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Abstract. The prevalence of social network sites and smartphones has led to
many people sharing their locations with others. Privacy concerns are seldom ad-
dressed by these services; the default privacy settings may be either too restrictive
or too lax, resulting in under-exposure or over-exposure of location information.
One mechanism for alleviating over-sharing is through personalised privacy set-
tings that automatically change according to users’ predicted preferences. In this
paper, we use data collected from a location-sharing user study (N = 80) to in-
vestigate whether users’ willingness to share their locations can be predicted. We
find that while default settings match actual users’ preferences only 68% of the
time, machine-learning classifiers can predict up to 85% of users’ preferences.
Using these predictions instead of default settings would reduce the over-exposed
location information by 40%.

1 Introduction

Many popular social network sites (SNSs), e.g., Facebook Places’, and Foursquare®,
enable people to share their real-world locations in real-time, for instance by using their
smartphone’s 3G data connection to upload details of their location. These location data
may be sensitive, and as such should not be made public by default. Typical SNS pri-
vacy settings are such that when a user publishes their location information, the SNS
uses a series of rules to determine who is given permission to view this location. The de-
cision depends on the access control settings that the SNS provides for the data, as well
as the default settings that the user has provided for the location. For example, Face-
book Places allows users to restrict access to their location information using several
mechanisms:

1. When a user posts an update to Facebook they can decide before they post it
whether to include their location information.

2. When a fellow user indicates that they were co-located with another user, each of
the users tagged as being co-located can independently decide whether to allow
Facebook to publish their location information.

3 http://www.facebook.com/places/
4 http://www.foursquare.com/
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3. A user can optionally be automatically tagged in location posts by their contacts.
Users can also remove the ability of other users to indicate they were co-located.

4. In addition, users can select which of their contacts can see their location by select-
ing which friend list (a user-defined subset of contacts) has visibility of the location
information, or by reverting to a user-defined default list.

The complexity of these rules, and the number of ways in which location data may
be shared, means that users may be unable to specify, or unaware of, the appropriate
group of individuals with whom they wish to share their location. They may even be
unaware that their location is being shared at all. It may be the case, then, that users
share their location with either too few people (under-exposure) or too many people
(over-exposure). The latter is clearly an undesirable privacy leak, as highlighted by
websites such as PleaseRobMe>, which uses Twitter® and Foursquare location updates
to determine the location of unoccupied homes.

Possible solutions to this problem include educating users about risks, or designing
user interfaces and policy languages that allow users to express their actual preferences.
This assumes, however, that users are firstly able to determine their correct preferences,
and that these preferences are static. If users’ preferences are highly variable, use of the
application may become burdensome, as they will have to select their preferences each
time they wish to publish some information on an SNS.

In this paper we investigate the following questions:

1. Can users determine their appropriate default location-sharing privacy settings?
2. Can these default settings be improved by predicting users’ preferences?

Using data from a real-world user study, we demonstrate that users’ day-to-day
preferences for sharing their location do not always match their static default settings.
We then test a range of different classifiers to explore whether we can predict their
preferences.

2 Related work

The privacy risks of using location-based services (LBSs) and applications have been
studied for some time, e.g., [1,6]. More recently, a Microsoft survey revealed that 84%
of users are concerned about potential losses of privacy when using LBSs, and 49%
would be more comfortable if they could easily and clearly manage who sees their lo-
cation information.” The rise of SNSs that allow location updates has led to new privacy
risks, as surveyed by Fusco et al. [9]. In particular, SNSs allow a users’ locations to be
leaked by their friends [16,23]. It has also been shown that users often inadvertently
reveal their locations on SNSs such as Twitter [13].

Solutions to alleviating location privacy risks include trusted servers that deliver
location updates in a manner that offers k-anonymity [11], cloaking or “confusing”

5 http://www.PleaseRobMe.com/
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a path by obfuscating locations [14,19], or new applications that provide users with
precise privacy controls [24].

Our interest is in predicting location-sharing privacy preferences so as to reduce
the burden on the user. Li et al. [18] and Toch et al. [26] attempt to create appropriate
default privacy settings for users. As we show in this and previous work [2], accurate
default settings are insufficient as users’ preferences may vary with context. Corapi
et al. [8] show how to build and update rules by observing user behaviour. Voulodimos
et al. [27] use clustering methods to group users by location and preferences, which
could be useful for predicting privacy preferences.

As well as SNS users sharing their own information with each other, aggregate
data about social networks may also be shared, e.g., with researchers or advertisers.
Bhagat et al. [7] use link prediction to preserve privacy in such shared data. Conversely,
Narayanan et al. [20] use link prediction to deanonymise such data.

3 Methodology
We aim to address two questions relating to user location privacy in this work:

Can users set their default settings appropriately? In previous work [2] we have found
that users have complex and sometimes conflicting rationales behind their decisions
to share their location. This can make it difficult to create appropriate default privacy
settings for users.

We use data from a location-sharing user study to determine whether users set their
SNS privacy-sharing settings appropriately. By comparing the default sharing settings
chosen by users with the settings that they choose in sifu when actually sharing a loca-
tion, we can compare users’ expectations of their location-sharing behaviour with their
behaviour in a real-world setting. This helps estimate how many privacy leaks may
occur due to incorrectly specified user settings.

Can we predict user sharing behaviour? Second, we attempt to classify user behaviour,
so that we can predict whether a user will share a particular location with particular
groups of their SNS contacts. By accurately predicting a user’s behaviour, it may be
possible to reduce privacy leaks. A predictive application could alert a user when their
behaviour deviates from a prediction, or could automatically restrict location-sharing to
within the predicted parameters.

In order to predict location-sharing behaviour, we must decide what information is
useful for predicting user location sharing. We use the same user-study data to deter-
mine what information is useful for predicting location sharing behaviour. We then go
on to evaluate various prediction approaches.

3.1 Location-sharing study data

We previously conducted a location-sharing user-study, details of which can be found
in [4]. 80 participants in two UK towns, London and St Andrews, carried a smartphone
running a custom location-sharing application for one week.

The study comprised three stages of data collection:



Pre-briefing. Participants were asked to install a Facebook application on their per-
sonal Facebook accounts and to fill out a questionnaire. The questionnaire asked
questions about Facebook usage (e.g., “Have you ever disclosed your location or
activity on your Facebook status?”) and also asked participants for their default
location-sharing settings for each of their Facebook friend lists.

Location-service usage. Over the course of the week, participants used the smart-
phones to share their locations on Facebook. Additionally, using the Experience
Sampling Method [17], we periodically sent questions to the smartphones to ask
participants about their context and whether, and with whom, they would be will-
ing to share their location.

Debriefing. Using a semi-structured interview, participants provided more detailed ex-
planations about their sharing choices.

We use these data to compare the default settings provided with the responses given
during the location-service usage stage. We also use these data to drive a location-
sharing predictor.

3.2 Dataset attributes

The complete dataset of the responses provided by participants, is available online [3].
To develop a classifier, we used the following attributes:

1. A unique identifier for each user.

2. The question asked. Four slightly different questions were used in the study, al-
though the goal of all of the questions was to elicit location-sharing preferences for
the context of the particular time of the question.

3. The time that the question was asked and answered {0700 — 1200, 1200 — 1400,
1400 — 1700, 1700 — 2100, 2100 — 0700}. This may be useful to see if the time
of day that the user is present at a location affects whether the user shares their
location.

4. The type of location {academic, food/drink, leisure, library, residential, retail} as
inferred from GPS data and queries of various location databases including Yell
and Google Maps.

5. A Facebook friend list ID, representing the group to which a user shared (or did not
share) their location, and the size of the list.

6. A boolean indicating whether a user did share their location.

7. Co-location {no-one, friends, strangers}: users were asked whom they were with
at the time of a question.

8. Four attributes from the pre-briefing data: whether a user had used their phone
to share their location prior to the study; whether they had shared their location
on Facebook; whether they had changed their Facebook privacy settings from the
defaults; and whether they were a frequent mobile phone Facebook user.

Any locations where we were unable to determine a type were removed, leaving
4,033 instances.



4 Evaluation

To correctly predict whether a user is willing to share their location, we need to deter-
mine whether the user would agree to share their current location with groups of their
Facebook friends. To assess the accuracy of our prediction schemes, we compare the
result of the prediction with the actual response that the user gave us as to whether they
would share their location; i.e., if we predict that a user shared their location, and they
did indeed share their location, this is considered a correct prediction. This provides
a measure of the percentage of correctly-classified instances, and we use this correct
predictions metric to compare a variety of machine-learning techniques.

To determine whether users can define appropriate default settings, we use the de-
fault privacy settings for each friend list provided in the pre-briefing, and compare these
to responses given during the ESM study. Any differences where sharing took place
with a group of users that was not actually desired, are considered privacy leaks. For
instance, if a user had chosen default settings that shared photos with their family and
friends, but in the course of the study shared photos only with their family, then this is
a privacy leak. In terms of evaluating our prediction schemes, we desire a high correct
prediction rate, and a low privacy leak rate.

As a baseline performance for our analysis, we use the default settings provided
by users for each friend list. This shows how well users can predict their own sharing
behaviour, and ideally our prediction schemes should do better than this.

4.1 Simple classifiers

We evaluate two methods for classifying location sharing. First, we use simple online
classifiers which work on the data in chronological order to predict location-sharing
preferences for the current point in time:

List ID (Li) Use the last response provided by the user for this Facebook friend list.
When no previous response exists, use the default setting for this list.

Location (Loc) Use the last response provided for this location, regardless of friend
list. When no previous response exists, use the default setting for this list.

List ID in Location (LiLoc) Use the last response provided for this list at this location.
When no previous response exists, use the default setting for this list.

List ID < List ID in Location (Li < LiLoc) Use the last response provided for this
list at this location. When no previous response exists, use the last response pro-
vided for this list. Otherwise, use the default setting for this list.

Location < List ID in Location (Loc < LiLoc) Use the last response provided for this
list at this location. When no previous response exists, use the last response pro-
vided for this location. Otherwise, use the default setting for this list.

4.2 Machine-learning classifiers

Second, we use the data to drive machine-learning classifiers. We apply implementa-
tions of various classification algorithms from the Weka toolkit [28] to the dataset, and
assess the performance of the classification approaches using ten-fold cross validation.



We use three algorithms with increasing computational complexity as the trade-off be-
tween performance and computation time is an important consideration for delivering
timely predictions to users.

Naive Bayesian (NB) The Naive Bayesian classifier [15] assumes that factors of clas-
sification are independent from one another. NB is particularly suited to situations
with lots of attributes, such as our input data.

J48 Classifier (J48) The J48 classification algorithm is an implementation of the C4.5
algorithm [21]. This classification algorithm builds a decision tree from the input
data, and selects the classifications accordingly. J48 requires more time to compute
than NB.

Rotation Forest (RF) The Rotation Forest scheme [22] analyses subsets of features
to train the J48 algorithm, resulting in improved performance at the expense of
increased computational complexity.

4.3 What input information is useful?

Accurate predictions of location sharing rely on having sufficient information to make
an informed decision. If we can identify the information that is useful for predicting
location sharing from the dimensions of our user-study data, we can reduce the amount
of information needed in future prediction systems. This will be useful to researchers
conducting future user studies, as it may guide the selection of questions to ask partic-
ipants and decisions about what information should be collected. We therefore assess
which combinations of input data give best classification performance.

We select the best features from the input data using the Attribute Selection Clas-
sifier (ASC), which uses the CfSubsetEval method [12]. One of the three machine-
learning classifiers described in Section 4.2 is then applied to the selected features. We
refer to these as ASC:NB, ASC:J48 and ASC:RF.

4.4 Can we minimise privacy leaks?

One danger of using an automated prediction technique when dealing with private data
is that the predictor may cause a privacy leak, and share data the user did not wish to
share. Our final optimisation is to attempt to preserve user privacy while at the same
time maintaining accurate predictions, by minimising these privacy leaks.

We therefore use a Cost Sensitive classifier (CS), where privacy leaks are weighted
as ten times worse than not sharing a location at all. Using this approach, the machine-
learning algorithms try to avoid classifying instances that would result in privacy leaks.
We use the CS classifier with the classifiers from Section 4.2 and refer to them as
CS:NB, CS:J48 and CS:RF.

5 Results

We now apply the classification and learning techniques described in the previous sec-
tion to our dataset, in order to investigate whether privacy settings are predictable.



5.1 Simple Classifiers

First, we present the results of the simple techniques. Table 1 shows that the simple
classifiers perform better than using the default settings, which sets the correct privacy
settings 68% of the time. If users rely solely on their default settings, however, they will
over-share 10.71% of the time. Hence, although augmenting the default settings with the
simple classifiers increases the correct predictions, it also increases the privacy leaks;
for instance, using the last response for the chosen friend list (Li) increases privacy
leaks from 10.71% to 12.77%. We could therefore use the simple approaches when we
want increased accuracy, but use the default when we want fewer privacy leaks.

5.2 Machine-learning approaches

The results in Table 2 show that we can increase the correct prediction rate using
machine-learning techniques. Both the RF and J48 classifiers perform better than us-
ing the default settings, and while NB has also a higher correct prediction rate than the
default settings, it provides a greater rate of privacy leaks.

Note that the RF classifier performs particularly well, far outperforming the default
settings both in terms of correct prediction and privacy leaks. Thus there is benefit in
using machine learning in this way to classify location-sharing instances.

. . lassifier orrect Privac
Classifier  |Correct Privacy C c .. y
.. predictions (%) |leaks (%)
predictions (%) |leaks (%)
Default 68.00 10.71
Default 68.00 10.71
. NB 75.18 14.88
Li 73.49 12.77
RF 83.29 333
Loc 76.44 11.28
. 148 76.72 10.46
LiLoc 71.71 12.60
. . ASC:NB  |73.02 15.35
Li < LiLoc |73.59 13.12
. ASC:J48  |75.60 9.94
Lo < LiLoc (75.77 12.55
S . ASC:RF 75.65 11.95
Table 1: Prediction performance for simple clas- .
sifiers Table 2: Prediction performance for

machine-learning classifiers.

5.3 Which are the most useful attributes for classification?

Now that we have seen that we can outperform the default settings, we consider how
much information is needed to drive the machine-learning classifiers.

Weka’s attribute selection classifiers indicate that two attributes are most important:
the Facebook friend list ID and size. Table 2 shows that when using only these two items
of information, we achieve classification performance better than the user defaults, but
slightly poorer than using all of the attributes. Interestingly, other pieces of context such
as location and time-of-day do not have an great impact on a user’s decision to share.
Instead, it appears that users prefer to share consistently with the same set of friends.
This is a surprising result given the different behaviour found in other user studies [25].



5.4 Cost-sensitive classifiers

Table 3 presents results for the cost-sensitive classifiers. As intended, these produce
far fewer privacy leaks than using the user defaults, with the cost-sensitive RF clas-
sifier producing a similar overall rate of correctly-classified instances to user defaults
(67.49%) but with only 0.72% privacy leaks versus 10.71% for the defaults.

Classifier |Correct Privacy
predictions (%) |leaks (%)
Default |68.00 10.71
CS:NB [67.07 2.16
CS:J48 |50.48 0.00
CS:RF |67.49 0.72

Table 3: Prediction performance for cost-sensitive classifiers.

5.5 In practice

The previous results show that the privacy settings chosen by users are consistent enough
to be predicted. The ten-fold cross validation used in the results previously presented is
not chronological, however; it uses training sets containing privacy settings that are not
necessarily anterior to the predicted privacy settings.

For our system to be used in practice, we envisage a prediction application that runs
on a mobile device and would recommend privacy settings to users. Ideally, it would
first use the users’ default privacy settings for an initial learning phase, while observing
how the users occasionaly override their privacy settings. Then, it would keep using the
users’ default settings and let them override these default settings, but could also alert
them when it predicts privacy settings that are different from their settings.

To implement such an application on a mobile device, the prediction scheme must
only rely on previous privacy settings, collected in the learning phase. Table 4 and
5 show the performance of classifiers when using only previously-collected privacy
settings in the training sets.

We observe that depending on the classifier and the size of the training set, we still
achieve better prediction performance than the default settings. The RF classifier again
outperforms the NB classifier, achieving up to 86.49% of correct predictions, while
keeping the privacy leaks rate at 6.47%. This is a reduction of almost 40% compared to
the 10.71% of privacy leaks occuring when using the default settings.

Note that the size of the training set has an impact on the performance of the pre-
diction. The larger the training set, the better the prediction should be, as it learns more
about the users’ privacy preferences. But there is also a risk of overfitting the model
by adjusting to very specific random features of the training data. This explains the
performance variations in our results, depending on the training set size.



Training  set|Correct Privacy Training  set|Correct Privacy
length (days) |predictions (%) |leaks (%) length (days) |Predictions (%) |leaks (%)
Default 68.00 10.71 Default 68.00 10.71

1 67.64 20.58 1 84.63 7.72

2 72.46 16.85 2 86.49 6.47

3 70.48 18.16 3 85.62 6.76

4 67.65 21.48 4 84.61 7.18

5 66.69 21.13 5 84.04 7.17

6 67.35 19.62 6 83.78 7.10
Table 4: Performance of chronological Table S5: Performance of chronological predic-
prediction using the NB classifier. tion using the RF classifier.

5.6 Discussion

Figure 1 summarises the performance of the various classifiers. The outlined region
to the upper left of the default baselines indicate where classifiers that perform better
(both in terms of classification accuracy and preventing privacy leaks) should lie. It can
be seen that the simple classifiers can outperform the default settings in terms of correct
predictions, even though privacy leaks are higher. If the accuracy of the predictions is
of most importance, then the RF classifier offers the best performance. Conversely, if
minimising privacy leaks is more important, then using a cost-sensitive RF classifier
gives similar performance to using user-selected defaults, but with considerably fewer
privacy leaks.

The RF, J48, and ASC:J48 machine-learning classifiers all provide better perfor-
mance in terms of both prediction accuracy and privacy leaks. The performance of
ASC:J48 also shows that it is possible to make location-sharing predictions with better
performance to the default settings using only the Facebook friend list size and ID. This
has interesting implications for the design of privacy user interfaces for SNSs: rather
than asking for a single set of privacy defaults as at present, it might be sufficient to ask
users to set privacy preferences for each of their groups of friends, or at least to use this
to bootstrap a learning system.

6 Conclusion

This paper has presented an initial investigation into the predictability of users’ location-
sharing privacy preferences in mobile social networks. Using data from a user study of
80 participants, we find that a user’s predetermined default setting reflects their in situ
preferences only 68% of the time. It is possible to improve upon this using machine-
learning techniques, both improving accuracy and decreasing the rate of privacy leaks.
In particular, a rotation forest classifier can provide 86% accuracy.

The attribute selection classifier indicates that a machine-learning classifier can also
achieve similar performance to the user defaults using only two pieces of information
for prediction. Surprisingly this information relates to the group with which the infor-
mation is being shared, and other contextual information such as location and time of
day do not appear to be important.
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Fig. 1: A scatterplot showing the relative performance of the classification approaches. Li = Face-
book friend list. Loc = Location. LiLoc = Facebook friend list in Location.

This work is still in its preliminary stages. Plans for future work include further
analysis as to which subsets of user data are most useful for predicting location shar-
ing. In particular, perhaps time of day is more important than indicated here? We also
need further investigation into the relative weight of a privacy leak in comparison to
being overly restrictive of location sharing. Perhaps the cost of a privacy leak should
be considered to be dynamic, e.g., depending on some measure of the sensitivity of the
specific locations being shared.

We currently assume that the predictor will run on a user’s device, and so need
to compare the complexity and power-efficiency of the various classifiers if we are to
conserve energy on a mobile device. But in doing so, we have also only looked at each
user in isolation. Distributed predictors might be more effective, e.g, using colocated
users’ privacy preferences to help predict privacy preferences for a given location. In
effect, this could be considered “crowdsourcing” a predictor: if people near me do not
wish to share their presence in this current place, then I may be likely to consider this
place to be private.

More broadly, in addition to helping us test new hypotheses, we need larger and
more diverse datasets to test if our findings hold for other social network and location-
based service users. Finding or collecting such datasets, however, is non-trivial. We
cannot rely on merely passively crawling an online social network [10], since we re-
quire information about those locations and events that were not shared as well as those
that were. An open question is whether ESM-like studies are the only way to collect
such information. While such studies provide a mechanism for reliably collecting high-
quality data [5], the expense of the method means that the data collected in this way will
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be small and sparse. We are therefore interested in exploring new ways of collecting pri-
vacy preference data. In the meantime, we have made our dataset available through the
CRAWDAD data archive [3], and encourage other data collectors to do the same.
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