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Computational Geometry
Tutorial #3 — Farthest Pairs



Farthest point pairs
What we know

• We will assume that a) is true  —  Discussion next week :) 

• An exact  time algorithm is trivial — can we do better?𝒪(n2)
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Convex hull
Let  be set of  points in the Euclidean plane , in 
general position*. 

Lemma E3.1 All farthest pairs of  consist of two 
vertices of the convex hull .

𝒫 n ℝ2

𝒫
conv(𝒫)
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Antipodal pairs
Let  be set of  points in the Euclidean plane , in 
general position*. 

Lemma E3.1 All farthest pairs of  consist of two 
vertices of the convex hull . 

Definition. Two points  are antipodal if there 
exist parallel supporting lines through them which 
touch, but do not cut the convex hull.
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Antipodal pairs
Let  be set of  points in the Euclidean plane , in 
general position*.
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exist parallel supporting lines through them which 
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Take 10 minutes to think about this and discuss :)

Farthest point pairs

Peter Kramer   |  November 14th, 2024 5

* no three points in  are collinear.𝒫

p q



Antipodal pairs
Let  be set of  points in the Euclidean plane , in 
general position*.

𝒫 n ℝ2

Lemma E3.1 All farthest pairs of  consist of two 
vertices of the convex hull .

𝒫
conv(𝒫)

Definition. Two points  are antipodal if there 
exist parallel supporting lines through them which 
touch, but do not cut the convex hull.

p, q ∈ 𝒫

Lemma E3.2 All farthest pairs of  are also antipodal.𝒫

Farthest point pairs

Peter Kramer   |  November 14th, 2024 6

* no three points in  are collinear.𝒫

p q



Antipodal pairs
Let  be set of  points in the Euclidean plane , in 
general position*.
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Lemma E3.1 All farthest pairs of  consist of two 
vertices of the convex hull .

𝒫
conv(𝒫)

Definition. Two points  are antipodal if there 
exist parallel supporting lines through them which 
touch, but do not cut the convex hull.

p, q ∈ 𝒫

Lemma E3.2 All farthest pairs of  are also antipodal.𝒫
Lemma E3.3 There are  antipodal pairs in .𝒪(n) 𝒫
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Michael Shamos, 1978
Let  be set of  points in the Euclidean plane , in 
general position*. 

Theorem E3.4 All farthest pairs and the diameter of  
can be computed in . 

Idea: Compute the convex hull of , then enumerate 
all antipodal pairs and track the farthest by “rotating” 
parallel supporting lines around the hull, like calipers.

𝒫 n ℝ2

𝒫
𝒪(n log n)

𝒫

Rotating Calipers Algorithm
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pair. We just go all the way around and output the pairs.
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Theorem E3.4 All farthest pairs and the diameter of of  points  in general 
position in the Euclidean plane  can be computed in . 

Diameter(n: number, (p1, …, pn): points) : number { 

// Linear probing / brute force — implicitly, i = 1 
find first (i,j) such that (pi,pj) is antipodal 

let diameter = 0 

while (j != n) { 

// Which edge do we hit? 
if A( (pi, pi+1, pj+1)) > A( (pi, pi+1, pj)) { 

++j 

} else { 

++i 

} 

// pi,pj is a farthest pair! 

diameter = max(diameter, d(pi,pj)) 

// [… edge case handling for parallel lines: Up to 3 more pairs] 

} 

return diameter 

}

n 𝒫
ℝ2 𝒪(n log n)

Δ Δ
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Convex hull
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𝒫
𝒪(n log n)

Theorem E3.5 All farthest pairs and the diameter of an 
-vertex simple polygon  can be computed in .n P 𝒪(n)

Reason: Convex hull of  in , not  .P 𝒪(n) Ω(n log n)
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Homework Sheet #2
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Two weeks!

• You may change homework partners at any time. Grading is 
tracked individually, not by group. 

• A total of 70 points across all sheets is sufficient for the 
coursework / Studienleistung. 

• So far: 35 points, this sheet: 30 points
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Point-Line Test Intersection Test

(Where) do  and  intersect?pq uv
p

q

u

v

Is  collinear/left/right of ?r pq
p

q

r
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L0

L1

L2
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Thank you.

Peter Kramer   |  November 14th, 2024


