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“Median of Medians” Algorithm

Recap:

Closest pair — Bounds

Closest Pair — Divide and conquer



Analysis of recursive algorithms

• Runtime based on subproblem size 
reduction before recursion, in sum: 

• “less than original”   

• “same as original”   

• “more than original”   

•  determined by cost of “merge” step 

• e.g., Mergesort has 

⇒ Θ(nk)
⇒ Θ(nk log n)
⇒ Θ(nc)

k
Θ(n log n)
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Theorem 3.4: A median of  numbers can be computed in  .n 𝒪(n)

O(n)

‣ Group the numbers into sets of 5.

O(n)

‣ Sort these quintuples individually.

≥ n/4 numbers

≥ n/4 numbers
T (

3n

4
)

‣ Use the median of medians as a pivot.

‣ Compute the median of each group.

T (
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• Known: SORTING has a lower bound of .Ω(n log n)
• Related: ELEMENT UNIQUENESS asks whether all elements of an unsorted 

list are unique, i.e., whether no element occurs twice.

• Both require at least  comparisons to solve!  Decision treesΩ(n log n) ⇒
• We showed: CLOSEST PAIR solves the ELEMENT UNIQUENESS PROBLEM: 

If closest pair has distance zero, the are not unique.

Relevant Paper: Ben-Or, “Lower Bounds For Algebraic Computation Trees”
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Bentley & Shamos, 1976

• Theorem 3.8: A closest pair for  
numbers in  can be found in .

n
ℝ2 𝒪(n log n)
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4. … merge by checking pairs in  ? 

• Candidate pairs in  must have 
distance at most  to the median line. 

• Point pairs in  ( ) have distance . 

• Therefore: For each point in , 
there can be only constantly many 
points in  that are closer than !

A × B
A × B

δ
A B ≥ δ

pi ∈ A

B δ
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• Theorem 3.8: A closest pair for  
numbers in  can be found in .
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4. … merge by checking pairs in : 

• Filter based on distance to median line, 
remove if farther than . 

• Linear scan along one side, -maximal to 
-minimal coordinates. 

• Keep track of candidates on the other side 
of the median line. 

• This idea generalizes to higher dimensions!

A × B

δ = min(δA, δB)
y

y
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• Idea: Incrementally build a solution 
from a partial solution by refining it:

• Track current minimal .δ
• Include next , update , repeat.p ∈ 𝒫 δ
• Crucial: Maintain sparsity, meaning 

just  candidates to check! 𝒪(1)

• Issue: How do we identify candidates 
each step — efficiently!?

• Unsorted sequences  No structure. ⇒

Randomised Incremental Construction
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Golin, Raman, Schwarz, Smid 1992/1995
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• Cover  with an infinite  grid .ℝ2 δ × δ Gδ

• Cells are identified by column , row : .x y Gδ[x, y]
• W.l.o.g., the cell  is located at .Gδ[0,0] (0,0)
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• W.l.o.g., the cell  is located at .Gδ[0,0] (0,0)
• Each (half-open) grid cell  stores all 

previously considered points of  inside it.
Gδ[x, y]

𝒫
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𝒫
• The neighbourhood of  refers to: 

.
Gδ[x, y]

Nδ(x, y) = ⋃
u,v ∈[−1,1]

Gδ[x − u, y − v]
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Lemma. For  such that : 
 

p, q ∈ 𝒫 p ∈ Gδ[x, y]
d(p, q) ≤ δ ⟹ q ∈ Nδ(x, y)
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Golin, Raman, Schwarz, Smid 1992/1995

• Idea: Sparsity!   Keep  .|Nδ(x, y) | ∈ 𝒪(1)
• If each   contains constantly many  

points of pairwise distance at least , …
Nδ(x, y)

δ
• … then  comparisons for next .𝒪(1) p ∈ 𝒫
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For each : 

Find  such that  contains . 
Insert  to . 
If  is part of new closest pair : 

Update . 
Rebuild sparse grid, .

p ∈ 𝒫
x, y Gδ[x, y] p

p Gδ[x, y]
p {p, q}

δ = d(p, q)
Gδ′ 

[x, y]
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• Case 1: All closest pairs in  share a unique point. We just found the unique “centre" of these pairs! Si

Pr[{δi+1 < δi}] = Pr[{p = s}] =
1
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• Case 2: No point is shared among the all pairs. Impossible — one such pair must have been known. 

Pr[{δi+1 < δi}] = 0
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