
This is the authors’ version of an article published in the Proceedings of the 47th International
Conference on Dependable Systems and Networks (DSN ’17), Denver, USA, 26–29 June 2017.

AGORA: A Dependable High-Performance
Coordination Service for Multi-Cores

Rainer Schiekofer1, Johannes Behl2, and Tobias Distler1
1Friedrich-Alexander University Erlangen-Nürnberg (FAU) 2TU Braunschweig

Abstract—Coordination services are essential building blocks
of today’s data centers as they provide processes of distributed
applications with means to reliably exchange data. Consequently,
coordination services must deliver high performance to ensure
that they do not become a bottleneck for the applications
depending on them. Unfortunately, the design of existing services
such as ZooKeeper prevents them from scaling with the number
of cores on a machine. In this paper, we address this problem
with AGORA, a high-performance coordination service that is
able to both effectively and efficiently utilize multi-core machines.
AGORA relies on a primary-backup replication architecture that
partitions the workload on each server to achieve parallelism
while still providing similar consistency guarantees as ZooKeeper.
Our evaluation shows that AGORA scales with the number of
cores and thus can fully utilize the network resources available.

I. INTRODUCTION

Coordination services such as ZooKeeper [1] and
Chubby [2] greatly facilitate the operation of distributed appli-
cations by providing basic functionalities that would otherwise
have to be integrated into each application individually. Exam-
ples of typical functionalities offered by coordination services
include the provision of message queues, support for leader
election, as well as reliable storage for small chunks of data.
Focusing on such basic tasks, coordination services support a
wide spectrum of client applications ranging from large-scale
storage and data-processing systems [3], [4], over distributed
network controllers in software-defined networks [5], to cloud-
backed file systems [6]. As coordination services are essential
building blocks of today’s data-center infrastructures, they
have been an active area of research in recent years, resulting
in systems with improved availability [7], response times [8],
composability [9], [10], and resilience [11], [12], [13], [14].

Providing an anchor of trust for the client applications
relying on them, coordination services in general are replicated
for fault tolerance. ZooKeeper and Chubby for this purpose,
for example, apply a primary-backup approach [15] in which
a leader server processes all state-modifying requests and then
forwards the corresponding state updates to a set of follower
servers using an atomic broadcast protocol [16], [17]. While
this approach prevents the data stored by client applications
from being lost in the presence of server crashes, it also
comes at the cost of a performance penalty. As a consequence,
some client applications currently only access the coordination
service outside of their critical processing paths [5].

Acknowledgments: This work was partially supported by the German Research
Council (DFG) under grants no. DI 2097/1-2 and KA 3171/1-2 (“REFIT”).

Having analyzed state-of-the-art coordination services, we
identified two main limitations preventing existing systems
from achieving a higher read and write performance: First, the
current internal architecture of coordination servers does not
allow them to efficiently use the processing resources available
on the respective machines. In particular, the fact that requests
are forwarded along a chain of different worker threads leads
to a high synchronization overhead. Second, the replication
protocols used by state-of-the-art coordination services do not
scale with the number of cores per server which, as our
experiments with ZooKeeper show, results in a server not
being able to utilize the entire available network bandwidth. A
key reason for this property is the design decision to establish
a global total order on all write operations, which creates a
bottleneck that prevents existing coordination services from
exploiting the full potential of modern multi-core machines.

To address these problems, in this paper we present AGORA,
a dependable coordination service for client applications with
high performance demands for both read and write opera-
tions. In contrast to existing approaches, AGORA is able to
effectively and efficiently utilize multi-core machines due to
relying on a novel parallelized primary-backup replication
protocol. In order to parallelize system operations, AGORA
dynamically partitions the coordination-service state and, on
each of its servers, executes each partition on a dedicated
core. With the vast majority of operations only accessing a
single partition, in the normal case an AGORA server receives,
handles, and answers a client request in the same thread,
thereby significantly minimizing synchronization overhead.

Instead of totally ordering all state modifications at a
global scale, each partition in AGORA orders its writes locally
and reliably replicates them across multiple servers for fault
tolerance. If demanded by a client, AGORA relies on an
inter-partition protocol that allows the system to provide the
client with a causally consistent view of the coordination-
service state across partitions. Applying this mechanism, client
applications are able to depend on AGORA for the same use-
case scenarios as for ZooKeeper. In addition, AGORA offers a
fast path for client requests with weaker consistency demands.

Our evaluation of the AGORA prototype shows that due
to the reduced synchronization overhead AGORA achieves
a significantly higher single-core efficiency than ZooKeeper
for both read as well as write operations. Furthermore, in
contrast to ZooKeeper AGORA scales with the number of
cores per server and is therefore able to fully utilize the net-
work resources available even for reads as small as 8 bytes.



In summary, this paper makes the following contributions:
1.) It presents AGORA, a coordination service for applications
requiring high performance for both reads and writes. 2.) It dis-
cusses THOLOS, AGORA’s parallelized primary-backup repli-
cation protocol, which enables the system to scale with the
number of cores on a server. 3.) It evaluates AGORA in com-
parison to the state-of-the-art coordination service ZooKeeper.

II. BACKGROUND

In this section, we give an overview of existing coordination
services and the consistency guarantees they provide.
Coordination Services. Coordination services [1], [2], [11],
[18], [19] are essential for today’s data-center infrastructures
as they offer means to deliver information to and/or exchange
data between processes of large-scale distributed applications.
Use cases for such services, for example, include the dis-
tribution of configuration parameters, the implementation of
message queues, as well as support for leader election [1], [2].
To provide such functionality, coordination services commonly
comprise built-in storage capabilities designed for handling
small chunks of data on behalf of clients (i.e., application
processes). For this purpose, different coordination services
rely on different abstractions, however, they all support basic
operations such as creating, reading, writing, and deleting data
nodes. In addition, many coordination services offer clients
the possibility to subscribe to data-related events (e.g., the
creation, modification, or deletion of a particular data node),
for example, by registering a corresponding watch [1].

Being crucial for the well-functioning of other applications,
coordination services are typically replicated for reliability and
availability. As shown in Figure 1, a common approach in this
context is a distributed primary-backup replication architecture
in which one server, the leader, processes the requests issued
by clients and then brings the other servers, the followers, up to
speed by using a replication protocol [16], [17] to consistently
forward state updates carrying the resulting state changes.
Consistency Guarantees. Besides a typical architecture,
Figure 1 also shows a (simplified) example of how clients
commonly exchange data using a coordination service [1]. To
publish content, a sending client first stores the new infor-
mation in multiple data nodes (/data_*) and then creates a
special /ready node to complete the procedure. The rationale
behind the /ready node is the following: First, the node
serves as a confirmation by the sender that the contents of
all the information-carrying data nodes involved have been
successfully updated and that they consequently represent a
consistent view of the data to be exchanged. This property is
especially important in scenarios where a client fails during
the sending process and another client takes over as sender,
potentially forwarding data of different content. Second, by
registering a watch informing them of changes to the /ready
node, receiving clients can be notified about the presence of
new data without needing to repeatedly poll the coordination
service. Instead, receiving clients can wait until the watch on
the /ready node triggers and then read the updated contents
of the data nodes containing relevant information for them.

Leader

C
li
en

t
h
a
n
d
li
n
g

Protocol logic

Database

data 1

data 2

data N

ready

content

content

content

.

.

.

Follower 1

Protocol logic

Database

Follower 2

Protocol logic

Database

Follower F

Protocol logic

Database

.

.

.

Client

Client
State

updates

Figure 1. Basic coordination service architecture

In order for the approach discussed above to work properly,
the consistency guarantees provided by a coordination service
in general and its replication protocol in particular must ensure
that at the moment a client learns of the creation of the
/ready node, it must also be able to read the updated states
of the data nodes that previously have been modified by the
sender. Otherwise, a receiving client could be in danger of
obtaining inconsistent data due to reading stale values.

Most coordination services [2], [11], [18], [19] address this
issue by providing strong consistency, that is, they ensure that
a read issued by a client sees all previous modifications. As
a consequence, these services can guarantee that, if a client
sees the /ready node, it also sees the new contents of all
other data nodes involved as their modifications preceded the
creation of the /ready node. As the example shows, strong
consistency guarantees are often convenient for application
programmers due to leading to intuitive semantics. On the
downside, however, strong consistency usually also comes
with a performance overhead: To provide such guarantees in
the Chubby coordination service [2], for example, not only
writes but also all reads have to be executed at the leader,
causing this server to become a bottleneck. To mitigate this
problem, Chubby utilizes client caches to reduce the number
of read requests reaching the leader in the first place and relies
on a latency-intensive cache-invalidation protocol that is run
by the leader prior to executing each modification.

The ZooKeeper coordination service [1] circumvents the
performance issues associated with strong consistency by
relaxing the consistency guarantees offered to clients, using a
combination of linearizable writes and FIFO client orders. In a
nutshell, this means that all ZooKeeper servers apply all writes
(i.e., state modifications) in the same total order; furthermore,
ZooKeeper ensures that all (read or write) requests issued
by the same client are executed in the order in which the
client has sent them. In combination with the fact that the
coordination service delivers notifications in the order of the
corresponding events and with respect to regular replies, these
guarantees are sufficient to fulfill the requirements discussed
in the context of the data-exchange example illustrated in
Figure 1. As a key benefit, the relaxed consistency guarantees
enable ZooKeeper to employ a system architecture in which,
in contrast to Chubby, reads can be performed by any server,
offering the possibility to load-balance reads across machines.



III. PROBLEM STATEMENT AND APPROACH

As ZooKeeper already allows to parallelize reads across
different servers, in this section, we further analyze its use of
multi-core machines. Based on our findings, we then formulate
a number of requirements for AGORA and discuss the basic
approach our coordination service applies to fulfill them.

A. Problem Analysis

As explained in Section II, using relaxed consistency
guarantees allows ZooKeeper to improve read performance.
Nevertheless, the need to ensure linearizable writes prevents
the coordination service from scaling with the number of
cores on a server, because all writes still need to be executed
sequentially at both the leader as well as the followers.

Figure 2 shows the basic architecture of a ZooKeeper server,
which is based on a pipeline of different request processors
and handles read and write requests differently: Incoming
read requests bypass the pipeline and are directly handed
over to the database containing the service state (i.e., the
data nodes), where they are executed sequentially. In contrast,
write requests are first forwarded to the protocol logic [17],
which is responsible for processing the requests on the leader
and reliably distributing the corresponding state updates to all
servers in the same order. Once the protocol logic delivers a
state update, a server applies the update to its database.

As illustrated in Figure 2, in order to be able to use
more than one core, a ZooKeeper server executes most of
its request processors in separate threads. Note that although
such a server-internal organizational structure offers some
parallelism, it also has several major disadvantages [14]: First,
the approach leads to increased synchronization overhead
each time two request processors have to communicate with
each other, for example, to forward a message. Second, as
soon as one of the threads completely saturates a core, the
corresponding request processor becomes the bottleneck of the
entire pipeline, thereby limiting the performance of the overall
ZooKeeper server. Third, this server-internal architecture at
best scales until the point at which the number of cores reaches
the number of request-processor threads; if the number of
available cores is increased beyond this point, a ZooKeeper
server is unable to use them due to a lack of additional threads.

In summary, server architectures relying on a single pipeline
of request processors by design provide limited scalability
and only enable performance gains until a certain number of
cores. Evaluation results show that this threshold in case of
ZooKeeper lies at 4 cores [20], as also confirmed in Section V.

B. Goals and Challenges

Our analyses in the previous sections have shown that
existing state-of-the-art coordination services are unable to
exploit the full potential of today’s multi-core machines,
either because of executing an expensive replication pro-
tocol (e.g., Chubby, see Section II) or due to applying a
server architecture with limited scalability (e.g., ZooKeeper,

Client
handling

Client
connection

Client
connection

.

.

.

Protocol
logic

Pre-
processor

Propose
processor

. . .

DatabaseFinal processor

Write request

Committed
state update

Read request

Replies

Threads

Figure 2. Basic architecture of a leader server in ZooKeeper

see Section III-A). This creates the need for a replication ar-
chitecture that allows a coordination service to scale on multi-
core machines and to efficiently use the processing resources
available, while still providing consistency guarantees that are
strong enough to be useful to clients. In the following, we
further discuss each of these goals in more detail.
Scalability with the Number of Cores. In order to prevent
a coordination service from becoming a bottleneck during
periods of high workload, the service must provide high
performance for both read and write operations. To achieve this
goal while relying on a replication protocol for dependability,
it is crucial for a coordination service to be able to scale with
the number of cores available on its servers. Most importantly,
this requires a replication protocol that, in contrast to the
protocols used by existing coordination services, allows both
read as well as write requests to be executed in parallel.
Efficient Resource Usage. Besides achieving high perfor-
mance, a coordination service should efficiently use the avail-
able cores and, for example, minimize the synchronization
overhead between threads. In particular, client requests should
not be forwarded along a chain of different threads, leading
to inter-thread communication at every handover. Instead, the
coordination service should rely on a parallelization scheme
that aims at reducing the number of synchronization points a
request needs to pass while being handled by the service.
Useful Consistency Guarantees. Despite parallelizing the
execution of both read and write operations on a server, a
coordination service should still provide consistency guar-
antees that are strong enough to support the common use-
case scenarios of these services. In particular, clients should
still be able to exchange data between each other using the
method discussed in Section II, requiring the presence of basic
ordering guarantees with regard to state modifications and
event notifications. This rules out weaker forms of consistency
such as eventual consistency [21], which on the one hand
would greatly simplify the goal of increasing performance due
to introducing a loose coupling between servers, but on the
other hand cannot ensure the necessary ordering properties.

C. Approach

AGORA achieves scalability with the number of cores on
a server by dynamically partitioning the coordination-service
state and executing each partition on a separate core. As a
result, reads and writes operating on different partitions can be
processed in parallel. By running the entire request-processor



pipeline of a partition in the same thread, AGORA eliminates
partition-internal synchronization points and is consequently
able to efficiently use the resources available. To support the
same use-case scenarios as ZooKeeper, AGORA offers similar
consistency guarantees and relies on an inter-partition protocol
providing causal serializability, tracking and respecting causal
dependencies between write operations on different partitions.

IV. AGORA

In this section, we present AGORA and its parallelized
primary-backup replication protocol THOLOS in detail.

A. Overview

AGORA manages information using a tree of data nodes,
which is accessible through a global namespace; for example,
the path /a/b/c denotes a data node c that is the child node
of another data node /a/b. At the start of the service, only the
tree’s root node / exists. After this point, clients can store and
access information by creating, reading, updating, and deleting
data nodes and their contents. In addition, AGORA enables
clients to register watches for data-related events.

While the client interface of AGORA is similar to those of
existing coordination services (cf. Section II), its architecture
is not: As illustrated in Figure 3, internally AGORA is divided
into several partitions, which are each responsible for man-
aging a different part of the data-node tree. To balance load
across partitions, the mapping of data nodes to partitions can
be changed dynamically. For fault tolerance, each partition is
handled by multiple servers executing the THOLOS replication
protocol to ensure consistency. For this purpose, one of the
servers assumes the role of a leader while the others act as
followers. In case the current leader server crashes, the leader
role is reassigned to a different server in the system.

As depicted in Figure 3, the number of partitions P usually
equals the number of available cores per server. To minimize
synchronization overhead, each partition on a server executes
in a dedicated thread, utilizes separate network connections,
and comprises its own instances of the client handling, proto-
col logic, and database modules, respectively. This way, most
requests can be received, processed, and answered within a
single thread. AGORA further increases resource efficiency
by keeping direct interactions between partitions, which for
example are required to perform load balancing, at a minimum.

A client communicates with AGORA by selecting a server
from the group (i.e., the leader or a follower) to be its contact
server and submitting all subsequent requests to this particular
machine. In case a client assumes the contact server to have
crashed, it switches to another server. To prevent partitions
from having to compete against each other for the same
network connection when interacting with the same client,
a client establishes a separate connection to each partition.
Using these links, a client can send requests for any data node
to any partition. However, the reply to a request will always
be returned by the partition currently comprising the data node
accessed. Clients use this knowledge gained through replies to
reduce synchronization overhead and improve performance by

Follower 1 Leader Follower F

Partition
1

Partition
P

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

Core 1

Core 2

Core P

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

Core 1

Core 2

Core P

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

C
li
en

t
h
a
n
d
li
n
g Protocol

logic

Database

Core 1

Core 2

Core P

. . .

. . .

. . .

Client

Figure 3. Architecture overview of AGORA

caching the partition IDs of data nodes and sending subsequent
requests directly to the respective partitions. If a data node in
the meantime has moved to another partition, for example as
the result of a load-balancing procedure, the server side will
forward the request accordingly and the client will update its
cache after having received the reply from this partition.

In general, AGORA distinguishes between two different
categories of client requests: reads, which do not modify the
service state, and writes, which do. While a read request is
directly handled by the contact server that receives it, a write
request is forwarded to the leader and there processed by
the corresponding partition. Having executed the request, the
leader then relies on a partition-internal protocol to reliably
distribute the resulting state update in order to bring the
followers up to speed. Finally, based on this state update, the
contact server creates a reply and sends it to the client that
has issued the write. In summary, while writes affect the entire
group of servers, reads are handled by only a single server.

B. System Model

Clients and servers, as well as servers amongst each other,
are linked via (application-level) FIFO channels that deliver
messages in the order in which they have been sent. If executed
on top of an unreliable network, a protocol such as TCP is
used to ensure reliable message delivery for connections. In
order to be able to tolerate up to f server crashes, AGORA
is replicated across a total of 2f + 1 servers, each hosting
replicas of all partitions. To minimize the synchronization
overhead for requests operating on multiple partitions (see
Section IV-E), the server assuming the leader role is the
simultaneous leader of all partitions. If, for example due to
problems with individual network connections, the leader is
unable to fulfill its responsibilities for one or more partitions,
AGORA treats the entire server as faulty and reassigns the
leader role for all partitions to another server in the group.



C. THOLOS

Ensuring consistency in a distributed system in general
requires some form of (logical) timeline representing the order
in which relevant events such as state changes occurred [22]. In
contrast to existing coordination services, however, AGORA’s
replication protocol THOLOS does not use a global totally
ordered timeline for the entire system, but an individual
timeline for each partition. The rationale behind giving each
partition its own timeline is that this approach significantly
reduces the synchronization overhead between partitions, as it
allows partitions to make progress without having to order the
requests they process with respect to the requests executed
by other partitions. In the following, we first discuss how
THOLOS replicates data within a partition and then present
details on its handling of dependencies between partitions.

1) Intra-Partition Replication: AGORA replicates the con-
tents of each partition across different servers to ensure avail-
ability in the presence of server crashes. For this purpose,
each partition independently applies a replication scheme in
which the leader establishes an order on all writes issued to
the partition, creates corresponding state updates, and then dis-
tributes these updates to all servers (including itself) using the
crash-tolerant atomic broadcast protocol Zab [17]. Once Zab
delivers such an update, a server applies the state modification
to its local database storing the data nodes of the partition. Due
to the fact that Zab guarantees reliable and in-order delivery
of transactions even in case of faults, the partition databases
of different servers remain consistent as all servers apply all
state modifications to a partition in the same order. As a result,
the sequence numbers Zab assigns to state updates establish
a partition-specific timeline representing the progress of the
partition state. In contrast to writes, reads are not part of this
timeline as they are only processed by the respective contact
server and therefore not subject to intra-partition replication.

2) Handling Inter-Partition Dependencies: While handling
the timelines of different partitions in isolation increases per-
formance for many use cases (e.g., independent writes), there
are some cases in which partitions cannot be treated separately
due to the existence of dependencies between requests. In the
scenario discussed in Section II, for example, it is crucial that
the /ready node only becomes visible to a client, if the
client also sees the updated states of all other /data_* data
nodes, even if they are currently managed by other partitions.
Fulfilling such a requirement is complicated by the fact that
by design different partitions may advance at different speeds.
Timestamps. To support scenarios that introduce dependen-
cies between partitions, AGORA relies on timestamps t =
(s1, s2, ..., sP ) that are composed of the state-update sequence
numbers sp of individual partitions p; as such, the timestamps
are similar to vector clocks [23]. In particular, the p-th element
of a timestamp represents the sequence number up to which
partition p has advanced. Two timestamps t1 and t2 can be
compared using an “is smaller than” relation ≺ that pairwise
compares the timestamps’ elements and is defined as follows:
t1 ≺ t2 ⇔ (∀i : t1[i] ≤ t2[i]) ∧ (∃i : t1[i] < t2[i]).

Node exists

Client A Client B
Partition1 Partition2

Server X
Partition1 Partition2

Server Y

Zab

Zab

create /data

OK

create /ready

OK

create /data

create /ready

read /ready

content

read /data

content

(0,0)

(1,0)

(1,1)

(1,0)

(1,1)

(1,1)

(0,0)

(1,0)

(0,0)

(1,1)

(1,1)

Wait for
update

Figure 4. Use of timestamps in THOLOS (simplified example)

To avoid a central synchronization point, each partition
maintains a local timestamp, that is, its own view of the overall
system progress, and includes this timestamp in all messages
exchanged with clients, other partitions, as well as other
servers. When a partition learns another timestamp tx through
a state update or write request, it merges its local timestamp
with tx by pairwise computing the maximum of elements.
Consequently, the local timestamps of partitions can only
increase over time. With partitions rarely interacting with each
other directly, the common way for a partition to learn that
another partition has made progress is through communication
with clients that have previously accessed other partitions.
Determining Dependencies Between Partitions. Maintain-
ing partition-local views of the system progress using the
timestamps described above has a key benefit: It enables
partitions to track causal dependencies to other partitions. In
particular, by comparing the timestamp attached to a request
with the local timestamp, a partition can determine the point
in time at which it is able to process the request in order to
provide a causally consistent reply. Figure 4 illustrates how
this mechanism works in practice, continuing the use-case
example of Section II, in which the creation of a /ready
data node represents the completion of a client’s information
upload procedure, indicating to other clients that all modified
data nodes are up to date. For clarity, the figure only shows
two servers, two data nodes (each in a separate partition), and
two clients: a client A uploading data, whose contact server is
server X , and a client B acting as reader, which is connected
to server Y . Initially, all timestamps are assumed to be (0, 0).

In the example, when client A issues a request to create a
data node /data, AGORA decides to assign the data node
to partition 1, which then executes an instance of the Zab
protocol to distribute the corresponding state update within the
partition. Being the first modification to the contents of this
partition, the state update is assigned sequence number 1. Once
Zab delivers the state update to partition 1 at server X , the
partition sets its local timestamp to (1, 0), applies the update to
its database, and returns a reply carrying the new timestamp to
client A. In a similar way, the node /ready is then created on
partition 2. However, in this case due to client A providing the
timestamp (1, 0) it has obtained in the first step, the resulting
merged and updated timestamp on partition 2 is (1, 1).



As shown in Figure 4, the loose coupling between partitions
may lead to different servers executing the state changes of
different partitions in different orders. This effect is usually
caused by the fact that Zab delivers a state update when a
majority of servers (i.e., f+1 of the 2f+1) has committed the
update, creating scenarios in which a contact server confirms
the execution of a write at a point in time at which most
servers, but not necessarily all, have acknowledged the opera-
tion. Consequently, if partitions advance at different speeds it
is, for example, possible that at server Y the update for node
/ready in partition 2 is delivered earlier than the update for
node /data in partition 1. In general, this does not pose a
problem, however, as discussed below, it requires additional
measures to handle causally dependent state modifications.

When client B reads node /ready from server Y after
partition 2 of the server has created the node in its database,
the client receives a reply indicating that the node exists. In
this context, client B also obtains the partition’s current time-
stamp (1, 1), which it includes in a subsequent read request
for node /data, expecting to read the latest information. In
the example in Figure 4, however, the read request arrives
before partition 1 of server Y has created node /data, which
means that the partition must not process the request right
away in order to preserve the semantics of the /ready node.
A partition p in AGORA is able to detect such scenarios by
comparing the p-th element treq[p] of the timestamp treq at-
tached to a request with the p-th element tlocal[p] of its current
local timestamp tlocal. If treq[p] ≤ tlocal[p], the partition
immediately executes the request as the timestamp comparison
confirms the partition to be sufficiently up to date. On the
other hand, if treq[p] > tlocal[p], the partition learns that the
client has already seen effects of state modifications (such as
the creation of the /ready node), which may be causally
dependent on other state changes the partition itself has not yet
applied (such as the creation of the /data node). In such case,
the partition delays the processing of the request until having
advanced to the point at which treq[p] = tlocal[p]. Note that
the delayed execution only affects requests with higher treq[p];
requests from other clients with lower treq[p] arriving in the
meantime remain unaffected and are processed immediately.
Summary. THOLOS offers scalability by dividing the service
state into disjoint partitions and independently executing Zab
within each partition to order local state modifications. To
keep the number of synchronization points between partitions
low, THOLOS relies on timestamps that, without the need for
interaction with other partitions, allow a partition to determine
when it is able to give a causally consistent reply to a request.

D. Consistency Guarantees

In the following, we discuss the consistency guarantees
provided by AGORA for read and write operations.
Atomic Operations on Data Nodes. All operations on data
nodes in AGORA are executed atomically. For operations that
access only a single data node (e.g., reads and writes), this is
ensured by the fact that at each point in time each data node
is assigned to a single partition, which executes all operations

on its local data nodes in the same thread (see Section IV-A).
In addition, AGORA guarantees atomic execution of operations
accessing multiple data nodes (e.g., creates and deletes), which
besides affecting the specified data nodes also involve their re-
spective parent nodes. For create operations, AGORA achieves
this by assigning the responsibility of creating a new data node
to the partition that currently comprises the parent node. This
partition then atomically handles the creation of the data node.
After that, the new data node may be migrated to a different
partition. For delete operations, additional measures have to
be taken as a data node and its parent are possibly assigned
to different partitions. Here, AGORA relies on a dedicated
mechanism for multi-partition operations further explained in
Section IV-E that splits the delete request into two partition-
local operations, one for the child node and one for the parent
node, and ensures a consistent execution across partitions.

FIFO Client Order. Besides invoking the coordination ser-
vice synchronously (i.e., having at most a single outstanding
request per client at a time), AGORA also offers clients the
possibility of asynchronous calls. As a key benefit, asyn-
chronous calls enable clients to use the service more efficiently
by submitting multiple operations at once without having to
wait for the system to respond between operations. For both
synchronous as well as asynchronous calls, AGORA guarantees
that the requests issued by the same client are processed in
the order in which the client has sent them. As shown by the
example described in Section II, for some use-case scenarios
of coordination services providing this property is crucial for
correctness, for example, when the creation of a particular data
node (i.e., /ready) marks the end of a batch of client actions.

In case of synchronous calls, ensuring request execution in
FIFO client order is trivial, because a client only submits a sub-
sequent request after having received the reply to its previous
one. For asynchronous calls to the same partition, keeping the
FIFO order is also straightforward as each partition processes
all requests sequentially. However, the same does not apply
to cases in which subsequent asynchronous operations issued
by the same client access different partitions. To handle
such scenarios, an AGORA server, for each client, stores the
latest timestamp it has sent to the client and updates the
timestamp on each reply, thereby reproducing the view each
client has on the progress of the coordination-service state.
As a consequence, the server is able to retroactively attach the
same timestamps to the asynchronous requests that the client
would have used if it had issued the requests synchronously.
That is, in essence AGORA transforms asynchronous requests
at the client side into synchronous requests at the server side.

Causal Serializability. In AGORA, write requests to the same
partition are serialized by the leader and afterwards processed
by all servers in the determined order. If a write (to one
partition) causally depends on a previous write (to another
partition), AGORA ensures that all clients will observe the two
writes in the order in which they occurred. In combination with
the guarantee of atomic operations on data nodes, this results
in write operations in AGORA being causally serializable [24].



As discussed in Section IV-C2, to provide these consistency
guarantees a partition in some cases may have to wait until
being able to execute a read request, for example, if a client
has already witnessed progress on another partition. While
this temporary delay is necessary for reads requiring causally
consistent results, there is no need to penalize clients with
weaker consistency demands. To address this issue, AGORA
besides normal (causally consistent) reads also offers fast
reads. As normal reads, fast reads always return state that
has been committed by the replication protocol of a partition.
However, unlike normal reads, fast reads are immediately exe-
cuted after their reception and therefore do not consider causal
dependencies between data nodes on different partitions.
Comparison with ZooKeeper. AGORA and ZooKeeper both
guarantee that all (read as well as write) operations on data
nodes are executed atomically and that requests issued by
the same client are processed in FIFO order [1]. However,
while ZooKeeper establishes a global order on all state mod-
ifications in the system, AGORA only orders writes within
each partition and in addition respects causal dependencies
between partitions. To understand the difference between the
two systems, it is helpful to assume the existence of two
applications that both rely on the same coordination service but
operate on disjoint sets of data nodes. Using ZooKeeper, all
writes are serialized even though there are no dependencies
between the two data-node sets that would require them to
be brought into a unique order. In contrast, AGORA allows
the two independent data-node sets to be assigned to different
partitions, thereby enabling a parallel execution of requests
issued by the two applications. Furthermore, if a data-node
set were to be distributed across different partitions, AGORA
would respect causal dependencies between operations of the
corresponding application. In summary, AGORA contrary to
ZooKeeper enables write parallelism, while still providing
guarantees that are strong enough to coordinate the actions
of clients operating on the same set of data nodes.

Having examined a wide spectrum of use-case scenarios
for ZooKeeper (e.g., distributed locks, barriers, leader elec-
tion [1]), we are not aware of any use case that would actually
require a total order on writes and therefore could not be
handled by AGORA. Of all the scenarios investigated, we iden-
tified the use of a /ready node as discussed in Section II to
be the most challenging with regard to consistency guarantees.

E. Multi-Partition Operations

As for single-node operations, AGORA also guarantees
atomicity for multi-node operations, even when the data nodes
involved are handled by different partitions. For this purpose,
AGORA splits a multi-partition operation into different single-
partition operations and assigns them a common timestamp
that prevents clients from observing intermediate states.
Basic Concept. Figure 5 illustrates the basic concept behind
this approach using an example in which a client A deletes
a data node /a/b on a partition 1 whose parent node /a is
handled by a partition 2. For clarity all timestamps initially
are (0, 0). When partition 1 on the leader receives the delete

Node exists

Client A Client B
Partition1 Partition2

Leader
Partition1 Partition2

Follower

Zab

delete /a/b

OK

delete
/a/b

rmnode
/a/b

delete /a/b

rmnode
/a/b

Does /a
have a child?

no child

read /a/b

no such node

(0,0)

(1,1)

(1,0)

(1,1)

(1,1)

(1,1)

(0,0)

(1,1)

(0,0)

(1,1)

(1,1)

Wait for
update

Figure 5. Handling of multi-partition operations (basic concept)

request, it creates a new timestamp (1, 0) and sends it attached
to the request to partition 2. On the reception of the timestamp,
partition 2 merges it with its local timestamp and increments
the resulting timestamp. As a result of these first steps, both
partitions have a) each assigned a sequence number of their
local timelines to the request and b) created a timestamp (1, 1)
that reflects these sequence numbers and can be used by
partition 2 to order the operation. When Zab delivers the
operation, partition 2 updates the parent node /a and instructs
partition 1 to remove the child node /a/b from its database.

The right-hand side of Figure 5 shows how AGORA’s han-
dling of multi-partition operations guarantees atomicity and
in particular ensures that clients cannot observe intermediate
execution states. If, for example, a client B queries the data
nodes affected by a deletion while the operation is in progress
and learns about the absence of a child node, the client
afterwards will not be able to access it, independent of which
partition the node had been assigned to and of how much
progress the partition has made on the client’s contact server.
This is due to the fact that, as illustrated in Figure 5, if a
client observes the effects of a multi-partition operation on
one partition, it at the same time also obtains the timestamp
of the operation. By including this timestamp in subsequent
requests, the client enables other partitions on slow servers to
determine that they have fallen behind and first need to catch
up before processing the client’s request (cf. Section IV-C2).
Ensuring Consistency Across Partitions. AGORA ensures
that the database of each partition remains consistent across
servers by executing a separate Zab protocol in each partition
to order state modifications within the partition. In addition,
AGORA guarantees that the databases of different partitions
remain consistent with regard to the effects of multi-partition
operations; that is, if for example a delete request completes
at the parent-node partition, it also completes at the child-
node partition. To provide such a guarantee in the presence of
faults, it is necessary to address scenarios in which one of the
partitions advances to the point at which it is able to complete
its part of a multi-partition operation, while another partition
involved in the same operation does not, for example, due to
the leader server having crashed in the meantime. In AGORA,
such scenarios can occur as partitions are largely independent
and do not necessarily always advance at the same speed.



To handle such scenarios, a partition only updates its
database in the context of a multi-partition operation if a)
the operation has been delivered by Zab and b) the partition
has the confirmation that on all partitions involved in the
operation, the respective Zab instance has delivered all state
updates with sequence numbers lower than sp,o, with sp,o
being the local sequence number a partition p has assigned to
the multi-partition operation o. The latter requirement demands
additional local interaction between the partitions involved
on each server (omitted in Figure 5), but it guarantees that
databases remain consistent across partitions even if the leader
changes: As all previous operations on the affected partitions
are committed by their respective Zab instances, a new leader
cannot retroactively change the local timelines; therefore, the
effects of the multi-partition operation remain stable.

F. Load Balancing

AGORA allows the mapping of data nodes to partitions to
change at runtime in order to perform load balancing. For
this purpose, each partition continuously records workload
statistics such as the number of data-node accesses or the
amount of network traffic. To minimize memory and analysis
overhead, a partition divides its data nodes into groups and
manages a single set of combined statistics per group. By
default, AGORA uses hash values of node paths to assign data
nodes to groups. However, if provided, a partition can also
exploit knowledge about clients to form groups, for example,
combining data nodes that are often accessed together.

To prepare load-balancing decisions, partitions periodically
report their workload statistics to a load-controller component
running on the leader, which is consequently able to determine
if a load imbalance between partitions exists. If this is the
case, the load controller identifies partitions with high load
and instructs them to migrate certain fractions of their load to
specific partitions with low load to minimize the differences
between partitions. Although the load controller decides on
the partitions to participate in load balancing, it is the respon-
sibility of a partition to select the data nodes to be reassigned
to the other partition. This allows a partition to only include
data nodes that can currently be migrated safely, for example,
due to not being involved in a multi-partition operation.

G. Watches

To avoid repeated polling, AGORA offers a client the pos-
sibility to register watches for the creation, modification, and
deletion of data nodes, resulting in the client to be notified by
AGORA when the corresponding event occurs. As for reads and
writes, AGORA also respects causal dependencies for watches,
ensuring for example that if a client in the use-case scenario
in Section II has registered watches for both data nodes
/data_1 and /ready, the client will observe events in the
order in which the data nodes have been created, even if they
are in different partitions. To achieve this, each server locally
manages the watches of its clients, separated into partitions.
When an event occurs for which a watch has been registered,
the corresponding partition sends a notification carrying the

timestamp of the state update that triggered the event to the
client. Furthermore, the partition forwards the notification to
all other partitions on the same server. In reaction, the other
partitions wait until their local timestamps are at least as
high as the notification timestamp and then also send the
notification to the client. The client handles an event once a) it
has received a notification from every partition and b) there are
no notifications of unhandled events with lower timestamps.

The mechanism described above ensures that if an event e2
causally depends on another event e1 (i.e., the timestamp of
e1 is smaller than the timestamp of e2), at least the partition
handling event e1 will first send the notification for event e1
and then the notification for event e2. With clients and servers
being linked via FIFO channels, it is guaranteed that the client
learns about event e1 before obtaining all notifications for
event e2, consequently handling event e1 prior to event e2. As
a counterpart to fast reads, AGORA allows clients with weaker
consistency demands to register fast watches, that is, watches
for which only the affected partition returns a notification.

H. Implementation

Our AGORA prototype is based on the code of ZooKeeper
(version 3.4.6). For AGORA, we refactored ZooKeeper’s
request-processor pipeline by separating the modules con-
taining the protocol logic from the threads executing them,
following the concept of actor-based programming [25]. As a
key benefit, this allows us to execute the entire protocol logic
of a partition in a single thread, thereby eliminating all internal
synchronization points from the request-processor pipeline. To
create multiple partitions, we instantiate the pipeline multiple
times and execute each partition in a dedicated thread.

V. EVALUATION

In this section, we compare the single-core efficiency and
multi-core scalability of AGORA to the respective character-
istics of ZooKeeper. In all cases, the coordination services
run on three servers (8 logical cores, 2.27 GHz, 8 GB RAM),
which are connected via switched Gigabit Ethernet to two
servers with up to 500 clients (8 logical cores, 3.4 GHz, 8 GB
RAM). Unless stated otherwise, the experiments take two
minutes and data points represent the average of three runs.

A. Throughput

In our first set of experiments, we evaluate the maximum
read and write throughput achievable for ZooKeeper and
AGORA depending on the number of cores the respective
coordination service has at its disposal on each server. For this
purpose, clients asynchronously query and modify data-node
contents of different sizes ranging from 8 bytes to 1 kilobyte,
which are typical sizes for coordination services [1], [2]. As
reads in both systems are only handled by the server that
receives them, in the read experiments we configure all clients
to select the same contact server in order to be able to create
a high read workload; as a consequence, we report per-server
throughputs for reads. In contrast, writes in both systems affect
the entire server group due to the need to replicate state



updates across all servers. Therefore, we configure clients to
use different machines as contact servers to modify data nodes
and report overall throughputs for writes. Figures 6 and 7
present the results for read and write operations, respectively.
Single-Core Efficiency. To evaluate the resource efficiency
of both systems, we limit each of the coordination services
to only a single core per server. For ZooKeeper, this is
achieved by instructing the operating system to execute all
threads on the same core. In contrast, for AGORA this in-
volves using a single partition that is executed in a single
thread. Our results show that for the single-core configuration,
ZooKeeper provides maximum throughputs of 26–29 kOps/s
for reads and 7–8 kOps/s for writes of different sizes. As
expected, writes are more expensive than reads due to be-
ing replicated to all servers. The same is true for AGORA,
however, here the achieved maximum read (56–70 kOps/s)
and write (17–31 kOps/s) throughputs are significantly higher
than in ZooKeeper. With both system implementations sharing
a common code base, these differences are the result of
AGORA’s approach to eliminate synchronization points within
a partition by running the entire request-processor pipeline in
a single thread (see Section IV-H), thereby efficiently using
the resources available and improving maximum throughput
by up to a factor of 2.4 (reads) and 4.3 (writes), respectively.
Multi-Core Scalability. When we increase the number of
cores attributed to each server, ZooKeeper provides higher
read and write throughputs until reaching a threshold at
4 cores. After this point, adding more cores has a negative
effect on the performance of ZooKeeper as synchronization
overhead increases; this observation confirms similar findings
by Santos et al. [20]. In contrast to ZooKeeper, AGORA does
not only scale up to 4 cores per server but is able to exploit
additional resources available until saturating the network,
which is the limiting factor in most of our experiments.
Due to efficiently using processing resources, AGORA for
example already reaches network saturation for reads as small
as 8 bytes when relying on 6 or more partitions. In comparison,
ZooKeeper is not even network-bound for 1-kilobyte reads,
independent of the number of cores a server has at its disposal.

As shown in Figure 6b, for reads, AGORA configurations
with fewer partitions (e.g., four) in some cases achieve higher
throughputs than configurations with more partitions (e.g.,
six or eight). This is a result of a combination of a) the
system being network bound and b) the fact that the sizes of
timestamps in AGORA depend on the number of partitions (see
Section IV-C2). With reads returning multiple meta-data time-
stamps (e.g., indicating the creation and latest modification of
a data node), the replies of configurations with fewer partitions
are therefore smaller, which results in a higher throughput if
the network is saturated. As the performance of modifying
operations is dominated by the replication protocol, our results
do not show the same effect for writes, allowing for example
the 8-partition configuration of AGORA for writes of 8 bytes
to achieve a 1.9 times higher maximum throughput than the
4-partition configuration; this is a factor of 3.8 compared to
the highest 8-bytes write performance of ZooKeeper.

0

100

200

300

400

500

600

8 128 256 512 1024
Read size [bytes]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

8 cores
6 cores
4 cores
2 cores
1 core

(a) ZooKeeper

0

100

200

300

400

500

600

8 128 256 512 1024
Read size [bytes]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

8 cores
6 cores
4 cores
2 cores
1 core

(b) AGORA

Figure 6. Read throughput per server

0

50

100

150

200

250

8 128 256 512 1024
Write size [bytes]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

8 cores
6 cores
4 cores
2 cores
1 core

(a) ZooKeeper

0

50

100

150

200

250

8 128 256 512 1024
Write size [bytes]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

8 cores
6 cores
4 cores
2 cores
1 core

(b) AGORA

Figure 7. Overall write throughput

0

5

10

15

20

0 100 200 300 400 500
Throughput [kOps/s]

La
te

nc
y

[m
s]

8 bytes
128 bytes
1 kilobyte

(a) Reads

0

5

10

15

20

0 100 200 300 400 500
Throughput [kOps/s]

La
te

nc
y

[m
s]

8 bytes
128 bytes
1 kilobyte

(b) Writes

Figure 8. Latency provided by AGORA (8 partitions)

B. Latency

In the next experiment, we assess the response times of
AGORA for different read and write operations by stepwise
increasing the client load on a configuration with 8 partitions.
As shown in Figure 8, for all data-node content sizes evaluated
AGORA is able to provide low latencies as long as there is a
sufficient amount of network resources available. In particular,
in all cases AGORA delivers throughputs in under a millisec-
ond that are higher than the respective maximum throughputs
of ZooKeeper. For example, for reads and writes of 8 bytes the
throughput AGORA can handle with sub-millisecond latency
is 5.7 and 4.0 times higher than the maximum throughput
achieved by ZooKeeper for these workloads, respectively.



0

100

200

300

400

500

1 10 100
Operations per partition

Th
ro

ug
hp

ut
[k

O
ps

/s
]

4 partitions
6 partitions
8 partitions

(a) Reads (8 bytes)

0

100

200

300

400

500

1 10 100
Operations per partition

Th
ro

ug
hp

ut
[k

O
ps

/s
]

4 partitions
6 partitions
8 partitions

(b) Writes (8 bytes)

Figure 9. Impact of asynchronous calls to different partitions

C. Synchronization Overhead Between Partitions

As discussed in Section IV-D, AGORA ensures FIFO order
on the execution of requests issued by the same client even if
subsequent requests access data nodes on different partitions.
However, providing such a guarantee in the presence of asyn-
chronous requests requires additional synchronization between
partitions at the server side. To evaluate the overhead associ-
ated with this mechanism, we conduct experiments in which
clients perform asynchronous reads and writes of 8 bytes on
data nodes that are assigned to different partitions, varying the
number of consecutive operations on the same partition before
a client accesses another partition. To ensure valid results, we
statically control the mapping of data nodes to partitions and
also disable AGORA’s load balancing for this experiment.

Figure 9 shows that for the worst-case scenario of all
clients changing their respective partitions on each request,
AGORA achieves a throughput of about 92–106 kOps/s for
both reads and writes, almost independent of the total number
of partitions. That is, despite the worst-case synchronization
overhead, AGORA is still able to provide throughputs that are
significantly higher than the maximum throughputs achieved
by ZooKeeper for the same operations (cf. Section V-A).
As further illustrated by the results presented in Figure 9,
if clients switch partitions less frequently, a higher read and
write performance is achievable. For example, if clients issue
10 consecutive requests to the same partition before accessing
data nodes on a different partition, throughputs increase to
146–206 kOps/s for reads and 111–151 kOps/s for writes.

In summary, the results of this experiment allow us to
draw two main conclusions: First, it is beneficial to collocate
data nodes accessed by the same client on the same partition
in order to minimize the costs for guaranteeing FIFO client
order; in AGORA, this is possible by exploiting application-
specific knowledge when configuring the coordination ser-
vice’s assignment of data nodes to load-balancing groups (see
Section IV-F). Second, if a client does not need a read to
return a causally consistent result, the client should exploit
the fact that AGORA in addition to normal reads also offers
the possibility to issue fast reads (see Section IV-D), as fast
reads in no case require synchronization between partitions
but instead are always processed immediately by a server.

D. Load Balancing

In our last experiment, we evaluate the effectiveness of
AGORA’s load-balancing mechanism responsible for dynami-
cally reassigning data nodes in scenarios where client requests
are unevenly distributed across partitions (see Section IV-F).
For this purpose, we instruct 250 clients to repeatedly perform
writes of 8 bytes on different data nodes and to deliberately
create worst-case load imbalances by simultaneously changing
the data nodes they access at predefined points in time.

Figure 10 presents the results of this experiment for three
AGORA configurations with different numbers of partitions.
At the beginning of the experiment, the data nodes accessed
by clients are evenly distributed across the available partitions.
About ten seconds into the experiment, all clients shift their
workload to a set of data nodes that at this point are all
handled by the same partition, causing all other partitions to
become idle. As a result of the entire write workload needing
to be processed by a single partition, the overall throughput
decreases to a fraction of its initial value. Having detected the
load imbalance, AGORA starts to reassign most of the currently
accessed data nodes to other partitions in order to once again
have a balanced system. In the same way, AGORA reacts to
similar load imbalances 30 and 50 seconds into the experiment.
Our results of 16 test runs per setting show that it takes
AGORA’s load balancer on average 3.7 seconds (4 partitions),
5.4 seconds (6 partitions), and 7.5 seconds (8 partitions),
respectively, to rebalance load in the worst-case scenarios.

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Time [s]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

(a) 4 partitions (writes of 8 bytes)

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Time [s]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

(b) 6 partitions (writes of 8 bytes)

0

50

100

150

200

250

0 5 10 15 20 25 30 35 40 45 50 55 60 65
Time [s]

Th
ro

ug
hp

ut
[k

O
ps

/s
]

(c) 8 partitions (writes of 8 bytes)

Figure 10. Impact of AGORA’s load-balancing mechanism



VI. DISCUSSION

Our evaluation has shown that due to efficiently using pro-
cessing resources, AGORA in contrast to ZooKeeper in most
experiments is able to fully utilize the network resources avail-
able, resulting in the network to be saturated even for small
reads. A possible way to mitigate this problem is to introduce
additional network hardware and to equip each AGORA server
with additional network cards, ideally one network card per
partition. In particular, such a measure would have two main
benefits: First, as a consequence of the increased capacity
more data could be exchanged between clients and servers
as well as among servers, allowing the system to achieve a
higher throughput for both reads and writes. Second, providing
each partition with its own network card would eliminate an
unnecessary synchronization point currently existing in our
AGORA prototype implementation: the single network card all
partitions use to send and receive messages. Note that the abil-
ity to benefit from additional network cards is a direct property
of AGORA’s parallelized replication architecture relying on
largely independent partitions. In traditional architectures for
example used for ZooKeeper, scaling with the number of
network cards is not straightforward because the replication
protocol still needs to establish a global timeline on events.

VII. RELATED WORK

Below, we discuss existing works that address the perfor-
mance and scalability of replicated (coordination) services.
Atomic Operations. To increase performance, some coordi-
nation services [1], [19], [26] offer clients the possibility to
issue transactions containing several requests that are then ex-
ecuted atomically. Building on the idea of processing multiple
operations at once at the server side, Kalantari et al. [27]
presented an approach to handle sequences of operations
submitted by different clients relying on a deterministic multi-
threaded server. Going one step further, we proposed to make
coordination services extensible [5], thereby enabling clients
to register custom code that is then executed atomically by the
coordination service. All three approaches are orthogonal to
this work and could therefore also be integrated into AGORA.
ZooKeeper-specific Approaches. As state modifications have
to be consistently replicated, adding servers to a ZooKeeper in-
stance usually does not increase but decrease write throughput.
Therefore, the common approach to address write-performance
problems is to statically distribute the data across multiple
ZooKeeper instances [1], thereby paying the maintenance costs
associated with operating more than one deployment. Besides,
a possible way to increase read throughput in ZooKeeper
without noticeably harming write performance is to intro-
duce observers [28], that is, servers that only passively learn
committed state updates from others. However, this comes
at the cost of additional network traffic. As our experiments
have shown, by utilizing the resources available on multi-
core machines more efficiently, AGORA achieves significantly
higher read and write performance compared with ZooKeeper
using the same hardware. Consequently, techniques such as
the ones described above are less likely to become necessary.

Composition of Coordination Services. Lev-Ari et al. [10]
proposed a system design that facilitates the development of
applications that are distributed across different data centers,
as it allows a coordination-service client to compose multiple
service instances. As a key advantage, their approach can be
implemented by extending the client library with a layer that
enforces consistency across service instances by injecting syn-
chronization requests into the stream of client operations. On
the downside, handling this task entirely at the client comes at
the cost of higher latency compared with AGORA’s server-side
consistency enforcement. Furthermore, relying only on the
client complicates essential tasks such as dealing with server
faults as well as load balancing between service instances.

Partitioning. ZooFence [29] partitions the coordination-
service state and distributes it across multiple different
ZooKeeper instances. Unlike AGORA, ZooFence requires ad-
ditional proxy components to delegate requests to the ser-
vice instances responsible. In general, state partitioning is a
technique to achieve scalability with the number of servers,
for example, in a distributed file system [30], [31], [32]. In
addition, partitioning has also been proposed for ordering
client requests in replicated systems [33]. For AGORA, we also
rely on service-state partitioning for scalability. However, the
goal we focus on is not scalability with the number of servers
in the system, but with the number of cores on each server. As
a result, compared to the communication costs that would be
necessary if partitions were to be hosted by different servers,
interaction between partitions in AGORA is comparably cheap.
Nevertheless, to minimize synchronization overhead we still
aim at reducing inter-partition communication where possible.

Parallelized Replication. Multi-Ring Paxos [34] partitions the
service state of a replicated system and distributes the ordering
of requests across multiple atomic-multicast groups so that
requests are only delivered to the servers that execute them.
S-SMR [35] builds on this idea and provides linearizability
by coordinating servers that execute operations having depen-
dencies on each other due to accessing the same part of the
service state. A server in P-SMR [36] processes independent
requests in parallel, synchronizing threads only for dependent
operations. In AGORA, requests not only have dependencies
with respect to the service state they operate on but also with
respect to the client that has issued them. This means that to be
able to guarantee both data-node consistency as well as client
FIFO order, using these approaches, all requests would have to
be handled by the same multicast group, thereby eliminating
the advantages of having multiple independent groups.

COP [14] is a concept to parallelize the agreement of
requests in Byzantine fault-tolerant systems, utilizing multiple
threads per server that are each responsible for contributing a
different part of the global sequence of requests. In contrast
to COP, AGORA does not provide strong consistency and
therefore does not establish a total order on all requests, but
only orders writes affecting the same partition. Furthermore,
AGORA in addition to exploiting multiple cores during request
ordering also enables parallelism during request processing.



Rex [37] and Eve [38] parallelize the execution of requests
in a replicated system in order to take advantage of multi-
core machines at this system stage. To ensure consistency
between servers, Rex records execution traces on the leader
and deterministically replays them on the followers. Eve,
on the other hand, executes requests on all servers and if
necessary corrects the effects of nondeterminism afterwards.
Both approaches are especially beneficial for use cases for
which a) it is impossible or expensive to determine in advance
whether requests might influence each other during execution
or b) the actions that have an impact on other requests only
comprise a small portion of the entire execution. In contrast,
in AGORA it is straightforward to identify conflicts between
requests by comparing the paths of the data nodes they
access. Furthermore, due to the low complexity of coordi-
nation-service operations, there is no additional advantage in
parallelizing requests that operate on the same data node.
Ordering of Event Notifications. Baldoni et al. [39] propose
the introduction of vector-based timestamps to ensure the con-
sistent delivery of notifications in a pub/sub system. AGORA
clients for this purpose rely on the same timestamps that are
used by servers to track causal dependencies between requests.

VIII. CONCLUSION

AGORA is a coordination service for applications with high
performance demands that achieves scalability by dynamically
partitioning the service state and executing each partition on
a separate core. Despite the partitioning, AGORA guarantees
FIFO client order and provides atomic operations on data
nodes, independent of whether or not requests access multiple
partitions. To support the same use cases as ZooKeeper,
AGORA relies on an inter-partition protocol that tracks
and respects causal dependencies between writes on different
partitions. Our evaluation results show that AGORA provides a
higher single-core efficiency than ZooKeeper due to minimiz-
ing the number of synchronization points within each partition.
In addition, AGORA is able to scale with the number of cores
on a server, resulting in low latencies for both reads and writes.

REFERENCES

[1] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: Wait-free
coordination for Internet-scale systems,” in Proc. of ATC ’10, 2010.

[2] M. Burrows, “The Chubby lock service for loosely-coupled distributed
systems,” in Proc. of OSDI ’06, 2006.

[3] F. Chang, J. Dean, S. Ghemawat, W. Hsieh, D. A. Wallach, M. Burrows,
T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed storage
system for structured data,” in Proc. of OSDI ’06, 2006.

[4] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph,
R. Katz, S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained
resource sharing in the data center,” in Proc. of NSDI ’11, 2011.

[5] T. Distler, C. Bahn, A. Bessani, F. Fischer, and F. Junqueira, “Extensible
distributed coordination,” in Proc. of EuroSys ’15, 2015.

[6] A. Bessani, R. Mendes, T. Oliveira, N. Neves, M. Correia, M. Pasin,
and P. Verı́ssimo, “SCFS: A shared cloud-backed file system,” in Proc.
of ATC ’14, 2014.

[7] J. B. Leners, H. Wu, W.-L. Hung, M. K. Aguilera, and M. Walfish,
“Detecting failures in distributed systems with the Falcon spy network,”
in Proc. of SOSP ’11, 2011.

[8] A. D. Ferguson, A. Guha, C. Liang, R. Fonseca, and S. Krishnamurthi,
“Hierarchical policies for software defined networks,” in Proc. of
HotSDN ’12, 2012.

[9] A. Shakimov, H. Lim, R. Caceres, L. Cox, K. Li, D. Liu, and A. Var-
shavsky, “Vis-a-Vis: Privacy-preserving online social networking via
virtual individual servers,” in Proc. of COMSNETS ’11, 2011.

[10] K. Lev-Ari, E. Bortnikov, I. Keidar, and A. Shraer, “Modular composi-
tion of coordination services,” in Proc. of ATC ’16, 2016.

[11] A. N. Bessani, E. P. Alchieri, M. Correia, and J. Fraga, “DepSpace: A
Byzantine fault-tolerant coordination service,” in Proc. of EuroSys ’08.

[12] A. Clement, M. Kapritsos, S. Lee, Y. Wang, L. Alvisi, M. Dahlin, and
T. Riche, “UpRight cluster services,” in Proc. of SOSP ’09, 2009.

[13] T. Distler and R. Kapitza, “Increasing performance in Byzantine fault-
tolerant systems with on-demand replica consistency,” in Proc. of
EuroSys ’11, 2011.

[14] J. Behl, T. Distler, and R. Kapitza, “Consensus-oriented parallelization:
How to earn your first million,” in Proc. of Middleware ’15, 2015.

[15] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “The primary-
backup approach,” in Distributed Systems (2nd Edition). Addison-
Wesley, 1993.

[16] L. Lamport, “The part-time parliament,” ACM Trans. on Computer
Systems, vol. 16, no. 2, 1998.

[17] F. P. Junqueira, B. C. Reed, and M. Serafini, “Zab: High-performance
broadcast for primary-backup systems,” in Proc. of DSN ’11, 2011.

[18] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou,
“Boxwood: Abstractions as the foundation for storage infrastructure,” in
Proc. of OSDI ’04, 2004.

[19] M. K. Aguilera, A. Merchant, M. Shah, A. Veitch, and C. Karamanolis,
“Sinfonia: A new paradigm for building scalable distributed systems,”
in Proc. of SOSP ’07, 2007.

[20] N. Santos and A. Schiper, “Achieving high-throughput state machine
replication in multi-core systems,” in Proc. of ICDCS ’13, 2013.

[21] W. Vogels, “Eventually consistent,” Communications of the ACM,
vol. 52, no. 1, 2009.

[22] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, 1978.

[23] F. Mattern, “Virtual time and global states of distributed systems,”
Parallel and Distributed Algorithms, vol. 1, no. 23, 1989.

[24] M. Raynal, G. Thia-Kime, and M. Ahamad, “From serializable to
causal transactions for collaborative applications,” in Proc. of EUROMI-
CRO ’97, 1997.

[25] G. Agha, Actors: A Model of Concurrent Computation in Distributed
Systems. MIT Press, 1986.

[26] D. E. Bakken and R. D. Schlichting, “Supporting fault-tolerant paral-
lel programming in Linda,” IEEE Trans. on Parallel and Distributed
Systems, vol. 6, no. 3, 1995.

[27] B. Kalantari and A. Schiper, “Addressing the ZooKeeper synchronization
inefficiency,” in Proc. of ICDCN ’13, 2013.

[28] ZooKeeper Observers, https://zookeeper.apache.org/doc/trunk/
zookeeperObservers.html.

[29] R. Halalai, P. Sutra, E. Riviére, and P. Felber, “ZooFence: Principled
service partitioning and application to the ZooKeeper coordination
service,” in Proc. of SRDS ’14, 2014.

[30] A. Adya, W. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R. Douceur,
J. Howell, J. R. Lorch, M. Theimer, and R. P. Wattenhofer, “FARSITE:
Federated, available, and reliable storage for an incompletely trusted
environment,” in Proc. of OSDI ’02, 2002.

[31] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,”
in Proc. of SOSP ’03, 2003.

[32] S. Rhea, P. Eaton, D. Geels, H. Weatherspoon, B. Zhao, and J. Kubia-
towicz, “Pond: The OceanStore prototype,” in Proc. of FAST ’03, 2003.

[33] M. Kapritsos and F. P. Junqueira, “Scalable agreement: Toward ordering
as a service,” in Proc. of HotDep ’10, 2010.

[34] P. J. Marandi, M. Primi, and F. Pedone, “Multi-Ring Paxos,” in Proc.
of DSN ’12, 2012.

[35] C. E. Bezerra, F. Pedone, and R. Van Renesse, “Scalable state-machine
replication,” in Proc. of DSN ’14, 2014.

[36] P. J. Marandi, C. E. Bezerra, and F. Pedone, “Rethinking state-machine
replication for parallelism,” in Proc. of ICDCS ’14, 2014.

[37] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and L. Zhuang, “Rex:
Replication at the speed of multi-core,” in Proc. of EuroSys ’14, 2014.

[38] M. Kapritsos, Y. Wang, V. Quéma, A. Clement, L. Alvisi, and M. Dahlin,
“All about Eve: Execute-verify replication for multi-core servers,” in
Proc. of OSDI ’12, 2012.

[39] R. Baldoni, S. Bonomi, M. Platania, and L. Querzoni, “Efficient noti-
fication ordering for geo-distributed pub/sub systems,” IEEE Trans. on
Computers, vol. 64, no. 10, 2015.

https://zookeeper.apache.org/doc/trunk/zookeeperObservers.html
https://zookeeper.apache.org/doc/trunk/zookeeperObservers.html

	Introduction
	Background
	Problem Statement and Approach
	Problem Analysis
	Goals and Challenges
	Approach

	Agora
	Overview
	System Model
	Tholos
	Intra-Partition Replication
	Handling Inter-Partition Dependencies

	Consistency Guarantees
	Multi-Partition Operations
	Load Balancing
	Watches
	Implementation

	Evaluation
	Throughput
	Latency
	Synchronization Overhead Between Partitions
	Load Balancing

	Discussion
	Related Work
	Conclusion
	References

