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Abstract

In scenarios where recorded presentations are streamed
to a group of clients, users prefer to control streaming on
demand and to get content in an individually adapted fash-
ion. IP multicast, the obvious solution for group streaming,
cannot provide such a level of flexibility. End-system multi-
cast approaches alleviate the need for multicast routing, but
require more powerful clients and are more complex regard-
ing to reconfiguration and inter-client synchronization. The
dynamic reflector we propose supports the latter issues by
grouping clients with the same play-time position into one
reflector session. Individual play-time position changes can
be performed by opening new so-called reflector sessions or
dynamically switching between them. We provide measure-
ments to show that the latency introduced by the use of a
dynamic reflector is low compared to other solutions. Fur-
thermore, we provide scalability enhancements in terms of
more efficient network resource usage and delay reduction.

1. Introduction

Collaborative streaming scenarios are group streaming
scenarios that allow clients to interactively and individually
control the streaming session, potentially supervised by a
group management. For example, in a distance learning
scenario, a group may stream a course presentation and a
teacher may form subgroups of clients. Learners who want
to advance more quickly may skip chapters on their own
and resynchronize to a common group time-line later.

In our work on collaborative streaming [8] we have de-
veloped a control architecture based on RTSP and SIP.
However, in this work unicast streaming connections are
built from each client to the streaming server. Especially for
groups that are concentrated in multiple LANs (e. g. learn-
ing centers) and reachable by the server via the Internet, this
would lead to inefficient backbone resource usage.

Traditionally, backbone resource efficiency for group
communication has been provided at network layer by IP
multicast routers that form a distribution tree and copy
packets. However, multicast routers have not been deployed
widely because of scalability and complexity concerns and
therefore, IP multicast is not available globally on the Inter-
net backbone. Alternative proposals to overcome the limita-
tions of multicast are overlay networks of end-systems (i.e.
clients) that distribute the content. However, these algo-
rithms must reconfigure the overlay tree each time a client
leaves the group with a control method, and inter-client me-
dia synchronization is more complex to achieve because of
a missing common point of synchronization.

Since we assume that specific intermediate systems will
be available in our target environments (see section 2.1) we
have decided to use a reflector that copies packets at the ap-
plication layer. Since previous approaches using reflectors
[1, 9] have not provided any presentation control function-
alities, we have shown in [3] that such functionalities can be
added quite easily by a separation of server-side and client-
side data path.

In this paper we give measurement results showing that
our flexible reflector does not introduce much latency com-
pared to unicast client-server sessions. Although our target
scenario is not intended for large-scale distributed groups,
a certain number of clients should be handled as efficiently
as possible. We will show by measurements that our flexi-
ble reflector is able to handle control events of a number of
clients in a learning center with a low delay.

The rest of this paper is structured as follows. In the fol-
lowing section we define our target scenario of collaborative
media streaming in subsection 2.1, followed by a short re-
view of our flexible reflector approach in subsection 2.2 and
concluded by the resulting requirements for the use of our
reflector in the target scenario in subsection 2.3. In section 3
we discuss other group streaming solutions as related work.
Section 4 gives experimental results concerning the intro-
duced delay of our reflector implementation. In section 5
we provide scalability enhancements in terms of more effi-



cient local network resource usage and delay reduction for
control events. A discussion of our proposed flexible reflec-
tor approach in the context of group streaming scenarios is
given in section 6. Finally we conclude this paper in section
7.

2. Reflectors in Collaborative Streaming

Collaborative streaming is a group streaming architec-
ture that enables users to watch a streamed presentation
with others. Depending on group management policies,
users may change the play-time position and thus form sub-
groups or synchronize to other subgroups. Thus, the ar-
chitecture supports both collaboration and individual inter-
activity on demand. Group initiation is done by SIP, and
a specific management entity maintains policies for group
states [8]. Such an application is useful in several scenar-
ios, amongst others distributed learning environments and
home networks.

2.1. Scenario

For the work presented in this paper, the target scenario
is a distributed learning environment where users participate
in a common presentation, e.g. a streamed pre-recorded
lecture. Users may execute repositioning requests to jump
to different chapters of a course. We distinguish the im-
pact which repositioning requests have on the group: either
the whole group follows (so-called shared repositioning) or
only the user executes this jump and the group keeps the old
play-time position (individual repositioning). Learners may
also dynamically join or leave the presentation, or synchro-
nize to other subgroups streaming the presentation at differ-
ent points in time. A teacher may control the allowed level
of individuality and interactivity by help of a group man-
agement entity. In our system policies to work at a certain
collaboration and interaction level can be defined, although
the system in general will not force any collaboration.

Learners are grouped in several classrooms at possibly
distributed network places. The networking environment
consists therefore of local area networks (classrooms or
learning centers) which may be connected to other learn-
ing centers by a wide-area network. Intermediate entities
can be easily deployed near clients in such an environment.
Individual mobile learners, e.g. in a train, can participate
also by the use of wireless Internet access. The latter would
receive transcoded content tailored to their needs. There-
fore, a transcoding module could be loaded at the reflector
and plugged into the client-side data path. Such a mod-
ule could adapt the stream to the client’s requirements such
as a reduced temporal or spacial resolution. For signaling
purpose of such requirements the optional RTSP method
SET_PARAMETER can be used. For all environments we

assume that standard Internet protocols like RTSP and RTP
are available.

2.2. Flexible Reflector Approach

We have already presented the approach of a flexible
reflector in [3] so we give only a short review of the ap-
proach here. A reflector has to map a unicast server ses-
sion to several unicast client sessions. The client sessions
that share the same play-time position, and the server ses-
sion for that play-time position, form a so-called reflec-
tor session. At RTSP level the reflector acts as a usual
RTSP proxy with separated proxy-server and proxy-client
parts. We have modified the RTSP proxy state machine for
SETUP requests in the case of joining existing sessions, be-
cause no session setup to the server is necessary in this case.
We have also modified the behavior of the state machine for
PAUSE/PLAY requests in the case of individual reposition-
ing if a reflector session does not yet exist. In this case the
proxy has to issue a SETUP request to the server before re-
ceiving media at that play-time position.

Besides, we separated the data path into a server-side and
client-side part. We employed the concept of stream han-
dlers, which are entities that implement one specific data
processing functionality like copying or transmitting over
the net. These stream handlers are composed to paths by a
graph manager which provides an interface between con-
trol and data path. This concept allows us to setup and
change data handling of a system in a very easy and flex-
ible way. In our case, the server-side graph manager con-
trols the copying while the client-side graph managers may
include transcoding functionality and at last send the data
to the clients. We show an overview of this architecture in
figure 1.
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Figure 1. Flexible Reflector Architecture
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The reflector session serves as a shared point of synchro-
nization. Data with the same play-time position is sent to
clients that are grouped into one reflector session at nearly
the same point in time. By using the possibility of joining
such a reflector session it is easy to synchronize to a group
of clients. For repositioning the whole group only the play-
time position of the reflector session has to be modified.



This is done at RTSP level and therefore, nothing has to be
changed at the graph manager or stream handlers. Reposi-
tioning to an individual position, on the other hand, needs
such a change, because the client-side graph manager has to
be released from the reflector session and either be added to
an existing one or to a newly created one.

2.3. Requirements

Derived from our target scenario of distributed learning
environments, we determine the following requirements for
a flexible reflector. We suppose that about 30 clients may
reside in a local learning center, thus the reflector must sup-
port at least 30 parallel media streams and also a number of
up to 30 server sessions, since repositioning could lead to
one single session setup per client in the worst case.

In our scenario, stored presentations are streamed on de-
mand, thus the actual media delivery delay is not consid-
ered as important as in interactive conferencing applica-
tions. However, the start-up delay as well as the latency
introduced by control events are important. The reaction on
such events should follow almost immediately, though users
have to tolerate a relatively high latency due to the relatively
large play-out buffer delays in streaming clients. If we as-
sume a play-out buffer delay of a second, the reaction on a
control event should not take longer than 250 ms.

Since we want to extend the scenario to learners
with mobile devices, it must also be possible to include
transcoders into the data path. Thus, clients must be able
to connect to a reflector independently from other clients’
data paths.

We expect inter-client synchronization to be bounded
such that a discussion may take place between users in a
learning center, because the reflector is located nearby the
clients.

3. Related Work

IP multicast is an obvious choice in the case of group
streaming scenarios, but as mentioned above IP multicast
is not widely deployed on the Internet backbone. The use
of IP multicast together with RTSP streaming is only tar-
geted at either live broadcasts or the inclusion of a streaming
server into an existing multicast conference. True media-
on-demand functionalities as required in our scenarios are
not intended for multicast and are therefore not supported
by existing streaming server implementations.

Reflectors are no new concept and have been imple-
mented to support streaming for clients without IP mul-
ticast access [1, 9]. However, these implementations do
not consider presentation control functionality. In the last
few years, other approaches for application-level multicast

have been elaborated. Approaches like End-system Mul-
ticast (Narada) [5] or SRMS [2] form an overlay of end-
systems which deliver the traffic to the next end-system
in the tree. The latter system uses an interesting proba-
bilistic packet-forwarding algorithm to deal with dynamic
membership changes. Scattercast [4] uses specific scatter-
cast proxies (SCX) to copy media to clients, which could be
used like a reflector. However, optimization of the overlay
tree means possible media data loss, which requires a more
complex implementation to receive media on both the old
and the optimized link for a certain time. We discuss these
application-level multicast approaches in section 6, partic-
ularly considering our requirements of a flexible data path
reconfiguration.

4. Measurements

Based on our implementation of the proposed flexible
reflector we performed several tests to analyze the delay
introduced by the use of the reflector. Therefore we mea-
sured the time between sending a PLAY request and the
arrival of the first RTP packet at the requesting client in
different situations. The hardware environment we used
for our tests consists of standard components. We ran the
server and the proxy each on an IBM x336 server equipped
with two Intel Xeon 3.2 GHz processors and 2GB RAM.
The client we used for the measurements has a PentiumM
1.7 GHz processor and 512 MB RAM. The operating sys-
tem of each component was a Debian Linux with a kernel
version 2.6.10. Our flexible reflector implementation, the
streaming server and the client are commonly based on the
komssys RTSP/RTP streaming system originally developed
at the Technical University Darmstadt [10]. All measure-
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Figure 2. Delay introduced by reflector use

ments were performed in a 100 Mbit/s local area network.
Therefore, the network delays between client, reflector and
server are negligible, except for the third test series where



we introduced an artificial server delay by using the netem
[6] module for the Linux kernel.

Figure 2 shows the delay introduced by using our pro-
posed reflector compared to the situation of direct client
server streaming. Both the server and the reflector were idle
and served no other clients at the moment of measurement.
Obviously, the maximum delay introduced by the use of our
reflector is lower than 2 ms and therefore negligible.

The next series of measurements which is depicted in
figure 3 shows the delay of our reflector when a new client
wants to join an existing reflector session depending on the
number of clients in this session. For ease of measurement
we started the joining client on a system like the one men-
tioned above and ran the clients which are already in the
session on the server computer. This shows that apart from
the high increase between 0 and 1 connected clients the in-
crease of delay per 10 connected clients is on average about
1 ms. The high increase between zero and the first con-
nected client can be traced back to our prototypic imple-
mentation of the reflector which needs further optimization.
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Figure 3. Delay of joining a reflector session

According to our requirements outlined in section 2.3 the
reflector should support 30 clients and the delay for a ses-
sion setup should not be higher than 250 ms. In the situation
of 30 clients sharing the same reflector session the delay is
about 6.9 ms. Thus the requirements are fulfilled.

In our third test series which is shown in figure 4 we
investigated the delay of different types of repositioning
requests subject to different server delays, representing
servers in a WAN. In the case that a client joins an existing
reflector session, i. e. the requested play-time position is the
same as that of this existing session, the delay corresponds
to the delay between the client and the reflector because no
control communication to the server is needed. In the case
that a client jumps within a reflector session, i. e. the request
changes the temporal position of the session, some control
communication to the server is needed and the delay corre-
sponds to the server delay. If the client’s request leads to

the creation of a new session, i.e. individual repositioning
mode is used, the server delay has much more influence on
the delay of the first RTP packet.
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Figure 4. Delay of different control events

Thus, on the one hand our flexible reflector approach
leads to lower delays compared to traditional client server
streaming if a client joins an existing session. On the other
hand it leads to higher delays if a client creates a new re-
flector session. To alleviate the delay in the latter case we
introduced a threshold for finding a matching reflector ses-
sion in order to prevent the setup of a new session. Further
improvements can be achieved by using caching function-
ality at the reflector which is described in section 5.2.

5. Enhancements for Scalability

We find our measurement results encouraging to use a
reflector for collaborative streaming scenarios. Joining an
existing reflector session can be done in very short time,
and repositioning for a whole group only needs one server
interaction, which can be done almost as fast as for a nor-
mal client-server session without proxy intervention. Be-
sides, we have seen that a certain number of clients can be
supported without introducing higher delays.

However, two problems are still relevant to reflector us-
age: First, the problem of efficient local network resource
usage and second, reducing the delay for new session setup
in case of individual repositioning, which is also relevant
for the efficient resource usage in wide-area networks. We
discuss each problem and solutions to it in the following
subsections.

5.1. Efficient Local Network Resource Usage

Since the reflector on a standard server can support more
than 50 clients with unicast connections, this would be
enough to deliver media to all clients in a classroom. How-
ever, if all clients mostly execute shared repositioning, and



individual repositioning occurs quite seldom, maintaining
unicast connections leads to high physical link stress in a
local area network. Unlike on the global Internet multi-
castis available in local-area networks, where only a limited
number of multicast flows must be handled. We thus pro-
pose to use IP multicast alternatively for the downstream
link from the reflector to the clients. Because the traffic will
be mapped to layer-2 multicast, the physical links will be
used very efficiently. Note that we still use unicast connec-
tions from the server to the reflector and thus do not rely
on global multicast availability. Since multicast usage may
be alternatively signaled in RTSP, it is also easily possible
to decide on an administrative basis whether the proposed
enhancement can be supported or not.

Changing the play-time position means joining a new
multicast group, i.e. transport parameters have to be
changed within a streaming presentation. The RTSP stan-
dard allows such a change only within the SETUP method
but not within the PLAY method, which, however, is needed
for repositioning. Thus, the clients’ implementations need
to be modified such that they send a SETUP request before
an individual PLAY request. Such a SETUP request can be
used for both opening new sessions and synchronizing to a
different sub-group. The reflector will then convey the mul-
ticast address and the port of the group that should be joined
by the client.

For the implementation of our reflector multicast can
easily be added. The only differences are that only one
ClientSideGM is needed for the whole multicast group
and that the RTPSinkSH controlled by this graph manager
would send to the corresponding multicast address and port.
Further joining clients would just keep their RTSP sessions,
while each client has to join the multicast group.

We show an overview of this in figure 5. It can be seen
that multicast as well as unicast clients may be supported
by our flexible reflector architecture concurrently.

Multicast-capable

‘ ServerSideGM ‘ ‘ ClientSideGM ‘ Clients
R Dyn RTP
Source Clone Sink gﬂgxlcas( >
SH SH SH

ClientSideGM
RTP Unicast
Sink Port —_—
SH

Figure 5. Shared ClientSideGM for Multicast
Clients

Unicast Client

5.2. Reduction of Individual Repositioning Delay

As already depicted in section 4 one disadvantage of us-
ing our reflector is the higher delay in the situation of in-
dividual repositioning, i.e. when a client requests to seek
to a specific position and therefore must leave its current
reflector session. In this situation a new RTSP session be-
tween the reflector and the server needs to be set up which
introduces this delay. This setup of a new RTSP session
whenever one client leaves its current session can also lead
to many sessions with very close but distinct viewing posi-
tions in time. To alleviate the creation of new RTSP sessions
we have introduced a threshold for very slight differences
in time of two reflector sessions. When searching a match-
ing reflector session we also consider those sessions with
a temporal deviation to the client’s request lower than the
given threshold. For differences greater than the threshold,
such as 500 ms, we can use the Sliding Interval Caching
method [11] for our reflector. If a client requests to jump to
a temporal position before the position of an existing reflec-
tor session (i.e. jumping back in time) this client is served
from the cache and no further RTSP session needs to be set
up between the reflector and the server. If a client wants to
seek to a future position in time the reflector sets up a new
RTSP session to the server but can now cache the stream for
clients being at an earlier temporal position. Thus, the use
of such a caching functionality leads to the avoidance of any
control communication to the server and therefore reduces
the delay to the same value as in the case of a jump into an
existing session (see fig. 4).

An additional reduction of the number of reflector ses-
sions can be achieved if special clients are used which are
capable of patching [7]. In this situation they can join an ex-
isting reflector session with a later temporal position as re-
quested and request the missing portion of the stream from
the reflector separately.

6. Discussion

In terms of scalability end-system multicast is an inter-
esting approach, because no specific host that has to deal
with a large number of sessions is required in the network.
Intelligent overlay tree building algorithms manage to keep
the degree of hosts small. This also saves bandwidth. Be-
sides, reconfiguration allows hosts to leave the group, which
is also important in the case of a host failure.

However, end-system multicast approaches are not built
for frequent reconfigurations which may be the case if repo-
sitioning in a presentation is allowed like in our scenarios.
Besides, approaches that rely on end-system data forward-
ing need considerable complexity at end-systems for mea-
surements, monitoring and tree building. Since in our sce-
narios gateways are likely to be used, such gateways can



deal with these tasks.

A further advantage of a reflector is a common synchro-
nization point for the group. At the reflector all packets are
sent at the same time except for queuing delays. In end-
system multicast some receivers will experience a higher
delay than others related to the server. Thus, artificial delays
must be introduced for inter-client synchronization, which
would have to be adapted for each tree reconfiguration.

Particularly for mobile participants the feature that each
client is only dependent on its own network conditions is
important. A change in network conditions does not mean
any reconfiguration, instead an optional transcoding module
can react on it. Moreover, clients may change their play-
time position individually without affecting data delivery to
other clients.

From this comparison of reflectors and end-system mul-
ticast related to collaborative streaming scenarios, we find
it more important to solve the problem of individual reposi-
tioning by adding cache strategies to our reflector. However,
we are aware that one reflector for a whole wide-area learn-
ing scenario will not be enough in future. Thus, we intend
to establish a hierarchy of reflectors with a repositioning-
aware service composition approach for discovery and tree-
building. This composition algorithm may benefit from
the overlay-tree building algorithms like Scattercast [4] that
were developed for end-system multicast.

7. Conclusion and Further Work

As we have shown reflectors are an alternative approach
to multicast streaming in group streaming scenarios that can
be deployed with little effort. We have presented an en-
hancement of usual reflectors which allows changes of the
play-time position. Participants of a collaborative streaming
scenario can be grouped in a reflector session according to
their play-time position. Members of one reflector session
thus share a common server-side data path. A change of the
play-time position is thus the same as joining and leaving a
reflector session.

We have shown by our measurements that repositioning
requests can be served without much delay if shared repo-
sitioning is used or if an already existing reflector session
can be joined. The fact that a setup of a new reflector ses-
sion introduces higher delay leads us to the inclusion of
caching strategies. We have also proposed enhancements
for scalability to a larger number of clients in a local net-
work. This needs a slight change of protocol processing in
the clients, because transport parameters must be changed
with a SETUP request, but has the advantage that less net-
working resources are used.

We also compared our approach to existing end-system
multicast approaches, which are made to scale for larger
groups, but do not consider frequent data path reconfigura-

tions. However, overlay tree building algorithms of these
approaches can also be applied to build a hierarchy of re-
flectors to be used in larger collaborative scenarios. This
will be an issue for further investigation.

For the inclusion of caching many strategies already ex-
ist. We plan to examine some more of them and derive
cost functions to optimize the use of our reflector with these
strategies.
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