A Flexible Reflector for Media Streams

Jens Brandt, Verena Kahmann, Lars Wolf
Institut fur Betriebssysteme und Rechnerverbund
Technische Universit Braunschweig
{brandt, kahmann, wol{@ibr.cs.tu-bs.de

Abstract: Reflectors mapping multicast to unicast sessions have been proposed to en-
able multicast media distribution for clients in non-multicast capable networks. How-
ever, existing implementations do not allow clients to modify the session by using
VCR-like commands in a flexible way. In this paper we describe the design and imple-
mentation of a reflector mapping a multicast or unicast session to several downstream
unicast sessions. We show that by applying a separation of control and data path such a
flexible reflector can handle true media-on-demand functionality for several scenarios,
even for group communication, more efficiently than several unicast sessions.

1 Introduction

Distribution of multimedia data over the Internet requires a high level of server and net-
work resources, which may be efficiently reduced using IP multicast. Despite the re-
search effort of many years, multicast routing has not found widespread acceptance on
the Internet. As one of the proposals for alternative group communication services so-
called reflectors have been designed for media streaming applications to support clients in
non-multicast capable subnets. Those reflectors act as a proxy between server and client,
mapping multicast to unicast sessions. One example of such a reflector is the broadcast
reflector in Apple’s QuickTime streaming system [App98].

However, existing reflectors neither support different quality requirements and capabili-
ties of clients nor true media-on-demand facilities like pausing or position changes in the
stream. Thus, we propose the implementation of a flexible and modular reflector, which
can map a multicast or unicast session on the server side to several unicast sessions on the
client side. By using this tool, each client of a group can use a dedicated control session
allowing flexible data path reconfiguration according to its demands. The server-side data
path on the reflector will normally be shared, however, due to control requests of a client
a different server-side data path may be chosen or established. This separation of con-
trol and data path on the one hand as well as the separation of server-side and client-side
data path on the other hand, leads to the ability of our reflector to manage the cases of a
true media-on-demand system. To support different quality requirements and capabilities
of clients, transcoding modules can easily be used at the reflector by adding them to the
client-side data path.

Thus, our reflector provides — in contrast to multicast — individual flexibility while it is
more efficient than several unicast sessions from the server to each client. The rest of the
paper is structured as follows: After discussing related work in section 2 we introduce
scenarios for the use of a flexible reflector and elaborate on use cases for handling client's
requests in section 3. The design of our reflector is presented in section 4, where we
provide details on the data processing architecture, the internal data path management for
joining clients and repositioning requests as well as the necessary RTSP signaling. We
present a short qualitative evaluation of our approach in section 5 before we conclude the
paper in section 6.

2 Related Work

Multicast to unicast reflectors are no new concept in media streaming. For example, re-
flector tools for MBone sessions have been proposed, such as the MURS reflector, a part of
the MECCANO project [KB0O0]. A commercially successful implementation of a reflector

is Apple’s QuickTime proxy which acts as a reflector for clients which are not capable
of participating in multicast sessions. Both projects, however, are not intended to handle
VCR-like control requests of clients to enable true media-on-demand sessions.

Besides reflectors, there are several other proposals to implement alternative services for
group communication [ESRMO03]. Overlay networks of unicast connections are currently
discussed for end-system multicast. However, these approaches make greater demands on
the clients, since clients should relay data to others. The REUNITE approach [SNZ01]
uses a concept of reflection similar to ours, but packets are copied on network layer by
REUNITE-capable routers. Though this is an interesting concept, it is not useful in our
target scenarios, since it is important to control the data path to be able to use transcoding
modules and the REUNITE approach cannot provide this.

3 Reflector Use in Media Streaming

The potential advantages of a flexible reflector can be seen by considering several scenar-
ios. Additionally, the flexibility of our reflector, distinguishing it from existing approaches,

will be shown presenting different use cases of handling VCR-like repositioning requests

of a client. At this point we introduce the notion ofreflector sessignwhich can be

seen as a group of streaming sessions which share the same server-side data path. Two
clients which are participating in one reflector session will get the same media content at
the same time (possibly tailored to their needs). In other words all clients of one reflector
session share the same time-line. Thus the participation of a client in a reflector session
will change if its position in the stream changes, i.e. by repositioning requests.

3.1 Scenarios

Reflectors are useful in many scenarios where the transport of multimedia data cannot be
done by using multicast communication (or only on parts of the network path), but should
still be handled as efficiently as possible. For example, several clients may wish to view
the same content but have different quality requirements. Layered coding using multicast
would be a solution in this situation, but those techniques are not very widespread and
affect existing media servers. Moreover, layered video coding supports only a limited set
of different quality steps and therefore cannot provide custom-tailored streams. Thus, the
use of transcoding techniques on intermediate systems can mediate the gap between the
server and the clients. In our case, a server may deliver streams using multicast, while
the reflector maps those sessions to unicast sessions and hands the data to a transcoding
module where appropriate.

Another scenario where a flexible reflector can be useful is collaborative media streaming.
Users participating in a shared media session may wish to take individual control of the
stream time-line. We have already presented a flexible proxy architecture for the manage-
ment of signaling between different clients in [KWO02]. To deliver multimedia contents
efficiently, multicast transport may be chosen at the server side. Thus, a reflector will be
useful to combine individual signaling with efficient media data transport.

3.2 Use Cases

For the design of our flexible reflector we have figured out several use cases. These can
be distinguished mainly by the handling of VCR requests such as changing the position or
pausing a stream. Both requests affect the position in the time-line of the active session
and therefore, they are callegpositioningrequests in the rest of this paper.

Three different situations of position changes need to be distinguished:

1. Repositioning is neither possible nor allowed.
2. Repositioning requests of one client affect all other clients of the reflector session.

3. Individual position changes are allowed.

An example for the first situation is the use of normal multicast to unicast reflection as done
by already existing tools such as Apple’s QuickTime proxy [App98]. Streaming a unicast
live presentation to a number of unicast clients is another example where position changes
are not possible. In both cases, our flexible reflector will act as a normal reflector: Joining
clients just have to be connected to the initial reflector session, which has been established
by the first requesting client. A similar simple handling of VCR requests is appropriate
in the second situation where any change of a reflector session affects all participating
clients. An example for such a situation is a learning environment or a reflector session
comprising only one client.

Things get different when individual repositioning or pausing is allowed, e.g. in a situ-
ation where several clients share the same unicast path between reflector and server. In
this situation the requesting client leaves the active reflector session and needs to join an-
other existing session matching its request, a so caflatthing sessionDepending on

the number of clients participating in the current session and the existence of matching
sessions we can distinguish four more cases:

3.a The current session contains only one client and there is no matching session.
3.b The current session contains only one client and there is a matching session.
3.c The current session contains more than one client and there is no matching session.

3.d The current session contains more than one client and there is a matching session.

The first of these cases can be handled similarly to case 2 because the current session of the
client can be changed according to the client’s request. In the second case the current ses-
sion can be deallocated and the client can join the existing reflector session which matches
its request. In the last two cases the client can leave the current reflector session and a new
reflector session needs to be created or the client joins a matching session, respectively.
But due to different granularities of the clients’ time-lines it is very unlikely to find an ex-

act matching session. Therefore, we define a sessiovith its current timet; to 'match

a request’ of a client with timeg, if and only if its temporal deviatiod\t = |t; — tg| is

less than a thresholfl. Now the best matching session can be determined by calculating
the minimal temporal deviation. Depending on the presentation’s nature this method can
also be adjusted, e.g. by considering only those sesslpmsth a corresponding time;

less than the time of the client’s requeést

4 Flexible Reflector Architecture

To build our reflector we used a data processing architecture bas8tteam Handlers

(SHs) [GZ01]. SHs are small data processing units which can be connected by a control-
ling unit into an acyclic directed data path. A SH can either consume or generate data
units or transmit data units from its input to its output. Additionally, each SH can ma-
nipulate the data units and, when connected to a data path, a stream which is pipelined
through these SHs can be processed or manipulated in a certain manner. The controlling
unit which connects several SHs to form a data path is c&leghh Manage(GM). The

GM is responsible for the configuration of each SH when the data path is built as well as
for its control and reconfiguration during transmission of the stream (Figure 1).

The minimal useful data path for media streaming with RTP in this architecture consists
of two SHs:RTPSourceSH andRTPSinkSH. The former SH receives RTP packets from a
streaming server and the latter one sends them to a client. The GM plus this data path forms
a streaming session which can serve exactly one client, which would be an appropriate
architecture for a proxy. To manipulate the streaming data before it is sent to the client,
other intermediate SHs could be plugged into the data path. A caching proxy, for example,
could use a SH which can copy and store the stream into a file.

| Graph Manager |

N

Stream Stream >
Handler | Handler RTP

y

> Stream
RTP Handler

A 4

Figure 1: Several SHs controlled by one GM

4.1 Data Path Management

When more than one client should receive the same stream from the same proxy, the data
packets need to be copied for each client. However, the number of clients which should
receive the same stream is not known in advance and could change dynamically during
media transmission. Therefore, we designedyeCloneSH which initially, when only

one client uses the data path, just forwards the incoming data packets to its output. When
supplemental clients should be served by this data path, the number of output ports of
the DynCloneSH can be extended dynamically. For each new clieRT&SinkSH can be
connected to the newly created ports and hereby extends the existing data path. Inside the
DynCloneSH the data packets will not be copied, but the reference to the corresponding
data buffer will be duplicated by the number of output ports.

In addition to this special SH, a data path which can serve more than one client is also
needed. Therefore, we split the data path into two parts: the server-side part, man-
aged by a GM callederverSideGM and the client-side part, managed by a GM called
ClientSideGM. The former GM holds aRTPSourceSH and aDynCloneSH whereas the

latter one only holds aRTPSinkSH. Both GMs are created at the time when a new client
requests to setup a media session. This split up design makes it possible to serve more than
one client by one data path and to substitute the server-side data path if necessary (i.e. due
to repositioning requests).

If a new client wants to join an existing media session the newly creRiedSinkSH

of its ClientSideGM is connected to th®ynCloneSH of the existingServerSideGM as
illustrated in figure 2. The newly createStrverSideGM is not used in this case but is
needed for potential position changes of a client. Otherwise, when a connecting client does
not want to join an existing session, a new reflector session is built up $stitsrSideGM.

In cases where no position changing of any client is allowed or each repositioning should
apply to all clients the creation of the unneedizaverSideGM could be avoided, but for
simplicity we have not implemented this feature yet. In all other cases this GM is needed
for potential position changes in the future.

If the joining client has different quality requirements, an intermediate transcoding SH
could be used betweeBynCloneSH and RTPSinkSH which could tailor the stream ac-
cording to the requirements of the client. For signaling the requirements the optional
RTSP-methodSET_PARAMETE&JSET _PARAMETERan be used.

| ServerSideGM | | ClientSideGM |

RTP Dyn RTP ;
RTP —| Source —®| Clone » Sink —» RTP (Client 1)
SH SH SH
| ServerSideGM | | ClientSideGM |
RTP Dyn RTP .
Source Clone sink [RTP (Client 2)
SH SH SH

Figure 2: A second client has joined an existing session.

4.2 Handling of Position Changes

We have already distinguished four cases for repositioning in 3.2. Let us first consider
case 3.b where the request of a client being in a reflector session with other clients can-
not be fulfilled by a matching reflector session already established. The client has to be
disconnected from its current session and a new reflector session needs to be set up. This
will be done by referencing a fregerverSideGM on a repositioning request. The refer-

ence to the oldberverSideGM must be deleted as well as the link to the BlgnCloneSH.

Instead, a link from théynCloneSH in the newServerSideGM to the RTPSinkSH in the
repositioningClientSideGM is created.

We show the procedure of repositioning a client exemplary in figure 3. Here, client 2
asks for repositioning. The proxy reflector will break up the link to the curSenter-
SideGM and call the functioetFreeServerSideGM() giving back a reference to an avail-
ableServerSideGM where theDynCloneSH can be connected to ttlRTPSourceSH of the
client (dashed in fig. 3).

Considering the case there is a matching reflector session for a client’s request, the streamer
interface just needs to caktServerSideGM(clientID) which can deliver the reference to a
ServerSideGM a certain client depends on. The client’s SkdverSideGM may be marked

as free if no other client uses this Graph Manager (case 3.b in 3.2), otherwise (case 3.d)
only the link to theClientSideGM is dereferenced.

| ServerSideGM | | ClientSideGM |
RTP Dyn RTP .
RTP — Sosurce —> C\I%J}_r{le > SS":ik > RTP (Client 1)
o

getFreeServerSideGM()

| ServerSideGM | | ClientSideGM |
RTP Dyn RTP ;
RTP --=%| Source == Clone f=======* s~ sink [--» RTP (Client 2)
SH SH SH

Figure 3: Repositioning of a Client

4.3 RTSP Signaling

As already mentioned we have separated the control and data path in our flexible reflector
design. RTSP signaling requests are used on the control path to instantiate Graph Man-
agers and invoke their functionalities as shown before.

In order to know when a reflector session should be established, the proxy must examine
the session description delivered from the origin server. If this session description offers
a multicast address in the connection field, but the client requests unicast transport in
RTSP SETUP, the proxy will setup a reflector session with the according ReflectorGMs
as described above. If the client is able to stream multicast, nothing needs to be done
by the proxy and it could just forward the SETUP request containing multicast transport
parameter.

In the unicast case, a reflector session is always established for a client streaming a new
presentation from a server, thus, the server-side and client-side Graph Managers are in-
stantiated. This is done to handle the case of (1) live sessions that are unicast to the proxy
but should be delivered to multiple clients and (2) collaborative streaming sessions where
other clients may join the session later.

If other clients join an existing reflector session, again, the session description must be
examined. The information which reflector session is to be joined can be derived from
the offered multicast address in the description. In case of collaborative streaming, a
collaborative service component may be queried to return information on the client already
streaming at that certain position.

5 Comparison with Multicast

Using alternatives to IP multicast routing always comes with a decrease in performance,
since the distribution tree may not always be optimal. If the reflector proxy is not placed
optimally, several parallel data sessions may be sent over the same link. Besides that, the
reflector may be a hot spot in the network, if it has to handle many clients and sessions.

However, the possible performance decrease comes with a qualitative enhancement. By
using the flexible reflector, it is possible to enable scenarios like transcoding and collabo-
rative streaming. True video-on-demand architectures like patching (which need dynamic
data-path reconfiguration) can also profit in the sense that clients which are not capable of
multicast may participate Since we can share the path from server to proxy reflector, data
transport is still more efficient than in the case of several unicast sessions.

In order to overcome the performance and scalability issues, a two-level hierarchy of re-
flectors could be used, where the upper-level reflector is placed in the backbone near a nat-
ural branching point, whereas local reflectors control a set of clients in the same domain.
The second reflector class could even be implemented as unicast to multicast reflectors if
the domain is capable of routing IP multicast. A different way to go would be the creation
of an overlay network of reflectors by exploiting well-known overlay topology building
algorithms. Automatic placement algorithms are thus an issue for future work.

6 Conclusion and Future Work

In this paper we have presented the design of a flexible reflector following the stream
handler concept. A reflector used for mapping multicast to unicast streaming sessions has
proven to be useful for clients not being able to receive multicast data. Another advantage
is the possibility for the proxy to control the data path, thus, transcoding for resource-
limited clients can be done.

Our reflector can also be used for collaborative streaming scenarios, since unicast to uni-
cast mapping can also be handled. Signalling of such sessions may have to be enhanced
in the way that a tag must be delivered indicating a joining client demands to see the pre-
sentation at the same position. The reflector we designed is flexible in the sense that each
client may request position changes corresponding to the establishment of a new data path
in the reflector. For providing the data path the reflector may have to set up a new session
to the origin server.

The flexible reflector thus provides for individual client sessions similar to unicast with

a more efficient data transport from server to proxy. Future work includes testing the
flexible reflector with transcoding modules. For handling many collaborative streaming
scenarios, the flexible reflector may be enhanced such that easy switching of data paths
in a collaborative group will be possible. Possible placement strategies and hierarchies of
reflectors will be further issues of research.

References

[App98] Apple Developer Connection: QuickTime Streaming. Publisheuttpt//developer.
apple.com/documentation/QuickTime/PDF/QT Streaming.pdf, 1998.

[ESRMO03] Ayman EI-Syed, Vincent Roca, and Laurent Mathy. A Survey of Proposals for an Al-
ternative Group Communication ServidEEE Network 17(1):46-51, January 2003.

[GZz01] Carsten Griwodz and Michael Zink. Dynamic Data Path Reconfiguratioimténna-
tional Workshop on Multimedia Middleware 2001 at ACM Multimegiages 72—75,
October 2001.

[KBOO] Peter T. Kirstein and Roy Bennett. Multimedia Education and Conferencing Collab-
oration over ATM Networks and Others (MECCANO). Final Report, RE 4007, June
2000.

[KWO02] Verena Kahmann and Lars Wolf. A Proxy Architecture for Collaborative Media Stream-
ing. ACM/Springer Multimedia Systems Journ®(5):397-405, 2002.

[SNZ01] Ion Stoica, T.S. Eugene Ng, and Hui Zhang. REUNITE: A Recursive Unicast Approach
to Multicast. INNNFOCOM 2001 (3)pages 1644-1653, Tel Aviv, Israel, March 2001.

