Byzantine Agreement Service for Cooperative
Wireless Embedded Systems

Wenbo Xu, Martin Wegner, Lars Wolf, Riidiger Kapitza
Institute of Operating Systems and Computer Networks, TU Braunschweig, Germany
Email: wxu,wegner,wolf kapitza@ibr.cs.tu-bs.de

Abstract—Recently there is a number of scenarios such as
vehicle platooning, UAV swarms and cooperative robots, where
a group of autonomous entities needs to make joint decisions
to operate effectively. Distributed agreement protocols can play
a key role to establish a common view on context parameters
and to coordinate joint actions. Due to the harsh environmental
conditions in some of these scenarios and their safety critical
nature such protocols need to tolerate arbitrary faults and even
malicious attacks.

This paper presents a framework for Byzantine fault tolerant
agreement for small-sized groups of autonomous, wirelessly con-
nected systems. It focuses, besides providing support for general
purpose value agreement, on the agreement of distributed sensor
readings. The latter enables to establish a joint view on context
conditions, thereby building the basis for joint coordinated
actions. As classical Byzantine fault tolerant agreement protocols
require 3t + 1 participants to tolerate ¢ faulty nodes, we also
consider a hybrid fault model by utilizing a trusted subsystem,
which can only be subject to crashes. The latter reduces the
required group size for agreement to 2¢ + 1 nodes and reduces
the message complexity of the protocol, which is essential for the
targeted scenarios. The experiment results show that the trusted
subsystem can effectively increase the efficiency. '

Index Terms—Byzantine fault tolerance, distributed agree-
ment, wireless embedded system

I. INTRODUCTION

Reaching agreement to make joint decisions is important
for many distributed applications. Especially in recent years,
embedded mobile systems are rapidly developing, and more
powerful capabilities of them are exploited by building co-
operative groups or clusters. Examples of these scenarios are
vehicle platooning, unmanned aerial vehicles (UAVs) swarms,
cooperative robots, etc. These scenarios have in common that
all entities in the group have their own perception of the
environment, e. g., through individual sensors. Simultaneously,
they are equipped with actuators that can in turn change
the environment. So most of the time, such systems need
to achieve a joint view about the state of the environment
before they take an action. In conclusion, agreement has to be
provided as a service for these systems.

These systems are commonly safety-critical, thus they re-
quire a certain degree of fault tolerance, i.e., the group will
not fail even if a limited number of members is not working
correctly. Here, faults are not only limited to fail-stop ones like
crashes. Because of an unstable environment, systems might

I'This work is part of the DFG Research Unit Controlling Concurrent
Change, funding number FOR 1800.

suffer physical damages, transient or permanent hardware
faults, sensor malfunctions and even malicious attacks, all of
which are referred to as Byzantine faults [1]. Consequently,
a Byzantine fault tolerant agreement is helpful, on one hand,
to protect members from being impacted by faulty ones, and
on the other hand, to keep a member still functional even if it
suffers some kinds of malfunctions, e. g., a broken sensor.

In related work, iterative approaches can be found, i.e.,
the individual values are converging to an agreement [2, 3].
Via simulation the capability is shown for a large group with
dozens of nodes.

In this work, we focus on directly making an exact agree-
ment in a comparably smaller group. Besides the “obey-the-
general” of [1], we also consider a special case of valid sensor
value agreement. We provide several options of algorithms to
solve the periodical agreement problem, and we also discuss
the use of a special trusted subsystem to decrease overhead.
We implement the Byzantine agreement protocol on our
testbed of RaspberryPis in ad-hoc wireless mode.

The paper is organized as follows. Section II discusses
related work. Section III defines the system model and
gives the problem statement. Section IV presents the design
of algorithms solving both follow-command agreement and
value-consensus. Section V shows the evaluation results and
Section VI concludes the paper.

II. RELATED WORK

Distributed agreement has been studied for many years, but
most researches focus on the application of state machine
replication (SMR). Most famous examples are Paxos [4]
tolerating crash faults and PBFT [5] tolerating Byzan-
tine faults. They and almost all the derivative agree-
ment protocols are shaped to fit into the SMR appli-
cation. They exploit the powerful computation resource
and multiple Ethernet network interfaces to achieve max-
imum throughput. However both the system assumption
and goal are different for embedded mobile systems,which
are more resource and energy limited and normally com-
municate via more unstable wireless ad-hoc networks.
They also do not pursue such objective of high throughput.

Reiser et al. optimize distributed agreement for embedded
systems [6]. They discuss the situation when both ad-hoc and
infrastructure networks are available, and how to utilize the
infrastructure to achieve stronger guarantees. Mocanu et al.
implement Paxos in multi-agent system [7], but Byzantine

faults are not covered. KARYON is a system architecture for
safe coordination among autonomous cooperative vehicles [8].
The authors also realized that a consistent view of the state is
indispensable, therefore agreement protocols are needed as an
important middleware. But rather than solving the agreement
problem itself, this work is focusing on an architecture level
support. Similarly Kopke’s thesis offers a support to consensus
in WSN from the communication protocol stack level [9].

Some works directly present Byzantine agreement algo-
rithms for embedded wireless systems. Turquois is such a
randomized binary consensus protocol designed for wireless
ad-hoc networks [10]. It utilizes UDP broadcast to benefit from
the shared communication medium. Different from binary
consensus, sensor values form a huge (if not infinite) value
domain, which brings a question to the value validity. Marzullo
already addressed the issue of fault tolerance for continuous-
valued sensors [11]. His approach is similar to an n-modular
redundancy that votes for not a scalar but an interval of the sen-
sor value. It can be applied in an individual system requiring
reliable sensors, but does not solve the distributed agreement
among autonomous systems without a centralized voter. In
the latter case, each process has a value read from its sensor,
and wants to agree on a common value. Ideally the value is
from a correct process. But Neiger proved that a determin-
istic algorithm requires at least n > ¢ - |D| nodes to tolerate ¢
Byzantine faulty nodes where D is the value domain [12]. A
recent work of Stolz and Wattenhofer overcomes this issue
with another validity definition, called median validity [13].
It only requires that the agreed value is close to the median
of all correct processes. Although their algorithm is designed
for synchronous system, which is not applicable to our target
domain, the validity definition is useful when the values are
in a continuous space, such as the physical sensor value.

There are also several orthogonal directions to our work. A
number of works about distributed agreement in cooperative
systems deal with the adaptive and convergent consensus
(e.g. [2, 3]). They adopts the discrete time dynamic model
and converge iteratively. There are also models which only
requires the values of different processes are within € of each
other, namely approximate consensus [14]. But we focus more
on an exact agreement and an explicit termination criterion.
Wagner et al. propose a middleware support for context-as-a-
service [15]. It manages different sensors serving for the same
device to build a better overview of the context.

III. SYSTEM MODEL AND PROBLEM STATEMENT

In this section we specify our system model and define our
Byzantine agreement problem.

A. Process and Initial Value

For simplicity we only consider a static group in which
everyone has a unique ID that is known to each other. The
group consists of n processes: {po, ..., pn—1}. Every process
might have an initial value v;, e. g., from its sensor. A process
is called correct if 1) its initial value is correct and 2) it exactly
follows the algorithm specification. Meanwhile up to ¢ (< n./3)

processes can be faulty, meaning that they can behave ar-
bitrarily such as crashing, taking an incorrect value from a
malfunctioning sensor or actively working against the protocol.
Later we show that with the help of a trusted subsystem we
can relax the requirement to ¢ < n/2. It is worth noting that ¢
is distinctive from the actual faulty processes number f(< t).
The former is a system parameter indicating the upper bound,
while f is an unknown non-deterministic variable of runtime.
The correctness of an initial value is application dependent.
For example in the case of a physical value sensor, assume
the actual value is v and there is a permissible error § of the
sensor. Then a correct value is within the range v + 6.

B. Problem definition

The processes in the group are periodically agreeing on
a value. Each period is called an agreement instance. The
outcome of an agreement instance is that every process decides
a value, with the following properties: 1)Agreement: No two
correct processes decide differently. 2)Termination: Every cor-
rect process eventually decides. 3)Validity: The decided value
v is valid (defined later). Based on who is allowed to propose
a value, the problem is classified into two scenarios. One is
the follow-command, where only one special process called
primary proposes a value, and all the other processes decide
to accept it or not. The Byzantine General Problem [1] is
exactly this case. An example of this scenario can be a platoon
of cars deciding which route to choose to the destination.
The primary could be the car in the most front, and gives
an instruction to the followers. If the primary is faulty and
prevents an agreement, it should be detected and replaced by a
new primary. The validity property in this case requires that if
the primary is correct, its proposal should be the final decision
of everyone. This also implies which use cases are suitable
for the follow-command scenario: either all options that the
primary can propose are equally good and harmless, or a bad
proposal can be easily detected and rejected by everyone.

The other scenario is the consensus, where all processes has
their own initial values. For example a platoon is agreeing on
a sensor value, e. g. temperature. If a follower received a pro-
posal of 5°C but its local sensor reads —30 °C, it cannot tell
which one is correct. But they have to agree on a “good” value.
To define what is a good value, we adopt the median validity
of Stolz et al. [13]: Denote the median of a sorted vector V'
with length n (indexed from 0) as: median(V) := V[251]]
2. Assuming there are actually f (< t) faulty processes during
runtime yet not known to the algorithm. Let Sorted_Correct
denote the initial values from all correct processes, sorted in
an ascending order. So it has a length of (n — f). Denote
c:i= L"*THJ, namely the middle index of Sorted_Correct.

Definition 1. Median validity: assuming n > 3t+1, a decision
v is valid, if

Sorted_Correctc —t] < v < Sorted_Correctfc+t] (1)

2We choose the smaller value close to the middle as median if the array
length is even. It can also be configured as the greater one.

Sorted vector of correct values the median

¥
I t values |T
{

0 Y
Value range with median validity

t values I |
J

n-f-1

Figure 1: Median Validity

In other words, a valid value is the one within the range of
the middle (2¢ 4 1) correct values as illustrated in Figure. 1.
Because n > 3t+1and ¢t > f,itmusthold n— f—1—1¢ >
¢ = t. So we do not have to worry about the index (¢ — t)
and (c + t) being out of bounds. We will discuss the case of
2t +1 < n < 3t+1 in Section III-D.

Under this definition, a valid value does not necessarily
come from a correct process (which might be hard [12], as
explained in Section II). A faulty process can still influence
the outcome of agreement, but it has to choose a good
enough value within the valid range, otherwise it will be
ignored. Figure 1 also indicates that the definition is a stronger
condition than that “a valid value is from the range of all
correct values”. They are equivalent only when n = 3t + 1. If
n becomes greater with the same ¢, the median validity range
still keeps close to the median of the correct values.

C. Network

Processes communicate via network messages. Basically we
do not assume a synchronous network. Thus, messages can
experience an unbounded delay. However, in order to achieve
both agreement and termination, we assume the partially
synchronous model to overcome the FLP impossibility [16].
In this model the system is switching between synchronous
and asynchronous periods. So we classify each agreement
instance as good or bad one. In a good instance the system
eventually becomes synchronous and all messages arrive in
time so that an agreement can be achieved with termination.
But in a bad instance we have to trade one for the other. In
most state machine replication systems, termination (liveness)
is sacrificed to keep agreement (correctness) for a fail-stop
service. But this is not an absolute rule, especially in systems
with certain time-critical tasks. We can let processes abort an
agreement instance in an “elegant” way if they cannot reach
agreement in the end. But that is out of scope of this paper.

Definition 1 is the tight bound for all deterministic asyn-
chronous agreement algorithms with the following lemma:

Lemma 1. Given n > 3t, without further information about
the values, no deterministic agreement algorithm for asyn-
chronous system guarantees that the agreed value v always
satisfies either

Sorted_Correct[c — t] < v < Sorted_Correctjc+t] (2)

or Sorted_Correctjc—t] < v < Sorted_Correctlc+t] (3)
We omit the formal proof because of space limit. The basic
idea is that in an asynchronous system, we cannot distinguish a
slow process from a crashed one. As a result, in the worst case
a decision is based on only (n—2t) correct values, plus ¢ faulty
values but excluding the other ¢ correct but slow ones. Faulty
ones can then collude all together to propose very small or

big values, to “shift” the result to either direction. 3 From this
lemma we can also conclude that: even if faults are restricted
to crashing or providing an incorrect initial value, Definition 1
is still a tight bound in asynchronous system.

D. Encryption and trusted subsystem

Although Byzantine processes can be arbitrarily faulty, there
are some limits. Firstly they are computationally unable to
break the encryption mechanisms. Though not mentioned in
most simulation-based works, basically all messages should
be certified with a message authentication code (MAC). Some
messages even need a digital signature to proof that they
are not modified during forwarding. In the rest of the paper,
a message with MAC is not explicitly denoted. We assume
the symmetric and asymmetric key pairs are already correctly
distributed between processes before the algorithm starts.

Furthermore we consider a variant of the fault model,
namely the hybrid fault model, that every process is equipped
with a trusted subsystem to provide a relatively simple but
critical function. It should be more trustworthy than the other
part of the system for certain reasons, so that even a malicious
process cannot bypass it, unless stop its service (fail-stop). Ex-
amples of implementations include the use of special hardware
technology like Intel SGX [17] or ARM TrustZone [18]. We
use a similar trusted function as in CheapBFT [19] to prevent
equivocation attack, namely a Byzantine process sending con-
tradictory messages to different recipients in a broadcast. It
is achieved by keeping the process ID, a monotonic counter
together with the encryption operation inside the subsystem.
Every time a process broadcasts a message, the messages is
combined with the ID and the counter and then encrypted
with the secret key in the subsystem. Then the counter
increases by one. In this way a malicious process cannot send
different messages with the same counter. As a result the
tolerable faulty processes can increase from [271 | to [251].
Another benefit is that digital signature can be replaced by the
more efficient symmetric encryption, because the subsystem
will not leak the secret keys even to its host process.

IV. ALGORITHM DESIGN
Now we show the solution to both the follow-command
and consensus scenario with the same prototype. We also
explain how the trusted subsystem can be used and influence
the agreement protocol.

A. Separate value exchange and agreement phases

We use the primary-based protocol PBFT [5] as the pro-
totype. The reason is that the follow-command scenario is
naturally matching a primary-based agreement. And we want
to make our implementation so flexible that switching to the
consensus scenario does not need a totally new protocol.

To let a consensus scenario also benefit from the primary-
based agreement, we firstly revisit the PBFT protocol in more
details. It consists of three modules:

3Note that this lemma does not hold if we change our validity definition
to “a valid value is within the range of all correct values”. As explained
previously, our definition is stronger if n becomes greater than (3¢ + 1).

la) Propose: the primary proposes (preprepare) a value, and
the follower verify the validity of it.

2) Decide: after two rounds of message exchange (prepare
and commit) every one tries to decide. If any two
correct processes decide, they decide the same value.
It is possible that no one decides at all.

3) View-change: if too many processes fail to decide in
the end, the system enters a new view, namely a new
primary replaces the old one. It also guarantees that if
any correct process has already decided, this information
is passed to the new view to everyone, so that correct
processes can only decide that value afterwards.

Clearly, the follow-command scenario can directly use this
protocol with little modification, and the consensus scenario
only differs in the first module. In consensus, processes need a
value exchange procedure to collect information about others’
values. So the propose module is modified as:

1b) Propose: processes exchange their values. Then the
primary proposes a value, and the follower verify the
validity of it based on the collected information.

B. Algorithm for value exchange in consensus scenario

The value exchange algorithm relies the following lemma:

Lemma 2. Let A be an vector which contains the initial values
of any (n — t) processes. Then median(A) is always valid
according to Definition 1.

The proof is omitted. This lemma implies that if the
processes can agree on a vector of initial values from (n — t)
processes, they automatically agree on a median valid value by
simply choose the median of that vector. The former problem
is referred to as vector consensus.It is sufficient but not nec-
essary for median validity. So we turn to the weak interactive
consistency [20], which ends up with a primary proposing a
vector, and every follower verifies and then accepts or rejects
it, but not agrees on it. The only two requirements are:

o If the primary is correct and the agreement instance is
a good one (see Section III-C: Network), every correct
process will accept the proposal.

o Even if the primary is faulty, it cannot lead a correct
follower to accept an invalid value.

With this idea to implement the propose module, a faulty
primary can only prevent the system to make a progress. This
can be solved via the primary rotating in the view-change.

Weak interactive consistency is shown to be solved either
with or without digital signatures [20]. The original algorithms
were implemented in a round-based model with timing as-
sumptions in each round. In our work the algorithms are de-
signed as time-free as possible, so that they are more practical
in asynchronous situation (similar concern is considered
in [21]). The algorithms are slightly modified to get rid of
the round notation and time assumptions.

The signature-based algorithm is intuitive: every process
signs its value with signature and sends to the primary. 1) The
primary waits until it collects (n — t) values, which should

Algorithm 1 Signature-free proposal and verification (single
instance)

1 Initialization:

2 vp < initial value of p

3 Vpll=1

4 Mpl[:]=41

5 Task T1:

6 broadcast (VALUE,p,vp) I+ (MSG-TYPE, sender-id, ...) %/
7 if p = primary do

8 wait until n — ¢ values in V), are not L

9 broadcast (PROPOSE, p,median(V}), Vp)

10 upon (PROPOSE, primary, med, Vprimary) is delivered do
11 if |[Vp| = n — t and med = median(V}) do

12 wait until Vi : Vyrimary[i] = L or

{5+ Vorimary[i] = M[j][d]} >t

13 accept med

14 Task T2: /* repeatedly execute to handle VALUE and ECHO x*/
15 while true do

16 upon (VALUE,i,v;) is delivered do

17 if p # primary

18 broadcast (ECHO, p, 1, v;)

19 else do
20 send (ECHO,p,1i,v;) to itself
21 upon (ECHO, j,i,v;) is delivered do
2 My [j][i] = vi
23 if p = primary and |{(j, v;) : Mp[j][i] = vi}| = 2t + 1 do
24 Vpli] = v;

always happen if the instance is good. Then the primary
concatenate the original signed message as the certificate,
and propose the median of them together with the certificate.
2) Since a faulty primary cannot forge the signatures, correct
followers can verify it and will only accept a valid value. The
two arguments above ensure the correctness of the algorithm.

As for a signature-free version, one more message round
is needed, and it requires n > 3t. The algorithm is shown
in Algorithm 1 and Figure 2. The value M[j][:] means that
“process j confirms it has received M[j][i] from process i”.
And we have the similar arguments for the correctness:

Lemma 3. If the primary is correct and the algorithm is
running in a good instance and n > 3t, every correct process
will eventually accept the proposal of primary.

Proof. Line 8 and 12 are the only places to block the algo-
rithm. If it is in a good instance and all messages are eventually
delivered, all the (n —t) correct values must be echoed by the
(n — t) correct processes, making line 8 moving on. (n — t)
echos contain at least (n — 2t — 1) from correct processes
(except the primary), which is at least ¢ given n > 3t. Any
correct process sending echo to the primary should also send
to everyone else, so line 12 will also continue. This confirms
the termination of the algorithm. O

Lemma 4. A correct process will only accept a median valid
value, if it accepts any value in the end.

Proof. Line 11-12 ensures that every non-_L value in Vyrimary
should also be echoed by another ¢ processes. Among those
t processes plus the primary, at least one is correct. So every
Vprimary|i] 7 L is confirmed by at least one correct process.
Since correct processes do not lie, Vi,rimary [¢] must be initially
sent by ¢. The conclusion follows from Lemma 2. O

. AN
pl \
Y-S

PROPOSE

p3
VALUE ECHO
Figure 2: Signature-free value exchange. pg is the primary.

N\ 2

p2

Timeout for
view-change

(VALUE) PROPOSE COMMIT
Figure 3: Normal case communication pattern with a trusted
subsystem. py is the primary. The VALU E message round is
not required in a follow-command agreement.

C. An extension: using a trusted subsystem

We use the trusted subsystem (Section III-D) to perform the
encryption/decryption operation and to prevent a faulty process
sending contradictory messages to different recipients (equivo-
cation). A monotonic counter inside the subsystem is applied,
similar to CheapBFT [19] or MinBFT [22]. This affects both
the value exchange and agreement phase.

The most significant benefit is that the lower bound of to-
tal processes reduces from (3t + 1) to (2¢ + 1) to tolerate ¢
Byzantine processes (Section III-D). So we can build a min-
imal group of three rather than four provided ¢ = 1. This is
almost the optimal case we can achieve, because if there are
only two while one of them might be faulty, an agreement is
pointless since each one mistrusts the other.

The agreement protocol can be simplified too. A follow-
command agreement needs only two rounds communication:
propose-commit, compared to the three rounds communication
preprepare (propose)-prepare-commit of [5]. As for the con-
sensus scenario, we can stick to the signature-based version
because all message authentications are performed inside the
trusted subsystem, which can fulfil the duty of a digital
signature as explained in Section III-D. The communication
pattern is illustrated in Figure 3. Because of the space limit,
we omit the detailed description of the protocol.

However there is one issue of the median validity
in the consensus scenario. Recall Definition 1 requires
(n > 3t+1). To prevent the index out of bound, formula 1
is modified as Sorted_Correctmin(0,c¢ — t)] < v <
Sorted_Correctlmax(c + t,n — f —1)].

Lemma 2 had the same requirement. Otherwise, consider
an example of temperature measuring. The real value is
about 5 °C. One correct process sends a value 5.1 °C, another
faulty one sends —30°C and the third one with 4.9°C is
slow and thus excluded from the agreement protocol. But
no one can infer a good value from 5.1 and -30. Taking the
average does not help because of an extreme outlier as in this
example. To overcome this issue, extra information is required,
e.g. a maximum permissible error § provided by the sensor
specification. Accordingly the vector A in lemma 2 should be

Table I: Measured delay in ms

Delay (ms) Follow- _ Consensus _Consensus

command | signature-based | signature-free
No trusted module 113 786 118
With trusted module 60 119 (HMAC) -

modified as: a vector contains (n — t) initial values, and the
difference between any two values is within 24.

D. An issue about the time

Most embedded mobile system applications are time-
critical. For example the sensor reading requires a certain
degree of “freshness” of the value. It raises a new question:
how does a process distinguish messages of the current
period from the ones from the past? One intuitive solution is
using timestamped messages. By comparing the timestamp
with its own clock, the recipient knows whether the
message belongs to the current agreement instance or to an
old one. This requires a synchronized clock, e.g., via GPS,
which is reasonable at least in vehicular communication [23].
However this assumption might not always hold in a more
general, heterogeneous system. When a time service or
synchronized clock is not available, a malicious process may
even intercept and retransmit messages with a delay (replay
attack). How to address this issue is left as future work.

V. EVALUATION

We build our testbed with four RaspberryPi 3s, connected
via ad-hoc wireless mode with static IP addresses. Letting
three of them ping the fourth one simultaneously, the average
round trip time is measured as 7.99 ms. We use DS18B20 1-
wire digital thermometers as sensors. The sensor reading time
is 827 ms in average, which is a main bottleneck, so it is not
included in the agreement delay below.

Message authentication and digital signature use HMAC and
RSA-1024 on SHA256 hash function respectively. As a pre-
liminary prototype, we simulate the trusted subsystem with a
separated process. In future work we will exploit the TrustZone
technology equipped on RaspberryPi. Furthermore, we inject
2ms delay on every function call (validate/verify every mes-
sage) in the trusted subsystem. This is a quite conservative
estimate reported by [19]. All experiments are conducted under
the fault-free case, except that in the sensor consensus we heat
up one of the thermometers to produce a wrong value.

The results are shown in Table I 4. It is not surprising that the
signature-based algorithm without a trusted subsystem is much
slower, especially on such systems with limited computational
resources. But there is no obvious difference between the
follow-command and the signature-free consensus scenario.
When using a trusted susbsystem, the delay drops to 50%
in the follow-command scenario. This is due to the facts
that it requires only two rounds of communication instead of
three. A more remarkable improvement in the signature-based
consensus, because symmetric encryption (HMAC) instead
of RSA is used. The delay decreases to be as good as a
signature-free version without trusted subsystem. The reason

4Since the trusted subsystem already acts as signature and cannot be
bypassed, its signature-free version does not make any sense.

might be that the message certification/verification is the
bottleneck during value exchange. Although signature-based
algorithm is one round less, every message composing the
PROPOSE certtificate still needs to be verified one-by-one.

VI. CONCLUSION

In this work we have discussed the Byzantine fault tolerant
agreement on mobile systems, where a group of autonomous
entities needs to take a joint action or reach a joint view.
We studied two scenarios: In the first one, a special primary
proposes and the followers accept it. The second one is a
sensor value consensus. Each process reads its own value from
the sensor, and the group agrees on a value close enough to
every correct process. We also discussed the use of a trusted
subsystem to constrain the ability of a Byzantine process and
to reduce the overhead, and most importantly reduce the group
size from (3t +1) to (2t + 1), resulting in a minimal group of
three processors instead of four. The experiment runs on Rasp-
berryPis connected via ad-hoc wireless network. The results
show that a trusted subsystem reduces the delay to 50% in the
follow-command scenario. As for the sensor value consensus,
the performance is comparable to the signature-free version in
non-trusted-subsystem case. However it significantly reduces
the message complexity. The future work will explore dynamic
group member management, rather than a static, closed group.

REFERENCES

[1] Leslie Lamport et al. “The Byzantine Generals Prob-
lem”. In: ACM Trans. Program. Lang. Syst. 4.3 (July
1982), pp. 382-401.

[2] Lin Xiao et al. “A scheme for robust distributed sensor
fusion based on average consensus”. In: Proceedings
of the 4th international symposium on Information
processing in sensor networks. IEEE Press. 2005, p. 9.

[3] Francesco Acciani et al. “Achieving robust average con-
sensus over wireless networks”. In: Control Conference
(ECC), 2016 European. IEEE. 2016, pp. 555-560.

[4] Leslie Lamport et al. “Paxos made simple”. In: ACM
Sigact News 32.4 (2001), pp. 18-25.

[5] Miguel Castro and Barbara Liskov. “Practical Byzantine
fault tolerance and proactive recovery”. In: ACM Trans-
actions on Computer Systems 20.4 (2002), pp. 398—461.

[6] Hans P Reiser and Anténio Casimiro. “Optimizing
Byzantine Consensus for Fault-Tolerant Embedded Sys-
tems with Ad-Hoc and Infrastructure Networks”. In:
Proc. of the 4th Int. Workshop on Dependable Embed-
ded Systems (WDES’07). 2007.

[7] Andrei Mocanu and Costin Badicd. “Bringing paxos
consensus in multi-agent systems”. In: Proceedings of
the 4th International Conference on Web Intelligence,
Mining and Semantics (WIMS14). ACM. 2014, p. 51.

[8] Anténio Casimiro et al. “The karyon project: Pre-
dictable and safe coordination in cooperative vehicular
systems”. In: Dependable Systems and Networks Work-
shop (DSN-W), 2013 43rd Annual IEEE/IFIP Confer-
ence on. IEEE. 2013, pp. 1-12.

[9]

[10]

[21]

Andreas Kopke. “Engineering a communication pro-
tocol stack to support consensus in sensor networks”.
PhD thesis. Technischen Universitidt Berlin, 2012.
Henrique Moniz et al. “Turquois: Byzantine consensus
in wireless ad hoc networks”. In: Dependable Systems
and Networks (DSN), 2010 IEEE/IFIP International
Conference on. IEEE. 2010, pp. 537-546.

Keith Marzullo. “Tolerating failures of continuous-
valued sensors”. In: ACM Transactions on Computer
Systems 8.4 (1990), pp. 284-304.

Gil Neiger. “Distributed consensus revisited”. In: Infor-
mation Processing Letters 49.4 (1994), pp. 195-201.
David Stolz and Roger Wattenhofer. “Byzantine Agree-
ment with Median Validity”. In: 19th International
Conference on Priniciples of Distributed Systems
(OPODIS), Rennes, France. 2015.

Danny Dolev et al. “Reaching Approximate Agreement
in the Presence of Faults”. In: J. ACM 33.3 (May 1986),
pp- 499-516.

M. Wagner et al. “Context as a service - Requirements,
design and middleware support”. In: 2011 IEEE Inter-
national Conference on Pervasive Computing and Com-
munications Workshops (PERCOM Workshops). Mar.
2011, pp. 220-225.

Michael J Fischer et al. “Impossibility of distributed
consensus with one faulty process”. In: Journal of the
ACM (JACM) 32.2 (1985), pp. 374-382.

Frank McKeen et al. “Innovative instructions and soft-
ware model for isolated execution.” In: HASP@ ISCA.
2013, p. 10.

ARM. ARM Security Technology - Building a Secure
System using TrustZone Technology. Tech. rep. PRD29-
GENC-009492C. ARM Technical White Paper, 2009.
Riidiger Kapitza et al. “CheapBFT: Resource-efficient
Byzantine Fault Tolerance”. In: Proceedings of the
EuroSys 2012 Conference. Ed. by European Chapter of
ACM SIGOPS. Switzerland, 2012, pp. 295-308.
Zarko Milosevic et al. “Unifying Byzantine consensus
algorithms with weak interactive consistency”. In: In-
ternational Conference On Principles Of Distributed
Systems. Springer. 2009, pp. 300-314.

Miguel Correia et al. “From consensus to atomic broad-
cast: Time-free Byzantine-resistant protocols without
signatures”. In: The Computer Journal 49.1 (2006),
pp- 82-96.

Giuliana Santos Veronese et al. “Efficient byzantine
fault-tolerance”. In: Computers, IEEE Transactions on
62.1 (2013), pp. 16-30.

Panos Papadimitratos et al. “Vehicular communication
systems: Enabling technologies, applications, and future
outlook on intelligent transportation”. In: [EEE Commu-
nications Magazine 47.11 (2009).

