Practical Applications of
Client-side Trusted Computing

David Goltzsche

TU Braunschweig, Germany

goltzsche@ibr.cs.tu-bs.de

ABSTRACT

Offloading computations from central infrastructure to client ma-
chines of end-users imposes restrictions because they are untrusted
environments. However, with trusted computing technology be-
coming widely available on commodity hardware, the approach
of designing distributed systems shifts: When it is possible to as-
sume trusted clients, existing systems can be designed differently.
Additionally, entirely new use cases are possible.

KEYWORDS
trusted computing, offloading, Intel SGX

1 INTRODUCTION

The general trend to offload server-side functionality to clients is
ubiquitous: websites contain code that is executed by web browsers,
volunteer computing systems use the computing power of private
machines, and with fog computing various cloud services are of-
floaded to client machines. This trend is motivated by shorter laten-
cies, thus achieving a better user experience or the ability to relieve
central infrastructure by exploiting otherwise idle resources.

While this approach has become common practice, system de-
signers are required to take precautions because client machines
are not under central control and therefore cannot be trusted. Pre-
cautions include recomputations in the systems back-ends (e.g. in
web applications) or replication of computations to other clients
(e.g. blockchains or volunteer computing systems). In other cases,
system designers refrain from offloading computations at all (e.g.
centralised network functions).

However, the widespread availability of trusted execution envi-
ronments (TEEs) for commodity hardware in the form of the Intel
Software Guard Extensions (SGX) opens up new system design
paradigms: remote parties can verify the TEE (called enclaves) on
client machines in order to establish a trusted channel and gain
trust in the computations performed in it, making offloading of
arbitrary computations to untrusted clients even more attractive.
Figure 1 shows a general client-server model with and without
client-side TEEs.

In this research proposal, we will show how and why we can
design web applications (Section 2) and volunteer computing sys-
tems (Section 3) differently when assuming trusted clients. Addi-
tionally, we propose the entirely new use case of client-side middle-
box functions (Section 4), which has become feasible with trusted
network clients.

EuroDW’18, April 23, 2018, Porto, Portugal
2018.

@g’ Untrusted channel &
Clent

(a) without client-side TEEs: server-side (re)computations
ere

| N

Trusted channel

(b) with client-side TEEs: no server-side (re)computations

Figure 1: General client-server model (a) with and (b) with-
out client-side TEEs.

Browser o
Add-on

Browser tab, |
[Browser tab,
[Browser tab,

| [N | S—

L] |E3 Trusted channel
' I

Figure 2: Architecture of TRUsSTJS; example with three ser-
vice providers (SPs), each associated with an interpreter en-
clave (IE).

2 TRUSTED WEB BROWSERS

Web applications increasingly replace traditional desktop applica-
tions, because developers gain instant deployability and platform
independence. The scripting language JavaScript enables develop-
ers to offload computations to client-side browsers in a standardised
way, resulting in minimised round trip times and less resource de-
mand on server side.

However, offloading code to clients has its limitations: From
the web service provider’s views, clients are not trustworthy, thus
computation results may be wrong, corrupted or incomplete. To
solve this, client results are usually checked for consistency at
server-side, which requires recomputations. Furthermore, clients
cannot be entrusted with the intellectual property of confidential
JavaScript code because it cannot be protected. Solutions like code
obfuscation have been proven as insufficient [7].

With TrusTJS [5], we proposed a solution for trusted client-side
execution of JavaScript code using interpreter enclaves (IEs) based
on Intel SGX and MuJS[2], an open-source JavaScript interpreter.

EuroDW’18, April 23, 2018, Porto, Portugal

As shown in Figure 2, TRUSTJS integrates the interpreter enclaves
into a browser and creates trusted channels between JavaScript
runtime environments and service providers. Trust is established
by combining in-enclave termination of encrypted data streams
and remote attestation as provided by Intel SGX.

In the paper, we show how TRUST]JS enables trustworthy ex-
ecution of JavaScript inside commodity browsers, allows service
providers to save resources and achieves lower latencies, improving
overall user experience. The main contributions of TRUST]JS are
the transparent browser integration including SGX support and
the creation of a new web development paradigm that considers
trusted clients. Currently, we are improving TRUSTJS by enabling
WebRTC and just-in-time (JIT) compilation by using Google V8
instead of MuJS. The support of WebRTC raises new challenges
due to missing system support within enclaves. In terms of JIT
compilation, security concerns of in-enclave generated code have
to be evaluated and handled.

Furthermore, we are experimenting with use cases for TRUSTJS.
So far, we investigated client-generated CAPTCHAs and anti-cheat
mechanisms for browser-based massively multiplayer online games.

3 TRUSTED VOLUNTEER COMPUTING

Volunteer computing systems like BOINC [1] have become incredi-
bly popular, attracting millions of participants to voluntarily donate
computing power to a plethora of research projects. In addition
to sheer altruism, volunteers are motivated by credit systems that
these systems implement: users receive credit points for computa-
tions they perform and leader boards allow users to compete.

However, we identified three fundamental design flaws in today’s
volunteer computing systems: First, the resources of clients are
wasted by recomputations of jobs to deal with cheaters or otherwise
misbehaving clients. Second, both code and data of jobs are always
disclosed to participants, which may not be desirable in every case.
And third, most volunteers cannot be motivated for long-term
commitments to the system: less than 4% of BOINC’s 4.5 million
users are actually active contributors [3].

We propose TRUVC, a decentralised volunteer computing sys-
tem that solves the issues stated above. Wasting of resources is
solved by establishing trust in client machines using TEEs provided
by Intel SGX. The combination of encrypted data channels and
TEEs also allows the deployment of encrypted compute jobs. For
isolated execution, TRUVC uses a near-native-speed sandboxing
environment and, for motivating volunteers, TRUVC'’s participants
are financially reimbursed by the task providers. The main chal-
lenges for TRUVC are provisioning a work estimation measurement
to fairly reimburse participants for equal workloads and the trusted
management of job offers from task providers.

4 CLIENT-SIDE MIDDLEBOXES

So-called middleboxes are used in large managed networks to imple-
ment functions like firewalls, intrusion detection, caching or load
balancing. However, middleboxes are typically deployed centrally,
despite high infrastructure and management costs [9]. Alterna-
tively, in defiance of high security and legal risks, research projects
propose to outsource middleboxes to the cloud [8].

David Goltzsche

Enterprise)

Network E

EndBox VPN|
Client

EndBox
VPN Client
i -

Machine=#""| =19

Figure 3: Architecture of ENDBoOX in an enterprise scenario

To address these limitations, we suggest ENDBOX [4], a system
with a decentralised deployment approach, placing middleboxes
on client machines at the network edge exploiting idle resources.
EnDBoOX combines a VPN with hardware-protected middlebox func-
tions to allow usually untrusted clients the execution of middlebox
functions. Figure 3 shows the architecture of ENDBoX: internal and
external network clients run an enhanced VPN client incorporating
a TEE based on Intel SGX. The TEE contains security-sensitive
parts of the VPN client and middlebox functions implemented us-
ing the software router Click [6]. The VPN server only accepts
encrypted connections that originate from genuine enclaves, thus,
it ensures middlebox functions are executed on clients. As ENDBox
distributes middlebox functions across clients, the main challenge
is to maintain the manageability of those. We do this by imple-
menting a mechanism for rapid and seamless middlebox function
configuration for centralised administration.

ENDBOX is a scalable system that enables secure deployment and
execution of middlebox functions on untrusted client machines. In
the paper, we show that ENDBOX scales linearly with the number of
clients and achieves an up to 4X higher throughput than traditional
deployments. Additionally, we show the deployment of five use
cases on ENDBoxX including an intrusion detection and prevention
system (IDPS) and the prevention of distributed denial of service
attacks.

Practical Applications of
Client-side Trusted Computing EuroDW’18, April 23, 2018, Porto, Portugal

REFERENCES

[1] David P Anderson. “Boinc: A system for public-resource com-
puting and storage”. In: Grid Computing. IEEE. 2004.

[2] Artifex Software, Inc. http://mujs.com/. 2016.

[3] BOINC statistics. https://boincstats.com/en/stats/-1/project/
detail/overview. 2018.

[4] David Goltzsche et al. “EndBox: Scalable Middlebox Func-
tions Using Client-Side Trusted Execution”. In: Proceedings of
the 48th International Conference on Dependable Systems and
Networks. DSN’18. Accepted for Publication. 2018.

[5] David Goltzsche et al. “Trust]S: Trusted Client-side Execution
of JavaScript”. In: Proceedings of the 10th European Workshop
on Systems Security. ACM. 2017.

[6] Eddie Kohler et al. “The Click modular router”. In: ACM Trans-
actions on Computer Systems. TOCS (2000).

[7] Clemens Kolbitsch et al. “Rozzle: De-cloaking internet mal-
ware”. In: SP. 2012.

[8] Chang Lan et al. “Embark: Securely Outsourcing Middleboxes
to the Cloud”. In: 13th USENIX Symposium on Networked Sys-
tems Design and Implementation. NSDI "16. 2016.

[9] Justine Sherry et al. “Making Middleboxes Someone else’s
Problem: Network Processing As a Cloud Service”. In: Pro-
ceedings of the ACM SIGCOMM 2012 Conference on Applica-
tions, Technologies, Architectures, and Protocols for Computer
Communication. 2012.

http://mujs.com/
https://boincstats.com/en/stats/-1/project/detail/overview
https://boincstats.com/en/stats/-1/project/detail/overview

	Abstract
	1 Introduction
	2 Trusted Web Browsers
	3 Trusted Volunteer Computing
	4 Client-side Middleboxes

