
A Script MIB based
Java Policy Management System:

Design and Implementation Report

Frank Strauß

Computer Science Department
Technical University Braunschweig

Bültenweg 74/75
38106 Braunschweig, Germany

strauss@ibr.cs.tu-bs.de

September 2001

Abstract

Tasks 6.1 – 6.3 of the joint Jasmin Project between theTechnical University of
BraunschweigandNEC C&C Research Laboratoriesscheduled for the time from
January to August 2001 has been concerned with the design and implementation
of a policy management system based on the Jasmin Script MIB implementation.

While Deliverable 6.1 outlined the requirements and a general architecture
in May 2001, this report documents the architecture and usage of the prototyped
Java class packages for developping policy scripts and their adaption to DiffServ
router configuration. An example is presented and final conlusions denote the
deficiencies and probable future work.

This report is heavily based on the concept report “Concept of a Script MIB
based Policy Management System” [1] and the draft paper “Using the Script MIB
for Policy-based Configuration Management” [2] submitted to NOMS-2002.

1 Introduction

Policy based management is not a new area of research and engineering. It has been
addressed in the past from the research point of view by several research groups, work-
shops, and conferences [3, 4] and from the vendors’ point of view by some specific
engineering and implementation efforts, e.g. [5].

1

mailto:strauss@ibr.cs.tu-bs.de
http://www.ibr.cs.tu-bs.de/
http://www.ibr.cs.tu-bs.de/
http://www.ccrle.nec.de/


The goals of this project are somewhere in between: Based on some research knowl-
edge from the past few years and based on the knowledge from the work that has
been done so far in the IETF Policy Framework (POLICY), Configuration Manage-
ment with SNMP (SNMPCONF), and Resource Allocation Protocol (RAP) working
groups, a policy management system was outlined and implemented in a prototype
fashion. Its basis is the IETF Script MIB [6] infrastructure that has been implemented
in previous phases of this project [7]. The Script MIB functionality is used to transfer
and control the execution of policy ‘scripts’. The execution of a policy script is real-
ized by the existing Java runtime engine for the Jasmin Script MIB agent [8] but with
some additional policy supporting class libraries. This project focuses on the design
and implementation of these class libraries and their implementation and evaluation.
Note that in the beginning it was planned to develop a new policy definition language,
which turned out to be out of scope for the timeline of the project.

1.1 Domain: DiffServ

The targeted policy domain of this project is the configuration of DiffServ [9] routers.
However, the general architecture will not be limited to DiffServ, but the examples
and the elements that have been modeled and implemented are concerned with the
configuration of DiffServ TCB elements like classifiers, meters, markers, queues, and
schedulers.
Interfaces for DiffServ configuration are being developed and implemented by differ-
ent groups. The IETF DIFFSERV working group [10] is developing an SMI MIB [11]
and an SPPI PIB [12] for managing DiffServ routers via SNMP and COPS-PR. We
decided to use the conceptional view of the DIFFSERV-MIB to develop our DiffServ
class model.
Two free DiffServ implementations for the Linux kernel have been regarded valuable
for evaluating the implementations being developed during this project. The first one
has been integrated with the official Linux-2.4 kernel release. The other one has been
implemented in a joint project between NEC C&C Network Product Development
Laboratories and the University of Bern. We decided to use the first one, since it’s
available with unmodified Linux kernels and two projects are underway to implement
the DIFFSERV-MIB for this implementation, so that later on a MIB based driver can
be developed.

2 Design

This section first presents a number of requirements for the policy management system.
These requirements had to be fulfilled during the desing and implementation process.
Then Section2.2describes the architecture of the policy management system.

2



2.1 Requirements

This section describes a number of requirements that had to be achieved for the policy
management system, although they might be common to all approaches in policy based
management.

1. A policy rule condition must allow read access to the attributes of zero, one or
multiple elements. This has to be done in a way, so that the according action can
unambiguously reference those elements that matched the condition. Similarly,
the attributes of the event that triggered the rule must be accessible. This means,
we need a concept of free variables in the event and condition definitions that
are bound by the runtime system to element instances when passed to the con-
dition and action. These variables can be declared implicitly in the events and
conditions or explicitly.

2. There must be a construct to specify the value space in which the free variables
of conditions are evaluated. This may span all instances of elements within a
certain table or even all instances of a class among a number of managed agents.

3. A class that models a certain element must support a number of accessor meth-
ods that allow a policy author to retrieve and manipulate an element in a comfort-
able way. E.g., counter retrieval functions should implicitly support rate com-
putations, and SNMP RowStatus handling should be hidden by methods to con-
struct and destruct element instances. This is not a requirement for the policy
engine architecture itself, but for the design of domain specific elements.

4. So far, at least three types of time events are required: Periodic events that trig-
ger continuously at a given period. Calendar events that trigger periodically at
points in time specified by calendar-type attributes (month, day, weekday, hour,
minute), and one-shot events that trigger exactly once at a point in time speci-
fied by calendar-type attributes. These three types are motivated by the Schedule
MIB [ 13].

5. Another type of event is based on the reception of external notifications like
SNMP traps/informs or COPS-PR state reports. These notifications should be
mappable to domain specific events. Details of the initiating notifications should
be accessible through accessor methods of the events.

6. The policy runtime engine must support a mechanism to report errors and op-
tional tracing/debugging information so that users can monitor the policy engine
and the authors of policies can test and debug their policy code.

7. The access to elements in conditions and actions may fail. The policy runtime
engine must be able to handle these situations in a way that accordingly written

3



policy code can catch the error conditions and bring the affected element to a
determined state.

8. It must be possible to store and execute multiple policies independently. Their
code must not share any name space. However, avoiding side effects by multiple
policies or policy rules acting on common elements is the responsibility of the
policy author(s).

9. A security mechanism is required to differentiate which users have access to
which operations on which policies. This is regarded as a very sensible aspect.
Building on an existing security mechanism could be helpful.

10. Ideally, the policy programming interfaces of domain specific elements are in-
dependent of the underlying management interfaces. This means a policy acting
on an element does not have to care about the question whether an underlying
device is managed via SNMP, COPS-PR, a command line interface or an API.

11. In theory, policies declare behaviors of elements dependent on conditions. How-
ever, a programmatic policy system has to work in a deterministic sequential
fashion; especially complicated actions must contain a bunch of code instead of
just the goal that is about to be reached. The notation of policies should retain
the declarative fashion of policies as much as possible.

12. It should be possible to avoid redundancy in a way that policies or policy groups
sharing rules, and rules sharing conditions or actions can be built by referring
common code instead of copying code fragments. This allows to increase re-
usability and to avoid some errors.

13. A communication mechanism between active policies based on shared memory
or messages would also help to reduce redundancy. For example, one policy can
determine a responsible person to which a number of other policies send reports
in case of errors.

14. It could be useful to pass arguments to policies when they are activated. Al-
though all parameters of a policy behavior should be defined within the policy
code, arguments could be useful to turn debugging on and off or to trace a policy
in read-only mode.

2.2 Architecture

In contrast to other research and development approaches, this project builds on the
IETF Script MIB architecture as an infrastructure for transferring policies and manag-
ing their enforcement. The Script MIB has a number of functions that are required by

4



policy systems in general. Furthermore, some of the requirements listed in Section2.1
can be met at low costs in the Script MIB context:

• The Script MIB architecture supports pushing and pulling mechanisms for trans-
ferring scripts from a SNMP command generator or a script repository to Script
MIB agents. Controlling the execution of scripts is also supported, including
starting, suspending and resuming, terminating, controlling maximum run times,
passing arguments to scripts, etc.

• SNMP security based on SNMPv3 and the user based security model and on
the view based access control model is fully applicable to the Script MIB. It is
reasonable to build on SNMP security and the Script MIB to achieve a homoge-
neous security setup.

• Logging and tracing of scripts is a general functionality that is useful for scripts
as well as for policies. Although, the current Script MIB does not support ac-
cess to logging data, the Jasmin implementation supports logging via the SMX
interface between runtime systems and the Script MIB core agent.

SNMP HTTP or FTP

Script MIB
Access Library

Policy
Class Library Web Server

Policy Management Application

for agent
communication policies

to construct

Policy / Script Repository

Script

etc.Agent

MIB Script MIB Runtime Engine Network
Elements

Policy Manager / Higher−Level Manager

Policy Decision Point / Distributed Manager Policy Enforcement Points / Agents

SNMP,
COPS−PR,
SSH+CLI,

Policy DB

Figure 1: Architecture of a policy management system based on the JASMIN Java
runtime engine.

5



The general architecture of our Script MIB based policy system approach is shown in
Figure1.
Policies are represented as scripts written in a language supported by a runtime engine.
What turns a script into policy code is the use of specific class libraries that are usually
registered with the runtime engine through the Script MIB language extension facility.
These general scenario of policy scripts which use these libraries is shown in Figure2.

engine:
within the runtime
Usual script code

Policy scripts

Policy
specific

extension

Application and
config−mechanism

specific

Application domain
specific

network element
extension

extensions:
Script MIB language

Script MIB language runtime engine

drivers

scripts using classes

Figure 2: The standard Script MIB runtime engine is executing policy ‘scripts’ that
use policy-supporting language extensions.

1. A general policy management language extension provides interfaces to derive
and implement policies, rules, conditions, actions, network elements, event gen-
erators and events.

2. Domain specific language extensions provide abstract interfaces to network el-
ements of a specific policy application domain. They allow policy scripts to
retrieve element attributes and event notifications and to correlate them to make
policy decisions, so that they can in turn be used to configure network elements.

3. Drivers realize the mapping between the domain specific interfaces and the un-
derlying device-level mechanism to actually configure the network elements.

2.3 Implementation

A prototype implementation of these libraries has been developed based on the Jas-
min Script MIB implementation [8] with the Java runtime engine. This prototype is
described in the following sections, while Section2.4gives a simple policy script ex-
ample. A class diagram of the libraries as well as the example is shown in Figure3.

6



All classes are documented using JavaDoc. The output is available from the Jasmin
web pages [8] and enclosed with the Jasmin software distribution.

StartCondition

KeyDatePolicy
+main(args:String[])

StopCondition

StartAction

StopAction

 policyMgmt 

Element
+Element(driver:Driver)
+setRole(role:String)
+getRole(): String
+commit()
+remove()

«interface»
Driver

+elements(): Enumeration
+commitElement(element:Element)
+removeElement(element:Element)

«interface»
Condition

+getFreeIdents(): Hashtable
+evaluate(event:Event,elements:Hashtable): boolean

«Thread»
Policy

+registerRule(event:Event,rule:Rule)
+registerDriver(driver:Driver)
+process(event:Event)
+newEvent(event:Event)
+run()

 diffServ 

Classifier
+addFilter(filter:Filter)
+removeFilter(filter:Filter)

JtcDriver
+JtcDriver(hostname:String,port:int)

«interface»
Action

+perform(event:Event,elements:Hashtable)

Rule
+addFreeIdent(name:String,classname:String)
+getFreeIdents(): Hashtable
+addCondition(condition:Condition)
+addAction(action:Action)
+isConditions(event:Event,elements:Hashtable): boolean
+doActions(event:Event,elements:Hashtable)

«EventObject»
Event

+Event(src:Object)
+setRole(role:String)
+getRole(): String

«interface»
EventGenerator

+addEventDrain(policy:Policy)

CalendarTimer
+CalendarTimer(when:Date,policy:Policy)
+addDate(when:Date)

TimeEvent
+TimeEvent(when:Date,src:Object)
+getTime(): Date

generates

1

*

executes
1

*
evaluates

1

*

contains
1

*

handles
1

*

notifies

*

1

instantiates
1

*

DiffServElement
+addInput(element:DiffServElement)
+setOutput(element:DiffServElement)
+removeInput(element:DiffServElement)
+getInputs(): Vector

*instantiates

1

*

reads
modifies

...and further classes

 jtc 

QDisc FilterTCClass

DSMarkQDisc DSMarkClass U32Filter

...and further classes

handles jtc objects

1

*

tc service on the managed device.

It accepts tc commands from the
JtcDriver via a TCP connection.
 

talking to tc service                             

1

1

a
policy
script

Figure 3: Class diagram of (a) the policy management packagepolicyMgmt , (b)
the DiffServ domain specific packagediffServ , and (c) the Linux tc specific driver
jtc . A policy script (d)KeyDatePolicy makes use of these components.

Please note that the current prototype implementation does not include implementa-
tions of all DiffServ elements and the implemented classes are not necessarily com-
plete, e.g., various DiffServ droppers and meters are not implemented and most ele-
ments do not yet support deletion.

7



2.3.1 The policyMgmt Package

The policyMgmt package contains the classes and interfacesPolicy , Condi-
tion and Action that are usually implemented by policy scripts: APolicy -
derived class represents the main class of a policy script that is executed when the
policy is started. It registers a number of newly instantiatedRule s. Each rule in turn
registers instances of implementations of theCondition andAction interfaces.
Two general condition classes are provided by thepolicyMgmt package: Al-
waysCondition simply matches unconditionally and can be used by rules that
shall be executed based on a triggering event without further conditions.IsRe-
peated(cond, n) is a condition that can be used to evaluate to true only if an
underlying conditioncond evaluated to truen times. Besides these generic condi-
tions, application specific conditions and actions can be provided by the correspond-
ing application specific class package. Finally, policy specific condition and action
classes can be programmed individually for a policy script, i.e., they can benefit from
the whole flexibility provided by the Java programming language.
The evaluations of rules is always initiated byEvent s, which are triggered by
EventGenerator s. Similar to conditions there is a general event generator class
implemented within thepolicyMgmt package:CalendarTimer is a time based
event generator that generatesTimeEvent s at specific points in time.
The abstract classElement is the parent of all network elements modeled by domain
specific packages. Roles can be assigned to Elements so that they can be used in con-
ditions to select subsets of elements that should be affected by a rule. All elements are
handled through aDriver interface. This interface allows to synchronize a policy’s
notion of element states with the configuration of the underlying network devices, i.e.,
it allows to fetch elements, commit modified elements, and remove elements.

2.3.2 The diffServ Package

The application domain targeted in this project is the configuration of DiffServ nodes.
Hence, thediffServ package contains element classes to represent DiffServ classi-
fiers, filters, meters, actions, droppers, queues, schedulers, etc. The methods of these
classes allow the policy developer to create, delete and modify the elements.
The classes have been modeled based on the DIFFSERV-MIB data model, i.e., these
data path elements can be plugged together (with certain limitations) through methods
provided by the common parent classDiffServElement , which in turn is a child
class of thepolicyMgmt.Element class.
Where approrpiate, the package defines class using inheritence, e.g.DSCP-
Marker andDropAction are derived fromdiffServ.Action which is derived
from diffServ.DiffServElement and MFFilter is derived fromdiff-
Serv.Filter which is also derived fromdiffServ.DiffServElement .

8



2.3.3 The jtc Package and the JtcDriver class

The classJtcDriver (which is currently contained in thediffServ package) rep-
resents the adapter between the protocol independent classes of thediffServ pack-
age and the device specific configuration mechanism. In the current prototype we have
implemented support for the Linux 2.4 “tc” (traffic conditioning) subsystem through
the Java class packagejtc which represents the tc data structures, namely queueing
disciplines (qdisc ), classes, and filters. This allows theJtcDriver to manage tc
configurations mapped from the model supported by thediffServ package.
In order to actually write tc configuration to the kernel, we have implemented a simple
TCP service on the managed Linux DiffServ node, that accepts tc commands sent by
theJtcDriver . Upon instantiation, theJtcDriver connects to the server. Calls to
theelements() , commitElement() , andremoveElement() methods of the
Driver interface lead to appropriate mapped tc commands sent by theJtcDriver .

2.4 Example

The following example contains a policy script that contains a pair of rules: a
StartRule that gets triggered by aCalendarTimer at a specific point in time,
e.g. at 23:00 on December 31, and aStopRule that gets triggered some time later,
e.g. at 2:00 on January 1. The conditions evaluate unconditionally to true in both cases.
TheStartAction doubles a specific bandwidth parameter and after the critical time
period theStopAction resets it to the start value. This might be reasonable to allow
mobile phone traffic to carry the expected increased bandwidth demand during that
time period. Figure4 shows the essential parts of a Java policy script that supports this
scenario.

// imports ...

public class KeyDatePolicy extends Policy {

int defaultRate;
TCB tcb;
TokenBucket tokenBucket;
// ...

public class StopCondition implements Condition {
public boolean evaluate(Event event, Hashtable elements) {

// here we could check whether the required bandwidth
// is back to a normal level. if not, we could return false.
return (true);

}
public Hashtable getFreeIdents() { return new Hashtable(); }

}

public class StartAction implements Action {
public void perform(Event event, Hashtable element) {

defaultRate = tokenBucket.getRate();
tokenBucket.setRate(defaultRate * 2);
try { tcb.commit(); } catch (IOException e) {}

9



}
}

public class StopAction implements Action {
public void perform(Event event, Hashtable element) {

tokenBucket.setRate(defaultRate);
try { tcb.commit(); } catch (IOException e) {}

}
}

public KeyDatePolicy(String[] args) {

// ...

// setup the driver and the general DiffServ config...
JtcDriver driver = new JtcDriver("fosters", 10101);
tcb = new TCB(driver);
// ...

// setup the start and stop calendar timers...
Date startDate = formatter.parse("31.12.2001 23:30:00");
Date stopDate = formatter.parse("01.01.2002 02:00:00");
CalendarTimer startTimer = new CalendarTimer(this, startDate);
CalendarTimer stopTimer = new CalendarTimer(this, stopDate);
startTimer.start();
stopTimer.start();

// setup the policy rules
Rule startRule = new Rule();
Rule stopRule = new Rule();
startRule.addCondition(new AlwaysCondition());
startRule.addAction(new StartAction());
stopRule.addCondition(new AlwaysCondition());
stopRule.addAction(new StopAction());
this.registerRule(startTimer, startRule);
this.registerRule(stopTimer, stopRule);

// ...
}

public static void main (String[] args) {

KeyDatePolicy policy = (new KeyDatePolicy(args));
policy.start();

// ...
policy.join();

// ...
}

}

Figure 4: KeyDatePolicy.java – A simple policy script that assigns addition
bandwidth during a specified time period.

10



3 Conclusions

3.1 Met Requirements

Most of the requirements mentioned in Section2.1have been met by our implementa-
tion:
Policy condition classes can be written so that they determine the identifiers of net-
work elements to be used in conditions and actions (1). The method to retrieve these
identifiers can be implemented individually (2). Network elements for the DiffServ ap-
plication domain have been implemented as parts of thepolicyMgmt.diffServ
package (3). ACalendarTimer has been implemented as a typical time based
event generator (4). Other timers are not yet implemented, especially a timer that al-
lows times to be specified by expressions with wildcards and ranges would be useful.
Event generators based on received notifications, e.g. SNMP traps, have not yet been
implemented. However, the policy library is designed so that anElement can be
the trigger of anEvent (5). A Debug class allows to add debugging messages to
the policy scripts. Furthermore, policies can be run from a standard JVM without
a Jasmin runtime engine. This makes policy development and debugging easier (6).
Special treatment of failed execution of policy conditions and actions has not been
implemented, however exceptions can be thrown and caught as usual (7). Based on
the Script MIB, policies represent separate scripts that don’t share name spaces (8).
Security w.r.t. creating, reading, removing, and controlling policies is given by the
Script MIB access control based on VACM. No additional explicit security mecha-
nisms are required for the policy management system (9). The abstraction of applica-
tion domain packages allows policies to be written in a way independent from under-
lying configuration protocols. Only drivers, in our prototype theJtcDriver class
and thejtc package, have a notion network device specific data (10).
The object-oriented class model of thepolicyMgmt package reflects the elements
and associations of a declarative representation of policies. Usually, inidividual Java
code is only used at policy startup and within theCondition.evaluate() and
Action.perform() methods (11). Code within a policy can be shared, e.g. by
implementing methods used by similar conditions or actions. However, between policy
scripts code can only be shared on source code level (12).
Communication between policies is not explicitly supported. However, usual IPC tech-
niques, e.g. sockets or Java RMI, can be used (13). Since policies are usual scripts to
the Script MIB, it’s possible to pass arguments via thesmLaunchArgument MIB
object and parse them as command line arguments within the Java code (14).

11



3.2 Future Work

A significant drawback of the presented approach, which is purely based on the Java
programming language, is the expense that has be spent even for very simplistic or
standard policies. For a single policy a minimum of three classes have to be instanti-
ated. Usually, there are some more objects that have to be handled and some classes
have to implemented.
This problem could be addressed by a specific policy description language and a com-
piler that maps such policies to Java code of the current form. This general idea has
already been mentioned in the concept report [1], but it could not yet be realized within
the given time frame. An interesting approach would be to investigate the mapping of
the Ponder policy specification language [14] to our architecture.

References

[1] F. Strauß. Concept of a script mib based policy management system. Technical
report,http://www.ibr.cs.tu-bs.de/projects/jasmin/policy-concept.pdf, may 2001.

[2] P. Martinez, M. Brunner, J. Quittek, F. Strauß, J. Schönwäalder, S. Mertens, and
T. Klie. Using the Script MIB for Policy-based Configuration Management. TU
Braunschweig, NEC Network Laboratories, 2001. (submitted for presentation at
NOMS 2002).

[3] M. Sloman, J. Lobo, and E.C. Lupu, editors.Policies for Distributed Systems and
Networks - Policy 2001 Workshop Proceedings, Bristol, 2001. Springer.

[4] Proc. 6th IFIP/IEEE International Symposium on Integrated Network Manage-
ment. Boston, May 1999.

[5] J. Nicklisch. A rule language for network policies. InPolicy 1999
Workshop Proceedings, http://www-dse.doc.ic.ac.uk/events/policy-99/pdf/26-
Nicklisch.pdf, 1999.

[6] D. Levi and J. Scḧonwälder. Definitions of Managed Objects for the Delegation
of Management Scripts. RFC 2592, Nortel Networks, TU Braunschweig, May
1999.

[7] F. Strauß, J. Scḧonwälder, and J. Quittek. Open Source Components for Dis-
tributed Internet Management. InProc. 7th IFIP/IEEE International Symposium
on Integrated Network Management, Seattle, May 2001.

[8] J. Quittek, J. Scḧonwälder, and F. Strauß.Jasmin - A Script MIB Implemen-
tation. TU Braunschweig, NEC Network Laboratories,http://www.ibr.cs.tu-
bs.de/projects/jasmin/, 2001.

12

http://www.ibr.cs.tu-bs.de/projects/jasmin/policy-concept.pdf
http://www-dse.doc.ic.ac.uk/events/policy-99/pdf/26-Nicklisch.pdf
http://www-dse.doc.ic.ac.uk/events/policy-99/pdf/26-Nicklisch.pdf
http://www.ibr.cs.tu-bs.de/projects/jasmin/
http://www.ibr.cs.tu-bs.de/projects/jasmin/


[9] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An Architec-
ture for Differentiated Services. RFC 2475, Torrent Networking Technologies,
EMC Corporation, Sun Microsystems, Nortel UK, Bell Labs Lucent Technolo-
gies, December 1998.

[10] DIFFSERV Working Group. Differentiated Services Working Group Charter.
IETF, http://www.ietf.org/html.charters/diffserv-charter.html, 2001.

[11] F. Baker, K. Chan, and A. Smith. Management Information Base for
the Differentiated Services Architecture. IETF DIFFSERV Working Group,
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-mib-09.txt, March 2001.

[12] M. Fine, K. McCloghrie, J. Seligson, K. Chan, S. Hahn, C. Bell, A. Smith,
and F. Reichmeyer. Differentiated Services Quality of Service Policy Infor-
mation Base. IETF DIFFSERV Working Group,http://www.ietf.org/internet-
drafts/draft-ietf-diffserv-pib-03.txt, March 2001.

[13] D. Levi and J. Scḧonwälder. Definitions of Managed Objects for Scheduling
Management Operations. RFC 2591, Nortel Networks, TU Braunschweig, May
1999.

[14] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. Technical report,http://www-
dse.doc.ic.ac.uk/ mss/Papers/Ponder-summary.pdf, aug 2000.

13

http://www.ietf.org/html.charters/diffserv-charter.html
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-mib-09.txt
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-pib-03.txt
http://www.ietf.org/internet-drafts/draft-ietf-diffserv-pib-03.txt
http://www-dse.doc.ic.ac.uk/~mss/Papers/Ponder-summary.pdf
http://www-dse.doc.ic.ac.uk/~mss/Papers/Ponder-summary.pdf

	Introduction
	Domain: DiffServ

	Design
	Requirements
	Architecture
	Implementation
	The policyMgmt Package
	The diffServ Package
	The jtc Package and the JtcDriver class

	Example

	Conclusions
	Met Requirements
	Future Work
	Some Last Words


