
Contiki Ring File System
for Real-Time Applications

Sebastian Schildt, Wolf-Bastian Pöttner and Lars Wolf
Institute of Operating Systems and Computer Networks

Technische Universität Braunschweig,
Braunschweig, Germany

Email: [schildt|poettner|wolf]@ibr.cs.tu-bs.de

Abstract—Wireless Sensor Nodes often need to store or cache
measurement or operational data into some non-volatile memory.
Many applications using low power sensor nodes are based on
Contiki, which provides the COFFEE filesystem for data storage.
As COFFEE introduces occasional long and hard to predict
write delays, it can not be used in applications which have real
time demands, such as sensor networks operating in industrial
environments.

In this paper we present an efficient implementation of a
flexible Ring File System for Contiki, that can be used in real-time
applications. Read and write times are predictable and adherence
to Contiki’s filesystem API allows it to be used as a drop-in
replacement for COFFEE in many applications.

I. INTRODUCTION

For cost and energy efficiency reasons wireless sensor
networking applications are mostly build using relatively weak
hardware platforms. A common sensor node is often powered
by an 8 bit microprocessor and has a few kiB of RAM and
a few tenths of kiB as flash storage available. If any oper-
ating system is used, you will usually find small cooperative
multitasking runtime systems such as TinyOS1 or Contiki2.
In many applications there is the requirement that the system
needs to be able to store data on the sensor node itself. Either
the sensor is disconnected for long-term monitoring, and data
will be gathered by a ferry [7] later, or you just want to cache
sensed data in the case of temporary transient link failures.
In addition, some systems may collect data over a longer
period (e.g. about radio link quality) and store the readings to
flash. Later, the collected raw data can be processed en-bloc
producing a short summary that can be sent via the wireless
interface [5].

The Contiki operating system already provides the COFFEE
filesystem which can be used for these applications. COFFEE,
however, can not work in real time environments, as its write
times are unpredictable and Contiki does not preempt its tasks.
Real-time capability is needed, if your sensor network uses
a TDMA scheme for communication, or if your node also
controls actors in closed loop control. This is usually the
case for sensor networks deployed in industrial settings: For
example, the GINSENG project [4] developed a sensor/actor
network for industrial applications, where strict reliability and
real-time requirements need to be met. This is achieved by

1http://www.tinyos.net/
2http://www.contiki-os.org/

using the GinMAC TDMA MAC, which uses a static tree
topology where each device gets a fixed number of time slots
in a GinMAC “epoch” to communicate with its parent or child
nodes. If you want to write or read data in such a scenario, the
file read or write operations need to be scheduled according
to the MAC’s TDMA time schedule, and must be guaranteed
to finish before the next active slot for this node arrives.

In this paper we present RFS, a ring file system for Contiki.
RFS offers a similar API to COFFEE so it can act as a drop-
in replacement for many applications. Files are organized as
FIFO buffers of linked flash pages. RFS tries hard to minimize
copying of data. For potentially long-term operations such as
flash reorganization during garbage collection, RFS allows
the user to schedule them at a time when the application
can tolerate it. RFS can give an advance warning that a
potentially costly operation is pending, giving the application
time to schedule it. Due to this mechanism, normal read and
write operations in RFS are much more tightly bounded than
with COFFEE, making it feasible to deploy RFS in real-time
applications.

The remainder of this paper is organized as follows: Section
II gives an overview of the state of the art in Contiki and lines
out the goals for RFS design, in section III we introduce RFS’
architecture and key data structures. Section V shows RFS’
performance for various operations. Finally, in section VI we
give some concluding remarks and line out future work.

II. RFS DESIGN GOALS

Contiki ships with the COFFEE filesystem [9], which is
a versatile filesystem supporting common create, read, write
and append operations. COFFEE is a log-structured filesystem,
which makes sense for flash based storage devices, which
only support limited random access capabilities. Another log-
structured sensor node filesystem is ELF [1] for TinyOS,
which uses a global log, compared to the per-file logs in
COFFEE.

COFFEEs complexity also has some disadvantages: When
creating a file, its size needs to be reserved beforehand. If you
write more than the reserved size COFFEE can extend the file.
However, since COFFEE requires files to be stored linearly, this
usually encompasses reserving a new bigger file, and copying
the contents from the old one. While this is transparent to the
programmer, it can consume a lot of time when this happens

2

during a write operation, which is hard to predict. Also,
COFFEE can get problems with fragmentation, as it needs
continuous space for a file, and uses a first-fit strategy for
finding a free area. COFFEE tries to alleviate this problem by
an active garbage collector that moves data around, in order to
create more erasable sectors. COFFEE as well as ELF support
random-access semantics, which make them comfortable to
use but which also adds quite a bit of complexity to the code
dealing with logs and committing transactions to the storage.

While the overall performance of COFFEE is reasonably
good, the unpredictable delays due to reorganizing the flash
are a problem for real-time applications. In a cooperative
multitasking system such as Contiki, which has only limited
abilities to preempt a task, this can quickly become a problem.
Basically, using a system like COFFEE precludes the usage
of a TDMA based MAC protocol. The problem is not that
operations might take longer, but that it is hard to predict when
an operation will take longer. For example, take GinMAC [6],
a TDMA MAC protocol for industrial applications used in the
GINSENG project. GinMAC already has a designated “pre-
transmission processing time” in each TDMA cycle, which
is 2.44 ms in the default configuration. When performing
file operations during this time, it must be guaranteed that
those functions always return within this time to prevent
disrupting the TDMA schedule. Furthermore, GinMAC also
offers specific processing slots in each “epoch” which could
be used for long-term operations that are pending.

While it is hard to guarantee those limits in full-featured file
systems such as COFFEE, which have a lot of book keeping to
do, we argue, that for many tasks on sensor network nodes a
random access capable file system is not needed: If your data
is highly volatile, such as routing tables, they are better kept
in RAM anyway, as performance would always be limited by
the relatively slow random access times of storage commonly
used on network nodes (internal flash, EEPROM, SD cards).
On the other hand, for logging tasks just a simple log or ring
buffer that new data only gets appended to is enough. As most
sensor nodes run more than one task that potentially wants to
store data in flash, we do however think, that an abstraction
from the underlying flash, i.e. a file system is still desirable.

Therefore we developed the Contiki Ring File System (RFS)
keeping the following requirements in mind:

• RFS supports different files for different applications.
• An RFS file is an abstraction of a FIFO: Writes append

data, reads consume data. Therefore an RFS filesystem
can also be seen as a collection of variably sized ring
buffers.

• RFS is efficient, even if file sizes and access patterns are
not known beforehand.

• RFS can be deployed in applications requiring real-time
guarantees .

• RFS avoids copying user data around when not absolutely
necessary.

• RFS provides adequate wear levelling for flash memories.
• RFS implements CFS, the general Contiki interface for

filesystems (without random access functionalities).

III. RFS ARCHITECTURE

This section describes RFS’ on-flash as well as in-memory
data structures. In RFS files are operating like FIFO buffers:
Writing appends data to the FIFO and reading consumes the
data. There is no need to specify the size of a file beforehand:
Files grow as needed, as long as there is space in the storage
area. Files are constituted of linked areas of flash storage
(RFS blocks). Because usually flash memories do not allow
to change arbitrary bytes, the data structures pointing from
an RFS block to the next can not be changed, even when
garbage collection and wear levelling needs to move data
around. Therefore, all addresses to flash pages in RFS are
virtual addresses, assuming a sequential, continuous area for
data storage. RFS maps these virtual page addresses to the
current physical address of the data as needed. The details of
this mapping are explained in section III-D.

A. Flash Organization
RFS is designed to work directly on flash (or eeprom)

storage without an intermediate controller performing any
mapping between RFS and the flash. Flash memories are
usually organized into pages and sectors. Only full pages can
be programmed and only full sectors can be erased. Usually, an
erased sector contains only 0s, and subsequent programming of
any of the pages can set bits from 0 to 1, but can not reset any
bits to 0 without erasing the whole sector first. Depending on
hardware and driver the logic might be inverted, i.e. an erased
sector might contain only 1s and 0s can be programmed. RFS
uses the convention, that erased blocks are all 0, and 1s can
be programmed.

RFS’ flash organization can bee seen in figure 1. RFS
combines a configurable amount of pages into an RFS Block.
An RFS file consists of linked RFS blocks. The whole storage
area is organized into sectors, where each sector can hold
a certain amount of RFS blocks. Sector information in the
beginning of each data sector stores information, which RFS
blocks in the current sector contain obsolete data, which are
actively used and which blocks are still available. One sector
is reserved for metadata information about files. This speeds
up the opening of files, as only the metadata sector needs
to be searched for the file header. RFS will always keep one
completely erased sector in reserve for garbage collection (see
section IV).

As the garbage collection might change the location of the
data, header and temporary sector, RFS uses the concept of
virtual sectors: Each data sector has a virtual sector number.
When garbage collection copies data from one sector to
another physical sector, the new sector will inherit the virtual
sector number of the source.

B. API and Data Structures
RFS implements the CFS API from Contiki, which means

it can be used as a drop-in replacement for other Contiki
filesystems. However, there are some limitations: Currently
RFS does not support directories and the cfs_seek call is
not supported.

3

Sector 0 / Metadata Sector 1 / Virtual 0 Sector 2 / Virtual 1

Sector 3 / Virtual 2 Sector 4 / Virtual 3 Sector 5 / Garbage Collection

File Header 0

File Header 1

...

File Header n

RFS Block

RFS Block

RFS Block

RFS Block

RFS Block

RFS Block

Flash Page

Data Header

GC Sector

RFS sector infoRFS sector info

RFS sector infoRFS sector info

Figure 1. RFS flash organization

s t r u c t f i l e h e a d e r {
u i n t 1 6 t f i r s t B l o c k ;
u i n t 1 6 t r e a d P t r ;
u i n t 1 6 t w r i t e P t r ;
u i n t 8 t f l a g s ;
u i n t 1 6 t h e a d e r ;
char name [RFS NAME LENGTH] ;

} ;

Listing 1. RFS on-flash file header

C. File header

The on-flash structure of a file header is shown in listing 1.
Files are identified by name, which is stored in the name field.
The firstBlock field contains the virtual page address of
the first data page of the first RFS Block for this file. The read
pointer is persisted to indicate how much bytes starting from
firstBlock have already been consumed when the file was
last opened. The write pointer also denotes current file size.
Both pointers count bytes since the beginning of the file. The
flags field marks the file header as either active or obsolete.

File headers are stored sequentially in the metadata sector.
The position of this file header in the file header list in
metadata sector 0 is stored in the header field for efficiency
reasons: When a file header becomes invalid, because the
file was changed or deleted, the corresponding header can
be marked invalid. If needed, an updated file header will be
appended to the end of the header list.

When an file is opened for reading or writing, the data
structure is expanded in memory as shown in listing 2. The
currentReadBlock and currentWriteBlock store
the virtual page address of the RFS Block which currently
contains the read- or write pointer. This makes reading and
writing operations faster, as it precludes the need to traverse
the linked list of RFS Blocks beginning with firstBlock

on every read or write operation.
Each RFS file consists of a number of RFS blocks. Each

RFS block consists of a number of data pages for user data
and begins with a data header as seen in listing 3. For the data
header the nextPage entry points to the next RFS block .

s t r u c t f i l e h e a d e r {
u i n t 1 6 t f i r s t B l o c k ;
u i n t 1 6 t c u r r e n t R e a d B l o c k ;
u i n t 1 6 t c u r r e n t W r i t e B l o c k ;

u i n t 3 2 t r e a d P t r ;
u i n t 3 2 t w r i t e P t r ;

u i n t 1 6 t h e a d e r ;
u i n t 8 t r e f e r e n c e s ;

char name [RFS NAME LENGTH] ;
}

Listing 2. RFS Ram file descriptor

s t r u c t d a t a h e a d e r {
u i n t 1 6 t n e x t P a g e ;
u i n t 8 t f l a g s ;

} ;

Listing 3. RFS data block header

D. Virtual Sector Mapping
When the garbage collection (see section IV) moves

data between physical sectors, the page addresses in the
firstBlock field of the file header and the nextPage field
of data headers already written to flash can not be modified.
Therefore, all page addresses used in RFS data structures

0

1

2

3

4

5

0

1

2

3

4

5

6

7

0

1

2

3

4

5

0

1

2

3

5

6

7

4

v
irtu

a
l s

e
c
to

rs

v
irtu

a
l s

e
c
to

rs

p
h

y
s

ic
a

l s
e

c
to

rs

p
h

y
s

ic
a

l s
e

c
to

rs

Garbage Collection

Metadata
Sector

Garbage Collection
sector

Data
Sector

Figure 2. RFS virtual sector mapping

4

s t r u c t s e c t o r i n f o {
i n t 8 t t y p e ;
i n t 8 t v i r t ua lSecNum ;
enum p a g e s t a t e s t a t e [RFS BLOCKS PERSECTOR] ;

} ;

Listing 4. RFS on-flash sector information

assume that all data sectors are numbered sequentially from 0
up to he number of data sectors in the current configuration.
RFS maintains a mapping from virtual to physical sectors
and uses this information to convert a virtual page address to
the current physical page address. To convert the virtual page
address v page, first this page’s virtual sector is determined:

v sec =
j v page

RFS PAGES PER SECTOR

k

The real sector r sec corresponding to the virtual sector
v sec is looked up in the current mapping. Then the physical
page address p page can be determined by

p page = v page

+(r sec� v sec) ·RFS PAGES PER SECTOR

For an example look at figure 2: The left side shows the
mapping between virtual and physical sectors as it might be
on a freshly formatted RFS filesystem. As the metadata and
garbage collection sector do not have a virtual sector number,
in the beginning the mapping simply realizes an offset of two:
Virtual sector 0 maps to physical sector 2, virtual 1 maps to
physical 3 etc. When the garbage collection decides to move
data in sector 4 (virtual sector 2) to sector 1, the mapping
from virtual sector 2 is adapted accordingly to reflect this. The
virtual page address conversion makes sure, that now virtual
page addresses in virtual sector 2 map to physical sector 1.

E. Sector Metadata

Each sector has an associated data structure that keeps
track of used and free blocks. Listing 4 shows the sector
information. A sector’s type can be header sector, data sector
or garbage collection sector. The virtualSecNum stores
this sector’s virtual sector number, which is used for mapping
virtual to real sectors. The state field can indicate a free,
active or obsolete block. Initially all blocks are free. When a
block is appended to a file, it transitions to the active state. As
RFS files represent FIFO buffers, once the read pointer leaves
a block, that block is considered obsolete. For performance
reasons and to avoid writing to flash too much, the sector
information in flash will only be updated when a file is closed,
or before a garbage collection is performed.

For normal operations a small summary of sector info
as seen in listing 5 is stored in RAM. When a new RFS
Block is reserved in a sector, the used and active counts
in the corresponding sector info will be incremented. When
an RFS Block has been read completely, i.e. the block has

s t r u c t sec summary {
u i n t 1 6 t used ;
u i n t 1 6 t a c t i v e ;

} ;
s t r u c t sec summary sec sum [RFS SECTOR COUNT] ;

Listing 5. RFS RAM sector summary

been obsoleted, the active count of the virtual sector’s
corresponding sector summary will be decreased.

IV. GARABAGE COLLECTION AND WEAR LEVELING

As flash storage cells have only a limited number of erase-
cycles and there is no intermediate controller between the file
system and the flash (in contrast to SD-Cards or SSDs), the
file system should make sure, that writes are distributed to
all flash cells evenly. A ring file system, which is primarily
designed to append data to existing files is already a good
start to provide adequate wear levelling.

A. Metadata Sector
Special care needs to be taken with the metadata informa-

tion: A file’s read- and write pointers change with every write
or read operation. In RFS, once a file is opened this data will
be kept in RAM. Once a file is closed, the old file header in
the metadata sector is invalidated, and the updated file header
will be written to the end of the file header list. Once the
metadata sector is filled up, the live entries will be copied to
the garbage collection sector, which becomes the new metadata
sector. The old metadata sector will be deleted and becomes
the new garbage collection sector.

B. Data Sectors
A simplified version of the garbage collection algorithm for

data sectors is shown in algorithm 2. When a write request
needs to add another RFS block to a file, the sector information
in RAM will be scanned sequentially to find a free RFS block.
If such a block is not found, depending on the configuration
the write fails or the garbage collection is initiated.

The garbage collection first truncates all files. Obsoleted
blocks will be marked as obsolete in their corresponding sector
info structures. The algorithm for truncating files is shown
in algorithm 1. The number of obsolete blocks in a file is
determined by looking at how many RFS blocks the file’s
read pointer has already traversed completely (line 4). The
sector information of the sector containing the files’s first RFS
block is loaded, and if there is at least one obsolete block,
the first will be marked obsolete in the sector information.
Then the linked structure of RFS blocks is followed for the
amount of obsoleted blocks, marking each obsolete in the
sector information. Whenever the next block is located in
another sector than the previous one, the sector information
for the last sector will be written to flash and the information
for the new sector will be loaded instead (lines 11-15). There
is a small probability that this leads to a situation that for
truncating a given file the information for one sector needs to
be updated more than once, if due to fragmentation the linked

5

Algorithm 1 Truncate file
1: procedure TRUNCATE FILE(file)
2: currSec =SECTORFORPAGE(file.firstBlock)
3: currSecInfo =READSECTORINFO(currSec)
4: obsoleteCount = b(file.readPtr)/(RFS BLOCK SIZE)c
5: block page = file.firstBlock
6: while obsoleteCount > 0 do
7: blk num = (block page % RFS Pages PER SECTOR)/RFS BLOCK SIZE
8: currSecInfo[blk num] = OBSOLETE
9: obsoleteCount = obsoleteCount� 1

10: block page = DATA HEADER(block page).nextHdr
11: if SECTORFORPAGE(block page) 6= currSec then
12: WRITESECTORINFO(currSecInfo,currSec)
13: currSec =SECTORFORPAGE(block page)
14: READSECTORINFO(currSec)
15: end if
16: end while
17: end procedure

list of RFS blocks leaves sector i for one block, but comes
back to it for a newer block. This is a design trade-off we
made to preclude having to load the sector information of all
sectors into RAM all at once.

In the next step the sector summary’s active counts
are scanned to find the sector which has the least live data
(algorithm 2, lines 6-13). Truncating files and updating sector
information in the previous step was necessary, because while
the active counts can show which sectors contains the least
active data, they cannot show which specific RFS blocks are
obsolete.

In the final step the live data from the chosen block is copied
to the garbage collection sector (lines 15-25) and the selected
sector will be erased becoming the new garbage collection
sector. This operation can take some time, if too much data
is alive in a sector, i.e. when the storage space is highly
fragmented. To enable tighter bounds in a real-time system,
RFS can also keep track of the number of free RFS blocks
and not initiate garbage collection automatically. It is then
the responsibility of the application to monitor the number
of free blocks and trigger a garbage collection manually at a
convenient time.

V. EVALUATION

The evaluation was performed on a Maxfor MTM-CM5000-
MSP which is a TmoteSky [3] clone. The node features an
MSP430 processor with 10 kiB of integrated RAM and 48 kiB
of integrated flash storage. RFS and COFFEE use the M25P80
SPI dataflash [8] available on the node. The M25P80 uses a
page size of 256 bytes, where 256 pages make up one erase
sector. The chip contains 4096 pages in 16 sectors.

A. COFFEE

As a baseline test, we did a very basic COFFEE evaluation:
We created a COFFEE file with default parameters and wrote
50 kiB data to it. We choose to write data in 8 bytes steps,

as small writes are common when logging sensor data. The
results can be seen in figure 3(a).

We found, that most writes take around 0.25 ms, however
every once in a while writing takes significantly longer (more
than 700 ms in this test case). This is due to the fact that we
exceed the maximum amount of reserved blocks for that file.
In this case COFFEE will create a new bigger file, and copy the
complete data from the old file to the new file. Once the new
file’s size is exceeded again, the data is duplicated once more,
which will take longer each time the file is extended, as there
is more data to copy. Now, for this simple test case COFFEE
could probably be modified to extend a file, if free blocks
are available at the end of the file. However, since COFFEE
requires files to be stored continuously in flash, as soon as
more tasks use the file system some amount of copying will
be needed.

It is not a problem, that occasionally a file system needs
to perform some management and clean-up tasks. The main
problem is, that even in this simple case COFFE occasionally
needs a time which is more than two magnitudes higher than
the median writing time to execute a write due to these tasks.
So, to make your system real-time capable with COFFEE, you
need to schedule a time that is 3 orders of magnitude larger
than the average execution time for file system operations.
While in COFFEE this problem can be alleviated by setting
the “expected” file size before, so that extension never occurs,
we found, that for many tasks the maximum amount of storage
needed is hard to know beforehand. Over provisioning is not
a solution for resource constrained devices.

B. Ring File System Write Times
We performed the same test as in section V-A with RFS. The

results can be seen in figure 3(b). The figure shows, that for
RFS maximum write times are more tightly bounded compared
to COFFEE.

It can be seen that the variance is much smaller, and there

6

Algorithm 2 Simplified garbage collection
1: procedure GARBAGE COLLECT
2: for file in open files do . Truncate files
3: TRUNCATE FILE(file)
4: end for
5:
6: minActive = sec info ram[0].active . Find least populated sector
7: src sec = 0
8: for v sec in data sectors do
9: if sec info ram[v sec].active < minActive then

10: minActive = sec info ram[v sec].active
11: src sec = v sec
12: end if
13: end for
14:
15: src secinfo =READSECTORINFO(src sec) . Copy active blocks to new sector
16: tgt secinfo =EMPTYSECTORINFO()
17: target sec = gc sec
18: count = 0
19: for block from 1 to BLOCKS PER SECTOR do
20: if src secinfo[block].state == ACTIV E then
21: COPY BLOCK(collect,block,target sec,count)
22: tgt sec info[count] = ACTIV E
23: end if
24: count = count+ 1
25: end for
26: WRITESECTORINFO(tgt sec info,target sec)
27: sec info ram[target sec].active = sec info ram[target sec].used = sec info ram[source sec].active
28: ERASESECTOR(src sector)
29: gc sec = src sec
30: end procedure

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

tim
e/

m
s

n'th write

91 ms 179 ms
357 ms

711 ms

Average writing time
Median writing time

: 0.43 ms
: 0.24 ms

Writing time for 8 byte
Cummulative writing time

(a) COFFEE

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 1000 2000 3000 4000 5000 6000

tim
e/

m
s

n'th write

Average writing time
Median writing time
Maximum writing time

: 0.42 ms
: 0.37ms
: 6.47ms

Writing time for 8 byte
Cummulative writing time

(b) RFS

Figure 3. Writing to a file

7

 0.1

 1

 10

 100

 1000

 0 1000 2000 3000 4000 5000 6000

tim
e/

m
s

n'th write

Average writing time
Median writing time
Maximum writing time

: 0.42 ms
: 0.37ms
: 6.47ms

Writing time for 8 byte
Cummulative writing time

Figure 4. RFS file extension

are less extreme outliers. The maximal writing time to full
fill the request is 6.47 ms compared to 711 ms for COFFEE.
The average writing time is almost similar, with the slight
advantage for RFS due to COFFEE’s outliers. In total, RFS
can finish writing the total 50 kiB approximately 50 ms earlier.
In this configuration the maximum writing time occurs every
3820 bytes, when RFS has to reserve a new RFS block. This
behaviour can be seen in figure 4. In RFS the user has the
option to disable the automatic extension of files. In this case
the maxima in figure 4 can be avoided. Without automatic file
extension it is the applications responsibility to extend a file
at a convenient time before all free space in the current RFS
block of a file is used. RFS provides the application with the
amount of bytes still available in the current block to allow it
to make an informed decision.

C. RFS Read Times

We also performed a read test to show the real-time fitness
of this operation. We choose to read in blocks of 98 bytes, as
this is the maximum size of payload in a GinMAC frame.
The results for COFFEE and RFS are shown in figure 5.
It can be seen that in this test neither COFFEE nor RFS
should have a problem meeting real-time requirements. The
overall performance of RFS is slightly worse than COFFEE.
The reason is RFS’ support for having non contiguous files,
which is an important factor in enabling real-time support
when writing files. Due to this feature, RFS needs to perform a
mapping from virtual to pyhsical addresses (see section III-D)
for each read. Also, just as in the writing test, a read operation
might need to change from one RFS block to the next which
takes some additional, but well bounded, time.

D. Garbage Collection Performance

All flash based file systems need to perform garbage col-
lection at some time. This includes erasing sectors that do not
contain any useful data anymore, so they can be filled with
new data. This is a lengthy process, as deleting a sector takes
a much longer time compared to programming or reading.
The M25P80 has a “typical” erase time of 2 s and a specified
maximum of 3 s [8]. In practice, this value depends on the

 1

 10

 100

 1000

 50 100 150 200 250 300 350 400 450 500

tim
e/

m
s

n'th read

RFS avg/median/max:
Coffee avg/median/max

: 1.49 ms / 1.46 ms / 1.95 ms
: 1.25 ms / 1.22 ms / 1.46 ms

RFS read 98 bytes
RFS cummulative time

Coffee read 98 bytes
Coffee cummulative time

Figure 5. Reading 98 byte blocks

 0

 2

 4

 6

 8

 10

 12

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e/
m

s

RFS blocks

Elapsed time to update sector information

Figure 6. Garbage collection: Truncating files

individual chip, but in any case it is some orders of magnitude
larger than a typical program or read cycle (the typical duration
of a page program cycle is 1.5 ms for the M25P80), which
is the reason why in RFS the user has the option to schedule
garbage collection when appropriate.

As explained in section IV, in the first step the garbage
collection will truncate all open files, adding obsolete and
active block information to the sector information stored in
the first page of each sector. For the truncate operation the
linked list of RFS blocks of a file needs to be traversed, so
the time needed to update the sector information depends on
the number of RFS blocks in a file. The times for truncating a
file can be seen in figure 6. It can be seen, that the time rises
linearly with the number of blocks, until 17 blocks. Obsoleting
the 18th block takes more time. The reason is, that each test
was performed with only one file. Files which span more than
17 blocks fill a full sector and need to be extended to the
next sector. That means, when switching to RFS block 18,
the garbage collection needs to write the sector info for the
sector containing block 17 back to flash and load the sector
information for the sector containing block 18 (see algorithm
1, lines 11-15). This additional delay occurs, when the next
linked RFS block resides in another sector than the previous
one.

Before erasing the old sector, the garbage collection needs to

8

 0

 500

 1000

 1500

 2000

 2 4 6 8 10 12 14 16

Ti
m

e
/ m

s

Relocated blocks

Erasing full sector (256 pages)
Copying 1 RFS block (15 pages)

: 678 ms
: 77 ms

Garbage collection time

Figure 7. Garbage collection: sector copy

RFS COFFEE

ROM (.text) 5432 5184
RAM (.data & .bss) 262 144

Table I
RFS MEMORY FOOTPRINT

copy the live data to the garbage collection sector. Obviously,
the time needed for this operation depends on the amount of
live data that needs to be copied from one sector to the new
sector. The results of copying different amounts of live data
from one sector to another are shown in figure 7. The figure
plots the average of three runs. For the device measured, the
average time for erasing one sector was 678 ms, the average
time to copy one RFS block (15 pages) from one sector to
another was 77 ms.

E. Memory Footprint
To give an impression about RFS resource usage, we

measured RAM and ROM footprint on the TMoteSky node.
RFS does not use any dynamic RAM, so it can also be used
on platforms where dynamic RAM allocation is not available.
Table I shows RFS’s and COFFEE’s memory footprint in their
respective default configurations. RFS uses slightly more space
in ROM.

In its default configuration RFS uses more RAM on the
TMote Sky compared to COFFEE. We do want to note how-
ever, that 262 bytes are still only around 2.6% of the RAM
available to the TMote Sky. In RFS each file that can be
opened needs 36 bytes metadata in RAM, which will be
allocated statically even if the file is not opened. In the default
configuration RFS and COFFEE support 6 concurrently opened
files. With 3 open files RFS’s RAM usage drops to 152 bytes
(COFFEE 104 bytes).

VI. CONCLUSIONS

We presented RFS, a ring file system for sensor nodes that
can be used in real-time environments. RFS can achieve real-
time compliance by separating tasks with a small and known
runtime such as normal reads and writes, from potentially
longer running tasks such as extending a file or performing

garbage collection. RFS can give an advance warning when
such a time consuming operation might be necessary to allow
the file system to accept writes in the future. This gives appli-
cations the chance to schedule these maintenance operations.
In contrast to COFFEE, which offers more functionalities and
can be quite effective when the file size and file access patterns
are known beforehand by tuning the per-file log structure, RFS
is designed to operate efficiently even when these details are
not known beforehand. RFS is flash aware and performs basic
wear-levelling, which makes it possible to use it directly on
flash memory. As RFS adheres to the Contiki CFS API it can
be used as a drop-in replacement for applications that do not
rely on random access abilities.

Currently RFS is focussed on buffering tasks: Reading from
a file invalidates the read data. Many applications might want
to read data more than once. Examples are configuration data
or maybe a new system image from an over-the-air flashing
system that needs to be checked for consistency before it will
be flashed. It is easy to extend the RFS file descriptor with
a flag preventing invalidation of already read data. For read
access it will even be possible to provide random access with
minimal effort. Adapting RFS to other platforms supported by
Contiki should be easy. We are currently working on porting
RFS to the INGA sensor node [2].

ACKNOWLEDGEMENTS

This work has been supported by the European Commission
under the contract FP7-ICT-224282 (GINSENG) and by the
NTH School for IT Ecosystems.

REFERENCES

[1] H. Dai, M. Neufeld, and R. Han. ELF: An Efficient Log-Structured
Flash File System For Micro Sensor Nodes. In Proceedings of the 2nd
international conference on Embedded networked sensor systems - SenSys
’04, page 176, New York, New York, USA, Nov. 2004. ACM Press.

[2] Felix Büsching, Ulf Kulau, and Lars Wolf. INGA - An Inexpensive Node
for General Applications. In Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’11, page 2, Seattle, 2011.
ACM.

[3] Moteiv Corporation. Tmote Sky Datasheet. http://www.snm.ethz.ch/pub/
uploads/Projects/tmote sky datasheet.pdf, 2006.

[4] T. O’Donovan, J. Brown, U. Roedig, C. Sreenan, J. DoO, A. Dunkles,
A. Klein, J. S. Silva, V. Vassiliou, and L. Wolf. GINSENG: Performance
Control in Wireless Sensor Networks. In 7th Annual IEEE Communica-
tions Society Conference on Sensor Mesh and Ad Hoc Communications
and Networks (SECON), July 2010.

[5] T. O’Donovan, C. J. Sreenan, N. Tsiftes, Z. He, and T. Voigt. Poster
abstract: Storage-centric debugging of performance problems in sensor
networks. 7th European Conference on Wireless Sensor Networks, 17-19
Feb 2010, Coimbra, Portugal., 2010.

[6] J. B. P. Suriyachai and U. Roedig. Poster Abstract: A MAC Protocol
for Industrial Process Automation and Control. In In the European
Conference on Wireless Sensor Networks (EWSN 2010). IEEE, February
2010.

[7] R. C. Shah, S. Roy, S. Jain, and W. Brunette. Data MULEs: modeling
and analysis of a three-tier architecture for sparse sensor networks. Ad
Hoc Networks, 1(2-3):215–233, Sept. 2003.

[8] ST Microelectronics. M25P80 8 Mbit , Low Voltage , Serial Flash
Memory With 25 MHz SPI Bus Interface, 2002.

[9] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt. Enabling Large-Scale Storage
in Sensor Networks with the Coffee File System. In Proceedings of the
8th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN 2009), San Francisco, USA, Apr. 2009.

