Polygons

Curves in the plane
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Simple paths in the plane

e Two sets are homeomorphicif we can
define a continuous, bijective mapping

h : X — Ybetween the two.

e A simple pathis a subset of the plane
that is homeomorphic to the interval

0,11CR, ie., h:[0,1] > L C R

Geometrically, imagine any
shape that can be continuously
“morphed” from a straight line.
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Supplementary Material

Simple paths in the plane

Example: Straight line segments

2

e The line segment between two points p, g € |

is @ simple curve

pg={x¢el > | 3se]0,1]: x=p-s+qg-(—y)}

e We can define a homeomorphism between [0,1] C |

and pg:

h 0,11 = pg, s—p-s+p-(1—-y9)
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Closed curves in the plane

e Consider the (Euclidean) unit circle
S, = {(xy) €R? |2 +y> =1},

e A simple closed curveis a point setin
the plane that is homeomorphic to ;.

e Then:h: S, - C C R*

Geometrically, imagine any
shape that can be continuously
"morphed” from the circle.
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Closed curves in the plane

e Consider the (Euclidean) unit circle
S, = {(xy) R x> +)y? = 1).

e A simple closed curveis a point setin
the plane that is homeomorphic to ;.

e A simplepolygon P is a closed curve
composed of a finite number of line
segments.
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Supplementary Material

Closed curves in the plane

Example: Simple polygons

e Recall that line segments are simple paths.

e |f two simple paths meet only in a common endpoint, we can join them into a
longer path.

e Byinduction, we c an join the line segments that define a simple polygon P
into a closed curve by joining them in CCW order.
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Jordan Curves



Jordan Curve Theorem

Theorem E2.2 (Jordan Curves)

2

Let C be a Jordan curve in the plane

Then its complement R*\ C consists of

exactly two connected components: the
bounded interior and the unbounded
exterior.
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Jordan Curve Theorem
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Then its complement |
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“\ C consists of

exactly two connected components: the
bounded interior and the unbounded

exterior.
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A PROOF OF THE JORDAN CURVE THEOREM
HELGE TVERBERG
1. Introduction

Let I' be a Jordan curve in the plane, ie. the image of the unit circle
C = {(x, y); x*+y* = 1} under an injective continuous mapping y into R2. The
Jordan curve theorem [1] says that R*\[I is disconnected and consists of two
components. (We shall use the original definition whereby two points are in the same
component if and only if they can be joined by a continuous path (image of [0, 1]).)

Although the JCT is one of the best known topological theorems, there are many,
even among professional mathematicians, who have never read a proof of it. The
present paper is intended to provide a reasonably short and selfcontained proof or at
least, failing that, to point at the need for one.

2. Prerequisites and lemmata

Some elementary concepts and facts from analysis are needed, for instance uniform
continuity. One must know that I" is compact, and so is any continuous path. Also, if 4
and B are disjoint compact sets, inf {|a—b|; a € 4, b € B}, to be denoted by d(4, B), is
> 0. Sometimes it is useful to keep in mind that y ! is continuous. It would have been
possible to avoid the use of these results, at the cost of an extra page, by replacing their
applications by arguments ad hoc. The “deepést” result needed would then be
Weierstrass’ theorem to the effect that any bounded sequence of real numbers has a
convergent subsequence.

The main idea of the proof is to approximate I by polygons, prove the theorem for
these and then pass to the limit. This is a classical approach, and Lemmata 1 and 2 are
of course well known. Lemmata 3 and 4 seem new, and of some independent interest.
Their function is to quantify certain aspects of the polygonal case, so as to make the
limit process work. The non-Jordan closed curves co (upper half followed by lower half)
and — (run through once in each direction) are both limits of Jordan polygons. The
purpose of Lemmata 3 and 4 is to ensure that the bad things happening in these two
cases can not happen to a Jordan curve.

A Jordan curve is said to be a Jordan polygon if C can be covered by finitely many
arcs on each of which y has the form: y(cost, sint) = (At+ u, pt + ¢) with constants
/i, p,o. Thus I' is a closed polygon without self intersections.

LEMMA 1. The Jordan curve theorem holds for every Jordan polygon T.
Proof. Let T have edges E,, ..., E, and vertices v,, ..., v, with
ElnEl+l ={vl}ai= l,--.,n, (En+l =El’vn+l =U,,).

We first prove that EX\I' has at most two components. Consider the sets
N; = {q;d(q, E)) < 6} where 6 = min {d(E;,E);1 <j—i <n—1}. It is then clear

Received 5 February, 1979
[BuLL. LONDON MATH. Soc., 12 (1980), 34-38]
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Jordan Curve Theorem

Theorem E2.3 (Jordan Polygons)

2

Let P be a simple polygon in the plane

Then its complement 2\P consists of exactly

two connected components: the bounded
interior and the unbounded exterior.
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Convex hulls of polygons



Convex hull
Computing the hull of a simple polygon

Theorem E2.1
P3 )
LetP :=p,,...,p, beasimple polygon in the P2 -
euclidean plane | > in CCW order. The convex
hull of P can be computed in O(n). . > pr
P9
Pe
P5
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Convex hull
Computing the hull of a simple polygon

Theorem E2.1

P3
P4
LetP :=p,,...,p, beasimple polygon in the P2 -
euclidean plane | > in CCW order. The convex
hull of P can be computed in O(n). . > pr
P9
Pe

Idea:
P5

Theorem E2.3 implies that vertices of P that are

also on conv(P) appear in the exact same CCW
order on both bounding polygons.
We can perform Graham Scan without sorting.
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Basic Idea of Graham’s Scan - ||

Goal:

® Finding a sequence of ,left” turns

)

Knowing conv(P)

Approach:

® Maintain stack of vertices

® |n case of a ,right” turn:

Pop vertex off stack
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Graham’s Scan: Pseudocode and Animation

Algorithm 2.23: Compute conv(P) with Graham’s Scan.

let points be the list of points
let stack = empty_stack()

find the lowest y-coordinate and leftmost O
001N 3l led P¢ O(n)
sort points by polar angle with PO, 1
several points have the same polar angle 1

then only keep the farthest O(n Og TL)

for point in points:
# pop the last point from the stack if O

we turn clockwise to reach this point o0 O
while count stack > 1 and

ccw(next_to_top(stack), top(stack), point) (C)(Tl) O ©

<= 0: O O

pop stack O

push point to stack '®

end
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