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Zusammenfassung

In dieser Arbeit stellen wir Algorithmen vor, die es einem Agenten ermöglichen,
eine Funksignalquelle in einer unbekannten zweidimensionalen Umgebung zu
finden. Wir wollen dabei zwei verschiedene Modellklassen betrachten. Die erste
Klasse modelliert eine Umgebung die es dem Agenten erlaubt, die Richtung des
Ziels zu bestimmen und seine eigenen Rotationen zu verfolgen. Lage und Form
der Hindernisse sind dabei dem Agenten nicht bekannt und der Agent hat keine
Möglichkeit, seine eigene Position zu bestimmen.

In der zweiten Modelklasse betrachten wir eine realitätsnahe Funksignalquel-
le und einen Agenten, der in der Lage ist, die Signalstärke an seiner Position
in Form eines diskreten Wertes wahrzunehmen. Auch in diesem Fall sollen Lage
und Form der Hindernisse dem Agenten nicht bekannt sein. Wir untersuchen
dabei verschiedene Ausbreitungsformen des Signals und stellen effiziente Algo-
rithmen zur Lösung des Problems vor.





Abstract

In this work we will present a number af algorithms that make it possible for an
agent to find a radio source in an unknown two-dimensional environment. We
will consider two different model classes. The first class defines an environment
that allows an agent to determine the direction of the radio source and to track
its own rotations. Location and shape of the obstacles thereby are not known
to the agent and the agent has no means of determining its position.

In the second model class we consider a realistic radio source and an agent
that is able to perceive the signal intensity at its position in form of a discrete
value. Also in this case location and form of the obstacles shall not be known to
the agent. We analyze different signal propagation shapes and present efficient
algorithms for solution of the problem.
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Chapter 1

Introduction

The problem of finding a radio source with mobile agents among geometric
obstacles in an unknown environment has been widely discussed. The nature
of the solutions vary substantially with the sensor model that is chosen for the
implementing agent. A number of approaches focuses on a model in which the
agent knows its exact position relative to the source at all times such as the
well known “bug” family of algorithms [8]. Partly they also grant the agent the
ability to perceive parts of their environment directly [10, 6, 13]. Others only
require knowledge about the direction of or the distance to the radio source
[14, 4].

All of these approaches have in common that they use rather simplified
models of radio signal distributions or presume an information source other
then a radio signal. However real radio signals often do not provide direct
angular or distance related information, but still give enough information to
find a direct path to the signal source [6, 17]. The idea being that even non-
isotropic intensity landscapes can provide a path to the signal source which can
be found by following the direction of steepest signal intensity ascent.

However some real world intensity measurement systems such as link quality
indicators (LQI, [9]) which are commonly used in wireless sensor networks do
only provide discrete signal intensities. In a setup like that a signal intensity
ascent may not be measurable without extensive motion and thus the formerly
noted approaches can not be applied. Also due to reflection effects there might
be multiple maxima of signal intensity at locations other than the radio source
[16]. By combining covering techniques with traditional motion planning ap-
proaches, we are able to present algorithms which can deal with all of these
constraints and still guarantee to find the signal source.

We will start our work by clarifying some preliminaries such as notational
conventions, used mathematical concepts and basic algorithms in Chapter 2.
Then we will examine two classes of models for the problem in Chapters 3 and
4. In Chapter 3 we will assume that the agent can only use angular input. More
precisely, we assume an agent that can track its own rotations and determine
the relative direction of the signal source but not its own position or that of the
source. We will present a new solution to the problem and compare our findings
to the known Angulus algorithm [14]. In Chapter 4 we consider an agent that can
only perceive discrete signal intensities but is able to track its own position. The
section is divided into subsections that deal with four different types of discrete
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signal patterns. First we consider circular intensity rings (Section 4.2) which,
as we will show, pose a task reducible to the solved problem of finding a signal
source when its position is known. In Section 4.3 we will consider discrete signal
intensities in general (i.e. with no fixed signal form) and provide algorithms
that find a signal source in environments with an almost arbitrary intensity
distribution. We provide an optimized variant of that solution in Section 4.4
which can be applied if the environment is known to be star shaped. Section
4.5 discusses how a bound for the length of the agents path can be specified
with little more demands on the environment and presents two algorithms that
behave efficiently in such environments.
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Chapter 2

Preliminaries

2.1 Notation
We utilize prevalent notational conventions for sets. That is, N = {1, 2, . . . } is
the set of natural numbers, N0 = {0, 1, 2, . . . } = N ∪ {0} is the set of natural
numbers that includes 0. Z = {. . . ,−2,−1, 0, 1, 2, . . . } is the set of integers. R is
the set of real numbers, R+ = {x ∈ R|x > 0} is the set of positive real numbers
and R+

0 = {x ∈ R|x ≥ 0} is the set of non-negative real numbers. For any set
M = {m1,m2, . . . } we write 2M in order to refer to the power set of M which
is 2M = {∅, {m1} , {m2} , {m1,m2} , . . . }.

We use the common notation for sequences i.e. (an)n∈N = (a1, a2, . . . ) will
be handled equivalently to a function a : N → A (the codomain A being an
arbitrary set), thus we will use the notation a(n) for access to the n’th member.
We will also identify tuples with sequences of finite length, so (e1, e2, . . . , eN )
for e1, . . . , eN ∈ E defines a sequence e : {1, . . . , N} → E so that e(n) = en
for all n ∈ {1, . . . , N}. We will also allow the construction of new sequences
by concatenation of sequences with the same codomain, requiring all but the
last sequence to be finite. Syntactically we will denote that with the concate-
nation operator “|”. Be a = (a1, a2, . . . , aN ), b = (b1, b2, . . . , bM ), c : N → A
sequences with codomain A (i.e. a1, . . . , aN , b1, . . . , bM ∈ A), then a|b|c denotes
the sequence (a1, . . . , aN , b1, . . . , bM , c1, c2, . . . ). In this notation an element of
the sequences codomain will be treated as a finite sequence of length 1 (e.g.
(1, 2)|3|(4, 5) = (1, 2, 3, 4, 5)). We will primarily make use of this notation in
Section 3 when defining a sequence of binary sequences.

2.2 Topological terms
A subset M ⊆ Rn is called a topological space if for each point p ∈ M there
is a neighborhood M ⊇ Uε(p) = {q ∈M | ‖p− q‖ < ε} with ε > 0 which is not
empty. In other words, M ⊆ Rn is open. The set of all neighborhoods Uε(p) is
called topology on M . A topological space M ⊆ R2 is called connected if there
is a path from each point p1 ∈M to each other point p2 ∈M that is contained
completely in M . If additionally each path from p1 to p2 can be continuously
transformed into each other path from p1 to p2 we say M is simply connected
(in a graphic manner, M has no “holes”).
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A n-dimensional manifold is a topological space that behaves locally like
(is homeomorphic to) the euclidean space Rn. However the complete manifold
does not need to be homeomorphic to Rn [12]. For example consider a two-
dimensional area like Mhole =

{
(x, y) ∈ R2|1 <

√
x2 + y2 < 2

}
which has one

hole. Local subsets of Mhole have the same properties as R2, but the whole
space does not. E.g. Mhole is not simply connected although local subsets of
Mhole are. A function which converts coordinates between such a local subset
of M and the corresponding euclidean space Rn is called map.

A manifold is called compact if an infinite number of steps of movement (of
constant length) in it eventually reaches every point. As an example, R2 itself
is not compact, butMhole is. A manifold is called smooth iff the change of maps
between local subsets of the manifold and its corresponding euclidean space is
infinitely differentiable. All topological manifolds of dimensions 1, 2 and 3 are
smooth[5].

Given a compact, smooth n-dimensional manifold M ⊆ Rn and a smooth
function f : M → R, we call p ∈ M a critical point of f if ∂f

∂x1
(p) = . . . =

∂f
∂xn

(p) = 0. A critical point p is called non-degenerate iff its Hessian matrix
H(f) is non-singular in p. The number of negative eigenvalues of H(f) at a
critical point is called Morse index of that point. f is a Morse function if all
critical points of f are non-degenerate.

The basic idea of classical Morse theory is that the homotopy (or, in
better situations, even the homeomorphism or diffeomorphism) type
of the sub-manifold Ma = {p ∈M | f(p) ≤ a} changes only at the
critical points of f . If there is no critical value in the interval [a, b],
then the gradient flow of f provides a diffeomorphism between Ma

and Mb [15].

2.3 The mobile agent and its environment
In order to reason about mobile agent motion planning we model the set of
positions called configuration space C ⊆ R2 as a simply connected area. With
Cfree ⊆ C we denote the subset of the configuration space the agent is allowed
move freely in. If not further specified we assume that Cfree is bounded by a
smooth closed curve which will be treated as an obstacle wall by the following
definitions and all presented algorithms.

If the agent is touching the wall of an obstacle it still can move, but obviously
not in all directions. We call the set of those points which only allow partial
motion Csemi-free ⊆ C. For the sake of descriptiveness we want to think of the
agent as being point-shaped. Note that by adjusting Cfree and Csemi-free, the
algorithms presented are applicable to other agent shapes as well, for example
using Minkowski sums [7].

In this context we understand an obstacle as an area bounded by a smooth
closed curve of finite length in R2 (called “wall”) whose interior is a subset of
Cblocked = C\{Cfree ∪ Csemi-free}. For the “outer wall” (the boundary curve of
Cfree), if existent, it is the outside of the curve which is a subset of Cblocked. We
will always assume that there is only a finite number of obstacles and that they
are not intersecting or touching each other so that a mobile agent that follows a
wall of an obstacle long enough will eventually reach its starting position again.
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The signal source will be represented as a 2-dimensional point pT ∈ C. The
tuple (Cfree, Csemi-free, Cblocked, pT ) together with any possible intensity function
is called environment.

2.4 The Pledge algorithm
The Pledge algorithm solves the problem of escaping from an unknown two-
dimensional labyrinth [1]. The only requirement to an executing agent is that it
can walk straight facing a certain (arbitrary but fix) direction α0 in free space
and follow obstacle walls until it faces that direction.

Whereas in the latter part it is crucial that the orientation of the agent is
not viewed modulo 2π as usual but instead higher and also negative values are
considered. E.g. if the agents orientation is 2π − ε and the agent executes a 2ε
counterclockwise rotation, its new orientation is 2π + ε instead of ε.

Algorithm 2.1 Pledge
Notes:

• α0 is a previously chosen arbitrary but fix angle

1 turn until facing α0
2 while true {
3 walk straight until obstacle hit
4 turn right and follow wall until facing α0
5 }

Given a finite amount of obstacles with finite circumference, an agent exe-
cuting 2.1 will eventually leave any region which contains obstacles and “escape”
facing direction α0. Kamphans and Langetepe showed in [11] that the agent
does not necessarily need to walk exactly with heading α0 in free space but can
vary the direction as long as the difference in heading at two arbitrary points
in free space is at most π.

2.5 The Angulus algorithm
Lumelsky and Tiwari first introduced the Angulus algorithm in [14]. In this
section we will briefly explain how the algorithm works, for further input on
this topic please see the referenced paper.

Consider the problem of a mobile agent in an unknown, two-dimensional
environment that does not know its own position. The agent is equipped with
a compass-like device that allows it to detect the direction of the target it is
trying to reach. Furthermore, the agent can track its own rotations and follow
obstacle walls. Just like for the Pledge algorithm, there is no equivalence of
angles which differ by multiples of 2π. Consider the angle β which describes
the relative direction of the source (as perceived by the agent) and depends on
that agents orientation α ∈ R. When the agent faces the source directly, β = 0
holds. If with β = 0 the agent does a full left turn, it physically faces the source
again, but now has an orientation towards the source of β = 2π 6= 0.

5



Figure 2.1: Example execution of the Pledge algorithm. Note that at (1) the
agents orientation is not α0 but α0 +2π which is differentiated so the agent does
not leave the obstacle at this point but at (2).

For our description of the algorithm we will also consider the angle γ ∈ R
with γ = α + β which describes the absolute angle between agent and target.
Note that γ does not change when the agent rotates in place.

Algorithm 2.2 Angulus
1 γ0 := γ
2 while target not reached {
3 turn right and follow wall until β = 0
4 if during wall-following γ > γ0 + 2π {
5 continue following wall
6 until (γ = γ0 + 2π) ∧ (β ∈ [2π, 4π))
7 γ := γ0
8 turn until β = 2π
9 }
10 walk straight until obstacle hit
11 }

2.6 Morse decompositions of unknown environ-
ments

It is possible to cover an unknown environment efficiently using Morse decompo-
sitions by splitting it at critical points. Given that Cfree∪Csemi-free is a compact,
smooth, two-dimensional manifold, and f : Cfree ∪ Csemi-free → R is a Morse
function, f can be visualized as a distance measure from the starting point.

Non-degenerate critical points are exactly those points where the tangent of
an obstacle wall is also tangent to a curve which has a constant value under f
(we call this curve f -line for short). The f -lines through critical points are used
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(a) (b) (c)

Figure 2.2: a) Covering using a linear pattern (continuous line) and the accord-
ing Morse function (dashed lines show constant curves under f) b) Covering
using a circular pattern and the according Morse function c) Linear covering
pattern with curves constant under f (dashed) that share a tangent with points
on an obstacle border (black points). These curves are used to split the envi-
ronment into cells.

to split the environment into cells with the property that each cell is completely
coverable with a motion pattern that mainly moves along f -lines. After the
environment has been split, all “new” cells are added to a list of cells to be
covered. During processing of that list, possibly more cells are appended as
they are detected. If the agent encounters a dead end situation but still has
cells to cover in its list, the agent will move back through already covered cells
in order to fulfill that task. Eventually all cells will have been found and covered
[2, 3].

7
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Chapter 3

Angular input only

We consider the problem of finding a radio source under the assumption of an
agent operating on angular input only. The mobile agent is equipped with a
device that provides the direction of the signal source at any time and we assume
the agent can track its own rotations. The motions of the agent are restricted
to directly head towards the signal source and follow obstacle walls.

This problem definition is related to that of the Pledge algorithm introduced
in Section 2.4. However instead of any obstacle-free space the agent has to reach
a single point, the signal source. A naive adaption of the Pledge algorithm
would always just head at the signal source instead of a fixed direction α0 and
circumvent obstacles analog to the usual Pledge manner: Turn right and follow
the obstacle wall until facing the signal source again, take care to distinguish 0
and 2π.

Figure 3.1a shows an example where this approach is successful. If all ob-
stacles and the signal source can be divided by a straight line as shown, the
directions of two free space motions do not differ by more than π. It has been
shown that an agent executing the Pledge algorithm can be subject to an abso-
lute “measurement error” regarding its own orientation about up to π and still
reach its goal [11].

Now consider the case in Figure 3.1b where the signal source is on the inside
of a spiral-shaped obstacle. The agent executes the same Pledge-like algorithm
which results in an endless loop. This is solved by the Angulus algorithm (in-
troduced in Section 2.5) by detecting the circling and not leaving the obstacle
during the second circling until the agent made it into the spiral [14]. With
our approach on the other hand the agent will still leave the obstacle at that
position but alter the rule “turn right and follow obstacle” into “turn left and
follow obstacle”. In general our agent tries to find a sequence of these rules
(hence called turn plan) which will let it reach the signal source eventually.

3.1 Model
We consider the problem of finding a radio source under the assumption of
an agent operating on angular input only. More precisely the agent has the
following capabilities:

(1) The agent will detect when it has physical contact to the radio source.

9



(a) (b)

Figure 3.1: a) A naive Pledge-like solution can be successful if the signal source
and all obstacles are dividable by a straight line. b) If that is not the case for
example because the signal source is enclosed by a spiral-like obstacle, the naive
approach can lead to infinite loops.

(2) During all its motions the agent is able to track its cumulative turning
angle in a variable α ∈ R. In our case we do not apply the otherwise usual
equivalence of a turning angle α with the angles α + 2πk for all k ∈ Z.
I.e., in this model 0, 2π and −2π would be three different angles.

(3) The agent can measure the relative direction of the source β ∈ R (see
Figure 3.2). Like α, no implicit modulus 2π operation is applied.

(4) The agent can turn until it faces the signal source (β = 0).

(5) When the agent has just touched a wall it can turn either left or right
and follow the wall. Whenever it is oriented in a way so that β = 0, i.e.
the agent looks at the signal source, it can leave the current obstacle in a
straight line until it touches either the radio source or another wall.

In order to detect circling around the source, the agent tracks the direction β
of the source during all motions. However in determining if the source has been
circled, the direction the agent itself is facing (α) should not be relevant, thus
instead of observing β directly, we usually observe γ = α + β as depicted in
Figure 3.2.

Then γ is the angular position of the source relative to the agent irrespective
of which direction the agent is facing. When calculating this angle at two
different points in time leading to two values γ0 and γ1, the source has been
circled |γ0−γ1|

2π times between the measurements. As noted in Section 2.3 we
assume that in each environment there is only a finite number of obstacles, each
having a smooth closed curve of finite length as boundary. We also assume that
Cfree is not bounded by a smooth closed curve so the environment is not shaped
like a courtyard but rather like an open field with limited obstacles.

3.2 Orientation based motion planning
When the agent circles the signal source it has to alter its turn plan (the sequence
of left/right turn rules applied after hitting a wall) in a smart way to be able

10



Figure 3.2: Angular input to the agent

to bypass the obstacle(s) it circles and get nearer to the source. In order to
achieve this, we introduce φ, a sequence of binary sequences that will be used
to explore different turn plans.

Definition 3.2.1. We define φ : N → (N → {0, 1}), a sequence of binary
sequences by

φ(1) = 000 . . .
φ(n) = bm(n− 2m − 1)|1|φ1 with m = dlog2 ne − 1

The notation a|b means concatenation of tuples and sequences in this con-
text. We define bm : N0 → {0, 1}m where bm(v) is the m-tuple of bits that is
the binary representation of the value v beginning with the most significant bit
(MSB) (e.g. b3(6) = (1, 1, 0)). As a special case b0(v) shall always be the tuple
of length 0 regardless of the value of v.

For the n’th member sequence of φ we will write φ(n).

Corollary 3.2.2.
φ(n) = φ(m)⇔ m = n

holds for all n,m ∈ N.

Regarding the members of any φ(m) we will identify the value 0 with the
rule “turn right and follow wall” (R) and 1 with “turn left and follow wall” (L)
respectively. These rules will later on be applied whenever the agent touches
an obstacle. For the sake of mathematical argumentation about counting- and
similar properties we will continue to use the numerical notation most of the
time though.

Having defined a sequence of turn plans we present Algorithm 3.1 which
applies these plans trying out a new one whenever it completed a circle around
the signal source. An agent executing the algorithm always heads towards the
signal source in free space and follows obstacle borders until it faces the source

11



Seq. Bit string Seq. Bit string
φ(1) 000000... φ(9) 000100...
φ(2) 100000... φ(10) 001100...
φ(3) 010000... φ(11) 010100...
φ(4) 110000... φ(12) 011100...
φ(5) 001000... φ(13) 100100...
φ(6) 011000... φ(14) 101100...
φ(7) 101000... φ(15) 110100...
φ(8) 111000... φ(16) 111100...

Table 3.1: The first 16 member sequences of φ represented as bit strings. Under-
lined is the component bm(v) which is a counting sequence of increasing length.
bm(v) is always followed by a 1 and an infinite number of 0s except for φ(1)
and φ(2) where bm(v) has length 0.

again. Thereby the agent takes care not to identify angles that have a differ-
ence of 2πn in order to avoid “simple” loops (just like the Pledge algorithm).
Whenever the agent notices it circled the signal source, it will advance to the
next turn plan provided by φ(i).

We will now introduce a series of utility lemmas and definitions that lay
some ground work for analyzing the presented algorithm. We start with some
general observations about agents that circle obstacles. More precisely, we show
that agents never circle an obstacle completely without facing the signal source
at least once. We will use this later on to prove that each obstacle will be left
eventually.

Lemma 3.2.3. Be P : [0, tmax) → R2 with tmax ∈ R+ a smooth Jordan curve
of finite length and pT ∈ R2 a point outside of this curve.

Further be g1, g2 : R→ R2 two rays starting in pT which intersect P exactly
in one point each. We call these points P (t1) and P (t2) respectively. Then the
following holds:

(1) Both g1 and g2 are tangents of P .

(2) An agent moving along P in increasing t direction (and keeping its orien-
tation adjusted to the gradient of P ) will look directly at pT in P (t1) and
directly away from pT in P (t2) or vice versa.

Figure 3.3: Path tangents
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Algorithm 3.1 Orientation based motion planning (OBMoP)
Preconditions

• The agent is located in Cfree

• φ(n) as given in Definition 3.2.1

1 i := 1
2 j := 1
3 rotate until β = 0
4 γ0 := γ
5 while source not reached {
6 move straight until obstacle hit
7 if (φ(i)) (j) = 0 {
8 rotate right and follow wall until β = 0
9 }
10 else {
11 rotate left and follow wall until β = 0
12 }
13 j := j + 1
14 if during wall-following γ mod 2π = γ0 {
15 j := 1
16 i := i+ 1
17 }
18 }

Proof. If any of g1, g2 would not be tangent of P , there would be points in P
on both sides of the respective ray. Since P is a closed curve that does not
circle pT , that ray would have to intersect P twice and that would contradict
the construction of the ray  . Thus, g1 and g2 are both tangents to P and (1)
is fulfilled, see Figure 3.3.

Since P does not cross itself, the “increasing t” direction points at pT in
P (t1) and away from pT in P (t1) (see figure), so (2) holds true as well.

The central point in the later proof for convergence of our algorithm will be
the claim that it does not lead the agent into an infinite loop. Before we can
really claim that we need to define the term loop in this context:

Definition 3.2.4. Be P : T → Cfree ∪ Csemi-free with T ⊆ R+
0 and T connected

a path of an agent executing a source finding algorithm. We say P contains a
loop (u, v) if both of the following hold

• u, v ∈ T and u < v.

• The codomain of the interval [u, v] in P , written as P ([u, v]) is a (closed)
curve with P (u) = P (v).

We define LP ⊆ T ×T as the set of all pairs u, v that fulfill the properties stated
above. Further be L1

P ⊆ LP the set of all pairs u, v that fulfill the properties
stated above and for which P ([u, v]) is simple (i.e. P ([u, v]) does not cross
itself but is a Jordan curve). We call L1

P the set of minimal loops in P . A
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loop (u, v) ∈ LP is said to circle the source k times iff |γv − γu| = 2πk for
k ∈ Z\{0}. Note that for a loop that does not circle the source there still might
be a v̄ ∈ (u, v) so that |γv̄ − γu| = 2πk for a k ∈ Z\{0}. This is the case when
a loop describes a path around the source but “comes back”.

If an agent executing Algorithm 3.1 would loop infinitely, it could either
circle the source or not. The first case is what we avoid by the choice and
application of φ. We will now prove that an agent can not loop forever without
circling the source, so we can guarantee that if there is a potentially endless loop
we have a chance to alter the turn plan each lap until the agent can “escape”
towards the signal source.

Lemma 3.2.5. Be P : R+
0 → Cfree ∪ Csemi-free the path of an agent executing

Algorithm 3.1 that contains at least one loop. Be (u, v) ∈ LP a loop in P that
does not cross the γ0 line. Then (u, v) is not an endless loop, i.e. there is a
tleave ∈ R with tleave > v so that P ([tleave,∞)) ∩ P ([u, v]) = ∅.

Proof. We demonstrate that in this special case Algorithm 3.1 behaves equiva-
lently to the Pledge algorithm which is known to inhibit endless loops. We do
this by applying a polar transformation with the radio source as center to all
obstacle forms and the agents path. Note

(1) Since the γ0 line is never crossed, the fact that the polar space exhibits a
“wrap-around” behavior at γ0 is not relevant. More precisely, the polar
space is homeomorphic to a cylinder, however the agents path is com-
pletely contained in a simply closed two-dimensional surface.

(2) A segment of a path describes a loop in the “normal” space if and only if
it describes a loop in the polar space.

(3) Since γ = γ0 does not occur during the loop, the agents remaining turn
plan will eventually become 00000 . . . so the agent will eventually default
to always turn right and follow the wall whenever it touches an obstacle.

(4) The case of having β = 0 (the agent is facing the source) in the “normal”
space is equivalent to having α = α0 in the polar space (the agent facing
a certain direction).

(5) Moving straight towards the source in normal space is equivalent to moving
in the α0 direction in the polar space.

Considering (3) after a finite number of jumps the application of these obser-
vations to Algorithm 3.1 delivers a direct description of the Pledge algorithm.
Since the pledge algorithm guarantees to eventually leave any group of obstacles
and thus any loop, there can be no endless loops either in the polar space nor
in its transformation preimage the “normal” space.

The basic idea of φ(n) is to try out all possible left/right rule sequences in
a way that can not lead to loops. However we did not state yet in which cases
such a turn plan is applicable at all and when a correct sequence exists.

Lemma 3.2.6. Given an environment in which the signal source is reachable
from all points in Cfree ∪ Csemi-free and an agent that exhibits the following
behavior:
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(a) (b)

Figure 3.4: a) A path of an agent executing Algorithm 3.1 which does not cross
the γ0 line. b) The same environment and path after a polar transformation
with the radio source as center. The behavior of the agent in the polar space is
identical to the Pledge algorithm.

• The agent measures its cumulative relative angle to the signal source β ∈
R. The otherwise usual equivalence of a turning angle β with the angles
β + 2πk for all k ∈ Z\{0} is not applied (β = 2π is a different case then
β = 0).

• When in free space the agent will move straight towards the source until
it touches an obstacle.

• After arriving at an obstacle the agent will turn either right or left accord-
ing to a sequence a : N → {R,L} so that its n’th turn will be determined
by a(n). Then the agent will follow the obstacle until β = 0 holds and
then drive straight towards the source.

For each possible starting point pS ∈
(
Cfree ∪ Csemi-free

)
, there is a sequence

a : N→ {R,L} so that the agent will reach the signal source after having traveled
a path of finite length.

Proof. We prove by induction over the number of obstacles in the environment.

Basis If there are no obstacles in the environment, the agent will obviously
reach the environment with every finite sequence a : N → {R,L} since it
never touches an obstacle but only moves straight to the source.

Step Assume, there is already a finite sequence a : N → {R,L} so that the
agent starting at pS will reach the source using that sequence. After
adding a new obstacle in a way that the radio source still is reachable
from all points in the new free and semi-free configuration space, there
exists a (possibly different) finite sequence a′ : N → {R,L} so that the
source will be reached from pS when a′ is applied.

This can be shown as follows: If the new obstacle (O for short) does
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Figure 3.5: If there is a path P in Cfree∪Csemi-free that leads from the outside of
an obstacle to its inside then there exists a path P ′ that with the same starting
point which also ends on the inside of the obstacle and consists solely of motions
along obstacle boundaries and straight toward the signal source. Note that P
and P ′ are not necessarily homeomorphic to each other.

not intersect the former path of the agent from pS to the radio source,
then a′ = a will certainly fulfill the condition. Else a can be split in two
sub-sequences abefore and aafter so that abefore|aafter = a and after apply-
ing abefore the agent will touch O for the first time at point h ∈ Csemi-free.
There is a path P from h to the inside of O (else the source would not
be reachable anymore). As P is a path from the outside of an obstacle
to its inside, there is also a similar path that leads to the obstacles inside
using only motions as described in the lemma as illustrated by Figure 3.5,
which is constructed by “projecting” P to the nearest obstacle in direction
towards the signal source.1
After overcoming O the agent might not be on a point where executing
aafterwill lead to the radio source, but in any case the agent will be nearer
to the source. However since the source was reachable before insertion of
O from all points in the free configuration space and we have shown that
O is passable from every point h towards the source there must also be a
sequence a′after that leads the agent from O to the radio source.

Imagine an an agent starting from the γ0-line at point p1. It is possible that a
certain turn plan φ(x) leads the agent to a point p2 6= p1 with γp2 mod 2π =
γp1 mod 2π = γ0. At p2 the agent executes the turn plan φ(x + 1) so that it
arrives at p1 again, so the agent walks a loop. This is fine per se, however we
have to ensure that this does not go on forever (i.e., φ(x+ 2) leads again to p2
and so on). Note that the agent only executes a finite number of turns from
each plan, so even though φ(x) 6= φ(x+ 2) 6= φ(x+ 4) 6= . . . holds, they may in
general still have a common prefix so that the agent will loop forever.

In the following lemma we show that φ as given in Definition 3.2.1 can
not repeat prefixes forever this way, we call this property non linear prefix
repetition. First however, we need to make two important general observations

1Actually the rules for this transformation are a little more complex than a simple projec-
tion, the procedure should be intuitively clear though.
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about counting sequences.

Observation 3.2.7 (Repetition in counting sequences). Be m, p ∈ N with p <
m. Then a binary counting sequence with m bits repeats each prefix of length p
2m−p times in a row.

For instance, consider the sequence c3 = (000, 001, 010, 011, 100, 101, 110, 111).
The prefixes of length one are (0, 0, 0, 0, 1, 1, 1, 1) each of which repeats 23−1 = 4
times. The prefixes of length two are (00, 00, 01, 01, 10, 10, 11, 11), each of which
repeats 23−2 = 2 times.

Observation 3.2.8 (Counting sequences in φ). Given a value q ∈ N we define
n0 = 2q+1, the tuple (φ(n0), φ(n0 + 1), . . . , φ(2n0 − 2)) has the binary counting
sequence in dlog2 n0e − 1 bits as prefix.

E.g., (φ(5), φ(6), φ(7), φ(8)) = (0010 . . . , 0110 . . . , 1010 . . . , 1110 . . . ) has the
two bit counting sequence (00, 01, 10, 11) as prefix.

Lemma 3.2.9 (Non linear prefix repetition). Be a : N → {0, 1} a binary
sequence. Then for any s, d, k ∈ N there is an i ∈ N0 so that at least the first k
members of a and φ(s+ id) are identical.

Proof. Be n0 = 2k+dlog2 de + 1. If n0 + d − 1 < s, we choose a higher value for
k so that this is not the case anymore. Then more bits than claimed will be
identical which is no contradiction to the original postulation. Note that n0 ≥ 3
holds by definition.

Consider the tuple (φ(n0), φ(n0 + 1), . . . , φ(n0 + d− 1)). According to Ob-
servation 3.2.8, this tuple has a binary counting sequence in dlog2 n0e − 1 =⌈
log2

(
2k+dlog2 de + 1

)⌉
− 1 = k + dlog2 de bits as prefix (note that 2n0 − 2 ≥

n0 + d − 1 holds). According to Observation 3.2.7, the k long prefixes repeat
2(k+dlog2 de)−k = d times in a row in this tuple. Since φ(s + id) contains every
d’th member-sequence, it must eventually take every possible binary sequence
of length k as a value.

Note that in general there might be values n′0 ∈ N with n′0 = s + id < n0
so that the first k members of φ(n′0) equal the first k members of any given
sequence a.

Using that property we can now show that with the proposed algorithm the
agent will not engage in loops that repeatedly circle the signal source.

Lemma 3.2.10. Be P the path of an agent executing Algorithm 3.1 that con-
tains at least one loop (u, v) ∈ LP which crosses the γ0 line. Then (u, v)
is not an endless loop, i.e. there is a tleave ∈ R with tleave > v so that
P ([tleave,∞)) ∩ P ([u, v]) = ∅.

Proof. Within the time interval [u, v], the agent circles the sourceN ∈ N+ times,
i.e. there are time indices u ≤ t1 < · · · < tN < v with γt1 mod 2π = γt2 mod
2π = · · · = γtN mod 2π = γ0 mod 2π. Since the radio source is reachable, there
must be at least one free space motion after which - with an appropriate turn
plan - the agent will take a different path than before. This path may already
“free” the agent from the former loop, or it may change the loop possibly adding
new crossings with the γ0 line and additional free space motions. Since the
number of leave points (points where β = 0 could possibly hold) is finite, so is
the maximum size and number of possible variants of the loop. For one of those

17



variants there must be a leave point though for which one of the decisions “turn
right and follow wall” (0) , “turn left and follow wall” (1) will lead to leaving
the loop see Figure 3.6.

(a) (b)

Figure 3.6: a) A loop which can not be left just by correct choice at (1) b) A
variant of the loop which contains a leaving possibility at (2)

Be tL the last time index so that γtL mod 2π = γ0 mod 2π before that leave
point. Then there exists a finite sequence a of turning decisions so that if it is
applied after tL it will lead the agent out of the loop. Be iL ∈ N the value of
i (index to φ in Algorithm 3.1) when the agent first encounters P (tL). On the
j’th visit of P (tL) the agent will use the sequence φ(iL + jd) to determine its
prospective path. Due to Lemma 3.2.9 we know there is a j ∈ N so that the
agent will actually use the sequence a at some point, so it will eventually leave
the loop.

Theorem 3.2.11. An agent executing Algorithm 3.1 in an environment with
reachable signal source will reach the signal source after traveling a path of finite
length.

Proof. Since all free space motions of the agent are aligned towards the radio
source this is the case when both the following conditions hold true:

(1) The agent will eventually leave any obstacle so it will move towards the
source.

(2) There is no endless loop possible so for each free space motion towards
the source there will be a later free space movement which will end nearer
to the source than the previous one did. (Naturally that does not have to
hold true for the last free space movement)

From Lemma 3.2.3 follows that for each obstacle there is a point so that β = 0
holds during the first circling of the obstacle, so each obstacle is left eventually,
(1) holds.

Due to Lemmas 3.2.5 and 3.2.10, (2) holds too so an agent executing Algo-
rithm 3.1 will eventually reach the signal source.
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Theorem 3.2.12. Consider an agent executing Algorithm 3.1. For each (arbi-
trary large) n ∈ N and each (arbitrary small) ε ∈ R+ there is

(1) an obstacle OS so that the agent travels a path of length |P | ≥ ‖pT − pS‖+
n |∂OS | − ε before reaching the source. P does not circle the source.

(2) an obstacle OT so that the agent circles obstacle and signal source at least
2n+1 times, traveling a path length of |P | ≥ ‖pT − pS‖+2n |∂OT |−ε before
reaching the source.

Proof.

(1) Analog to the proof of the unboundedness of the Angulus algorithm [14]
we prove the same property for Algorithm 3.1, however we only consider
the one-obstacle case.
As can be seen in Figure 3.7, the sum of the free space motions is certainly

Figure 3.7: An environment that enforces unbounded behavior for Algorithm
3.1 as well as for the Angulus algorithm.

greater or equal to ‖pT − pS‖. By adjusting the number of windings of the
spiral around pS , an arbitrary high number n of traversals of the segment l
can be enforced. Other segments of OS are traveled n−1 or fewer times, so
by choosing the length of l and/or the “spiral part” so that |∂OS |− l ≤ ε

n ,
we see that

|P | ≥ ‖pT − pS‖+ nl

≥ ‖pT − pS‖+ n
(
|∂OS | −

ε

n

)
= ‖pT − pS‖+ n |∂OS | − ε

holds.

(2) We construct an obstacle like shown in Figure 3.8 with n steps. If the
agent starts from the γ0 line in counter-clockwise direction, the sequence
for traversal of the obstacle is accw = 00 . . . 01 = 0n1. A sequence which
does not have a as prefix but contains a 1 in its first n members will make
the agent turn around and circle the obstacle clockwise in which case the
sequence for traversal is acw = 00 . . . 01 = 0n+11. In this case if the agent
tries a sequence which does contain a 1 in its first n + 1 members it will
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Figure 3.8: A malicious, source-circling environment for Algorithm 3.1. Left:
Environment setup, the dotted line depicts the distance l. Right: Partial exe-
cution path of the algorithm in this environment. The dashed line represents
places where γ mod 2π = γ0 holds.

continue to circle clockwise.
The first sequence that has acw as prefix is φ(2n+1 + 1). Note that all
sequences before that one contain a 1 except for φ(1) = 00 . . . , so for
n > 1 the agent is surely circling clockwise directly before traversal of
the obstacle. During its clockwise circlings around the obstacle, the agent
traverses l at least 2n+1 times. By choosing l so that 1

2 |∂OT | − l ≤
ε

2n+1

holds2 we got

|P | ≥ ‖pT − pS‖+ 2n+1l

≥ ‖pT − pS‖+ 2n+1
(

1
2 |∂OT | −

ε

2n+1

)
= ‖pT − pS‖+ 2n |∂OT | − ε

3.3 Comparison to the Angulus algorithm
In the previous section we have shown that an agent executing Algorithm 3.1
can be forced to travel arbitrary long paths without circling the signal source.
Lumelsky and Tiwari have shown that the same is true for Angulus. Also
both algorithms can be forced into generation of long paths while having the
agent circle the signal source repeatedly. However the environments that lead to
those cases are different for the two algorithms. As we just constructed such an
environment for Algorithm 3.1, we will now investigate that case for Angulus.

2Note that we can only consider 1
2 |∂OS | instead of |∂OS | because only the outside of the

obstacle is traveled at all.
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After that we will compare the properties of the environments in order to say
something about the difference between the algorithms.

Theorem 3.3.1. Consider an agent executing the Angulus algorithm [14]. For
each (arbitrary large) n ∈ N and each (arbitrary small) ε ∈ R+ there is an ob-
stacle OT so that the agent circles obstacle and signal source at least 1

2
(
n2 + n

)
times, traveling a path of length |P | ≥ 1

2 ‖pT − pS‖+
1
6n |∂OT |−ε before reaching

the source.

Figure 3.9: Malicious environment for the Angulus algorithm. The dashed line
and the gray squares can be used to identify the spiral segments. For example
the innermost spiral segment is 7 units long, the next one 7 + 8 = 15, then
7 + 2 · 8 = 23 and so on.

Proof. We construct the obstacle as shown in figure 3.9 with n spiral segments,
where each segment describes a whole turn around the signal source and the
i’th segment has length 7 + 8(i− 1). The obstacle is arbitrary thin so the path
lengths on the inside and outside of a spiral segment are arbitrary near to the
segment length (depending on ε).

In the first phase, Angulus walks the complete “outside spiral” of the obsta-
cle. When the executing agent physically faces the signal source however, it does
not leave the obstacle, but continues to follow the wall, as it already circled the
source n times, so γ = 2πn ≥ 2π holds. The algorithm states that in that case
the agent will not leave the obstacle wall until (γ = γ0 + 2π) ∧ (β ∈ [2π, 4π))
holds, which first is the case at the beginning of the second outermost spiral.

So the agent walks “back” the spiral length minus the outermost segment
length. Then the agent executes a free space motion “jumping over” to the
beginning of the third outermost spiral segment (leaving out the two outermost
segments).

The process repeats until the leave point is in the innermost spiral segment
and the agent reaches the source. The number of signal source circlings (when
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counting both directions) is thus
n∑
i=1

(n− i+ 1)

= n2 − 1
2n(n+ 1) + n

= 1
2
(
n2 + n

)
The agent travels the outermost segment length once, the second outermost
segment length twice and so on, so we can calculate the length lOT

of the path
the agent travels along obstacle walls. Note that in this and the following
equations we will use εx-terms to represent potential effects of the obstacle
“thickness” (a thin obstacle results in small values for ε’s).

lOT
=

n∑
i=1

(i(7 + 8(n− i))− ε1

= (7 + 8n)
n∑
i=1

i− 8
n∑
i=1

i2 − ε1

= (7 + 8n)n(n+ 1)
2 − 4n(n+ 1)(2n+ 1)

3 − ε1

= 4
3n

3 + 7
2n

2 + 13
6 n− ε1

The obstacle perimeter is nearly two times the spiral length:

|∂OT | = 2
n∑
i=1

(7 + 8(i− 1)) + ε2

= 16
n∑
i=1

i− 2n+ ε2

= 8n(n+ 1)− 2n+ ε2

= 8n2 + 6n+ ε2

We set the traveled distance in relation to the length of the obstacle boundary:

lOT

|∂OT |
=

4
3n

3 + 7
2n

2 + 13
6 n− ε1

8n2 + 6n+ ε2

= 1
6n+ 7

192n+ 144 + 5
16 − ε3

In addition to the wall-following the agent executes some free space motions.
We can see in Figure 3.9 that these motions occur once for every second spiral
segment. As the spiral segments divide the line between the agents starting
point and the signal source into equal pieces, the length of the agents free space
motions is 1

2 ‖pT − pS‖ − ε4.
The total path length of the agent is thus

|P | = 1
2 ‖pT − pS‖+

(
1
6n+ 7

192n+ 144 + 5
16

)
|∂OT | − ε

≥ 1
2 ‖pT − pS‖+ 1

6n |∂OT | − ε
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Note that it is certainly possible to create environments which enforce even
longer paths for a given number of spiral segments, for example by using (non-
rectangular) spirals with a lower “outer segment length” to “inner segment
length” ratio (e.g. Fermat’s spiral). We showed however that the agents path
length is not linear bounded to the obstacle perimeter length for Angulus and
the agent can be forced to circle the signal source an arbitrary number of times
only by adjusting the shape of the obstacle.

Figure 3.10 summarizes the differences between the Angulus algorithm and
our solution. Note that we already pointed out in the previous section that there
are types of obstacles for which both algorithms show the same, unbounded
behavior. While the Angulus algorithm behaves also unbounded on spirals
around the signal source, Algorithm 3.1 solves those problems with a path length
bounded by obstacle perimeter and start/signal source distance. Environments
with lots of leave points on the other hand force an agent to walk very long ways
if our solution is implemented whereas Angulus will give more efficient results.

We conclude that the presented algorithm is usable as an alternative to the
Angulus algorithm especially for environments in whose the signal source is
enclosed by one or more spiral-like obstacles. Also - in contrast to Angulus -
the set of potential obstacle leave points does not depend on the agents starting
position but only on the environment. A notable weakness of our method though
are environments with lots of leave points which can lead to long execution
paths.
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(a) Malicious case for Angulus (b) Algorithm 3.1 in the same environ-
ment

(c) Malicious case for Algo-
rithm 3.1

(d) The Angulus algorithm in
the same environment

Figure 3.10: a) A malicious, source-circling environment that forces the Angulus
algorithm to exhibit unbounded behavior.
b) The path length of algorithm 3.1 executed in the same environment is linear
boundable by the sum of the obstacle perimeter length and the distance between
pS and pT .
c) Algorithm 3.1 executing in a malicious source circling environment. The
path length grows exponentially with the number of “steps” and thus can not
be bounded by obstacle perimeter length and/or distance between start and
signal source with a linear term. (Only a fraction of the complete path is shown
here)
d) Execution of the Angulus algorithm in the malicious environment for Al-
gorithm 3.1. The total path length is bounded by obstacle perimeter and the
distance between starting position and signal source.
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Chapter 4

Discrete signal intensities

In this chapter we will consider environments with discrete signal intensities.
The chapter is divided into multiple sections. Section 4.1 describes the common
basic problem model for such environments. The following sections each describe
a certain variation of that general model and provide an algorithm which lets
an agent find the signal source in an environment of the considered type.

4.1 Model
In the following sections we will use the notion of environments with discrete
signal intensities.

4.1.1 Environment
As before we will understand an environment as a definition of the agents con-
figuration space C = Cfree ∪ Csemi-free ∪ Cblocked and the position of the signal
source pT . Additionally we now demand an environment to define an intensity
function I : C → {1, . . . , nI} with 1 < nI ∈ N. This function describes the
intensity value I(p) an agent measures at any point p ∈ C in the configuration
space1. With such a discrete intensity function there might be large connected
components in C that have identical intensity. As already noted in Section 2.3,
in case the environment contains geometric obstacles, we will assume that there
is only a finite amount of them and that they have a smooth closed curve of
finite length as boundary each. Also as noted earlier we will assume that Cfree
is bounded by a smooth closed curve which - where not further specified - will
be treated as an obstacle wall by the following algorithms.
Definition 4.1.1 (Intensity ring). Given a configuration space C and an in-
tensity function I : C → {1, . . . , nI}, nI ∈ N, the set of intensity rings in C,
R(I) ⊆ 2C is defined as:

R(I) =
⋃

i∈{1,...,nI}

Γ
(
I−1 [{i}]

)
1One could argue that it would be more appropriate to define intensities only for Cfree ∪

Csemi-free instead of the complete configuration space C, since the agent will not perceive
intensities in Cblocked anyway. However with I being defined on C, we will see the notion of
intensity rings (see Definition 4.1.1) is much more natural.
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Where Γ (M) is the set of connected components in a set M and I−1[{i}]
denotes the set of all points in C with intensity i. R(I) has the following prop-
erties:

• R(I) is a partition of C

• For all elements R ∈ R(I) it is guaranteed that ∀p1, p2 ∈ R : I(p1) = I(p2)
holds, so we will write I(R) for short when we referring to the intensity of
any point in the intensity ring R.

In the rest of this document we will only consider environments with a finite
number of intensity rings. Furthermore we will assume that the boundary ∂R
exists for all R ∈ R(I) and is a smooth, closed curve.

4.1.2 Mobile agent
Due to the discrete nature of the signal and the resulting fields of equal inten-
sity, the agent will be forced to use covering. The agent will (partially) cover
the environment searching for increasing signal intensities and/or the signal
source. Naturally a point shaped agent can not visit every point in a given
two-dimensional area in finite time, which is why we alter the definition of the
mobile agent to include a covering radius r ∈ R+. In our model the agent can
perceive all signal intensities and the signal source in a circle of radius r around
its current position. Note that the agent can still perceive obstacles only by
touching them.

This is equivalent to having no covering radius at all but instead having an
environment with a certain “granularity”. If the signal is coarse enough, the
agent does not actually need to be able to perceive all intensities in an r-radius
around its position. However describing the model that way around would make
the handling of the intensity distribution function utterly complex, so we stick
with the covering radius r.

This model can also be interpreted as enforcing a certain granularity for
signal intensity distribution having the agent still only perceive a single point
at once which might be the more common case.

An agent moving in an environment with discrete signal intensities is as-
sumed to have the following capabilities:

(1) At any point during execution, the agent can determine its position rela-
tive to an arbitrary but fix point using for instance odometry.

(2) The agent can turn arbitrary angles and walk arbitrary paths in free space.

(3) The agent has the ability to detect contact with an obstacle during motion
and to follow an obstacle wall.

(4) At any point the agent is able to detect all intensity values and the signal
source in a radius r ∈ R+ around itself. More precisely, if pA ∈ C is the
agents current position, the agent has knowledge about I(p) for any point
p in {p ∈ C| ‖p− pA‖ < r}. Additionally if the source is located in that
r-circle (‖pT − pA‖ < r holds), the agent will know the position of the
radio source relative to its own position.
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4.2 Circular intensity environments
4.2.1 Model
We now consider the case where the signal intensity distribution depicts a cir-
cular pattern around the signal source. We extend the definition of the agent
in Section 4.1 by means to track its own rotations in a Pledge-like way (com-
pare Pledge introduction in Section 2.4) meaning it tracks its orientation α ∈ R
without calculating modulo 2π as it would be usual for angles in other situa-
tions. For instance if the agents orientation is α1 = 2π− ε and the agent does a
counter-clockwise turn about 2ε, its new orientation is α2 = 2π + ε and not ε.

Also an agent in this model is able to communicate with other agents in the
same environment over arbitrary distances.
Definition 4.2.1 (Circular intensity environment). An environment is called
circular if its intensity function I : C → {1, . . . , nI} has the form

I(p) =



1 for
√
p2 − p2

T ≥ a1

2 for a1 >
√
p2 − p2

T ≥ a2

3 for a2 >
√
p2 − p2

T ≥ a3
...

...
nI for anI−1 >

√
p2 − p2

T

with a1 > a2 > · · · > anI−1 ∈ R+. In other words the signal intensity for a
point p ∈ C only depends on the distance of p from the signal source in a way
that lower valued signals have a greater distance from the source, so all intensity
borders are perfect circles.

4.2.2 Signal form following motion planning
The algorithm we are going to present is based on the idea that by knowing the
signal form we can calculate the exact position of the signal source. With that
information, algorithms like Bug1, Bug2 or I-Bug can be used to efficiently move
an agent to the calculated location [1, 17]. For the calculation of the signal source
position we assemble multiple points on the intensity borders (which are circles
with unknown radii) and form an equation system that will be solved for these
circles common center. In order to assemble these points, Algorithm4.1 controls
multiple agents instead of one and uses the Pledge algorithm to distribute them
on intensity border points.

After the agents have spread, there is information about np agent positions
p1, . . . , pnp which lie on nc different circles with different (not yet known) radii
b1, . . . , bnc ∈ {a1, . . . , anI−1}. Note that due to their ability to detect signal
intensities, all agents know wihch circle they are on. Given these positions, an
equation system can be set up like this:

b21 = (pTx − p1x)2 + (pTy − p1y)2

b22 = (pTx − p2x)2 + (pTy − p2y)2

...
b2nc

=
(
pTx − pnpx

)2 +
(
pTy − pnpy

)2
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Algorithm 4.1 Signal form following motion planning (SiFF-MoP)
Preconditions:

• All agents start inside a ring with a not-minimal intensity (i.e. there is at
least one additional intensity ring surrounding them)

• The algorithm is executed by enough agents so the position of the signal
source can be calculated

1 execute Pledge algorithm until intensity border is reached
2 send position to other agents
3 wait for positions from other agents
4 calculate position of signal source
5 if closest agent to that point {
6 execute bug1, bug2 or i-bug in order to reach point
7 }
8 else {
9 aid moving agent in localization
10 }

The system consists of two unknowns (the position of the signal source pTx
and pTy) plus one additional unknown for each circle considered (their radii b1,
b2, . . . ). Each agent position in turn contributes an equation, so the position of
the signal source is calculable if np ≥ nc + 2 holds.

As an example, consider the case where all agents start in the same intensity
ring that has intensity i ∈ {1, . . . , nI}. This ring is enclosed by two intensity-
border-circles with radii ai and ai−1. Since an agent stops as soon as it reaches
such a circle in this case the agents will distribute on these two circles only, so
nc ≤ 2 holds and the position of the source is calculable by four agents.

With the information of the sources exact position the agents can calculate
their orientation and position in relation to the signal source at all times thus
a wide range of known algorithms can be applied to find a way to the source.

Note that possible collisions between agents are not handled by the algo-
rithm. This can be handled in different ways. For example, agents could execute
the Pledge algorithm (as described in Section 2.4) in a fixed order so only one
agent is moving at a time and can treat the others like normal obstacles. An-
other possibility is to implement more sophisticated “right of way” procedures
that only force agents to wait when they are in acute risk to crash.

Theorem 4.2.2. Consider a group of np agents executing Algorithm 4.1 in a
circular intensity environment. One of these agents reaches the signal source
after finite time if np ≥ nc + 2 holds where nc is the total number of intensity
borders encountered.

Proof. We know that an agent executing the Pledge algorithm will eventually
leave every finite area. Since there is at least one intensity ring surrounding each
agent, all of them will eventually reach an intensity border. Because np ≥ nc+2
holds, the equation system is non-singular and calculates the correct position of
the signal source.
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Figure 4.1: Sample run of Algorithm 4.1 (Distribution phase)

The algorithms “Bug1”, “Bug2” and “I-Bug” have been proven to lead their
executing agents to the target in finite time too.

4.3 Environments of arbitrary shape
In this section we extend the idea of covering using Morse decompositions as
discussed in Section 2.6 so it accounts for varying signal intensities in the envi-
ronment.

4.3.1 Model
In addition to the capabilities described in Section 4.1, we assume there is a
Morse function f : Cfree ∪ Csemi-free → R given so that f(p) = 0 if p is the
starting position of the agent. Morse functions have been briefly discussed in
Section 2.6. f defines the covering pattern for the agent and thus has to be
chosen during implementation. Also in this model the agent is able to perceive
tangents of obstacle walls and intensity rings in its covering radius if those
tangents match that of f at its current position. For easier description of the
algorithm we also assume that two curves f−1[y], f−1[y + c] with y, c ∈ R have
a constant distance of c to each other.

4.3.2 Intensity aided coverage planning
In this model, the agent has so few information about the location of the signal
source that it is unavoidable to have it cover potentially large parts of the free
and semi-free configuration space. While covering the unknown environment,
the free and semi-free configuration space is divided into cells, each of which
is coverable with simple back-and-forth motions, much like it is the case for
covering using Morse decompositions (briefly introduced in Section 2.6).

In contrast to a usual covering approach though, Algorithm 4.2 tries to
minimize the area to be covered and focuses on areas with high signal intensity
in order to locate the signal source quickly. We will first define the term cell in
this context and then come up with the actual algorithm.
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(a) (b)

Figure 4.2: Intensity aided coverage planning compared to normal covering.
a) While covering, the agent encounters an obstacle tangent, closes the current
cell and adds the newly found cells A and B to its list. The black line depicts
the agents path, the light grey “background” under it the area being covered.
The dark grey shapes represent obstacles, the dark dotted line implies the found
wall tangent.
b) Similar situation with an area of different intensity instead of an obstacle. In
contrast to the obstacle case, three new cells instead of two are found. In this
example the new cell C has a higher intensity than A and B and will be covered
before them.

Definition 4.3.1 (Simple cell). A connected component C ⊆ Cfree ∪ Csemi-free
is called a simple cell with respect to a Morse function f : Cfree ∪Csemi-free → R,
iff ∀a ∈ R : (f−1[a] ∩ C) is connected.

Corollary 4.3.2. Given a cell C which is simple w.r.t. a function f and a
value a ∈ R so that f−1[a] ∩ C 6= ∅, the connected components of C\f−1[a] are
simple cells w.r.t. f .

Algorithm 4.2 covers the environment with simple back-and-forth motions
that we will describe in greater detail in Algorithm 4.4. The covering has com-
pletes a cell when it finds a signal intensity increase or an obstacle. In any case,
newly found cells are added to A and a cell to be covered is selected from that
set by the criterion of maximal signal intensity.
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Algorithm 4.2 Intensity aided coverage planning (IACoP)
Preconditions:

• The agent is positioned at the outermost intensity border so that
I(current position) = 1

1 k := 1
2 A0 := {starting_area}
3 while |Ak| > 0 {
4 Ck := arg max

A∈Ak−1

I(A)

5 Nk := cover(Ck)
6 Ak := (Ak−1 ∪Nk)\{Ck}
7 k := k + 1
8 }

Given a Morse function f , and a cell C the function cover(C) (Algorithm
4.3) walks to the nearest known point in that cell, walks a complete back-and-
forth-line (using function complete_line(), which will be described later on) and
then starts to actually cover the cell using back-and-forth motions. If it found a
wall- or intensity-ring-tangent it closes the current cell as shown in Figure 4.2.
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Algorithm 4.3 cover() method for IACoP
Notes:

• f is the coverage-pattern defining Morse function chosen upfront

• pA is always the momentary position of the agent

1 function cover(C: cell) {
2 d := R
3 walk to nearest point in C
4 y := f(pA)
5
6 // opening curve
7 N := complete_line()
8 if N contains area of higher intensity {
9 return N
10 }
11
12 // actual “back and forth” covering
13 while true {
14 y := y + 2r
15 follow obstacle/intensity border
16 until f(pA) = y
17 alternate d between R and L
18 turn according to d (L=left, R=right)
19 walk curve so that f(pA) = y holds
20 switch(what happened) {
21 case found signal source {
22 walk to signal source
23 stop agent, terminate program
24 }
25 case found tangent {
26 // closing curve
27 N := N∪ complete_line()
28 return N
29 }
30 } // switch
31 } // while
32 } // function
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The complete_line() method is responsible for walking a complete line along
constant value under f . In more simple words: Consider Figure 4.2 and imagine
the agent does not start in the corner but in the middle bottom of the U-shaped
obstacle. If it would just start the normal covering motion, there would be a
piece left over on the left so it is necessary to walk a complete line which is
exactly what that function does.

Algorithm 4.4 complete_line() method for IACoP
Notes:

• f is the coverage-pattern defining Morse function chosen upfront

• pA is always the momentary position of the agent

1 function complete_line() {
2 walk curve so that f(pA) = y holds
3 until intensity change or wall encountered
4 alternate d between R and L
5 turn according to d (L=left, R=right)
6 walk curve so that f(pA) = y holds
7 until intensity change or wall encountered
8 return found areas that have not yet been covered
9 }

Observation 4.3.3. An area C covered by Algorithm 4.3 is connected, hole-free,
has a Jordan curve as boundary and is simple with respect to the used Morse
function f . The boundary of C consists only of parts from obstacle boundaries,
intensity ring boundaries and up to two curves in free space. We call such a
curve closing curve of C if it is traveled after the covering of cell and opening
curve else.

Theorem 4.3.4. Given an Environment with reachable radio source, Algorithm
4.2 reaches the radio source within a finite path length.

Proof. Since number and circumference of obstacles and intensity rings are fi-
nite, there can also be only a finite number of critical points for any Morse
function f on the environment. Thus the algorithm will split the environment
into a finite number of cells, each of which will only take a finite time to cover
(if it is covered at all). So every cell that is inserted into A will be covered at
some point (except if the signal source is being found; in the meantime).

However because all reachable neighbor cells of each covered cell are added
to A and the algorithm continuously covers cells in A, it will eventually cover
Cfree ∪Csemi-free completely if it does not encounter the signal source before.

Theorem 4.3.5. For any choice of f : Cfree∪Csemi-free according to the modeling
specification, any arbitrary (high) value a ∈ R+ and any arbitrary (low) value
ε ∈ R+ there is an environment so that an agent executing Algorithm 4.2 will
have covered an area of size a before it reaches the signal source. Additionally
a ≥ |Cfree ∪ Csemi-free| − ε holds for that environment.

33



Proof. We construct the environment in the following way: Depending on f we
build an area of size a with the minimal intensity 1 so that the agent will cover
a completely before reaching an area of higher intensity. We then “append” an
area of intensity 2 and size ε to that area which contains the signal source.

We see from this last theorem that the general case suffers from the very
loose demands we make to the environment which allow it to enforce arbitrary
unwanted behavior on the agent. In Section 4.5 we will constrain the envi-
ronment a little more so we can provide an upper bound for the agents path
length.

4.4 Star shaped environments
4.4.1 Model
In addition to the properties described in Section 4.1 we demand from the
environment that the signal distribution is star shaped. This kind of environment
is characterized by the property that a ray from the radio source through any
point of an intensity border does not subtend the same border at a second point,
see Figure 4.3 for an illustration. Intuitively speaking this forbids “hooks” in
intensity rings.

We also require an agent that is capable of determining tangents on intensity
borders at its current position. In addition to the tangents themselves the agent
must have the ability to detect which side of the tangent has points in the higher
valued intensity ring (inner side). The agent must have the computing power
to calculate and save the intersection of all detected inner sides.

Definition 4.4.1 (Star shaped environment). Be pT the position of the signal
source in a nested environment and R(I) the set of the environments intensity
rings. The environment is called star shaped iff

∀R ∈ R(I) : ∀p ∈ ∂R : ∀d ∈ R+ : (pT + d(p− pT ) ∈ ∂R)→ (pT + d(p− pT ) = p)

Note that this definition implies that star shaped intensity environments
have exactly one hill.

4.4.2 Intensity aided coverage planning for star shaped
environments

Due to their definition it is possible for each tangent on an intensity border in a
star shaped environment to state the side of the tangent which the signal source
must be located in order to not violate the constraint of Definition 4.4.1.

Given multiple tangents, we can use this information to define a polygon
which must contain the signal source, called kernel. This approach even allows
us under certain circumstances to skip covering parts of the maximal intensity
ring (the mountain).

Definition 4.4.2 (Kernel of an intensity ring). Let R ∈ R(I) an intensity ring
and ∂oR ⊆ ∂R the smooth closed curve that represents the R’s outer boundary2.

2As a reminder: The complete boundary ∂R, can contain multilpe curves (in case R has
“holes”), only the curve ∂OR encloses all points in R though.
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Figure 4.3: In a star shaped environment, intensity border tangents can be used
to narrow down the location of the signal source. If the signal source would be
on the other side of one of the tangents, for example at p′T , the environment
would not fulfill the star-shapedness constraint (dotted line).

A straight line g is called tangent of R in point b ∈ ∂oR iff it is a tangent of
∂oR in point b. Since g is a straight line in R2, it splits R2 into two half-planes
from which exactly one contains points in R near b. We call the union of that
half-plane and g the inside of g, the other half-plane is called outside of g.

Let T the set of all possible ring tangents in R(I) then for any U ⊆ T we
define the kernel KU ∈ R2 as the intersection of the insides of all tangents in
U . Further we define K∅ = R2. Note that depending on U , KU might or might
not be bounded, since it is an intersection of half-planes however, it is always
convex.

Theorem 4.4.3. Given a star shaped environment R(I) with radio source at
position pT ∈ C, be T the set of all possible ring tangents in R(I). Then
pT ∈ KU holds true for all U ⊆ 2T .

Proof. We prove by induction over |U |.

Basis For |U | = 0 is KU = R2 by definition, thus pT ∈ KU holds.

Step Let pT be an element of KU for some value of |U |. We define U ′ = U∪{g}
with g ∈ T\U . Assume, pT /∈ KU ′ . Since KU ′ = KU\(outside of g) and
pT ∈ KU pT must be in the outside of g. Let R be the ring of which g is
a tangent and b ∈ ∂oR the touching point. pT obviously can’t be outside
of R as the environment is nested, so it must be in R or an enclosed ring.
Let v : R+ → R2 with v(d) = pT + d(b − pT ) be a ray from pT through
v(1) = b. As pT is in the outside of g, the ray approaches b from a ring
enclosing R, however pT is in R or an enclosed ring. Thus, there is a value
d0 < 1 so that v(d) ∈ ∂oR (see Figure 4.3). This contradicts Definition
4.4.1  . So pT ∈ KU → T ∈ KU∪{g}holds for all g ∈ T\U .

Now we can modify the algorithm from the previous section to record all
tangents found in a set Uk and to concentrate its search on the points in
KUk

∩ (Cfree ∪ Csemi-free). That allows the agent to cover a smaller area and
still guarantees to eventually find the signal source.

Note that Algorithm 4.5 alters not only the “perceived” intensity value for
specific cells during runtime but also changes the structure of the intensity ring
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Algorithm 4.5 Intensity aided coverage planning for star shaped environments
(IACoP-SE)

1 k := 1
2 A0 := {starting_area}
3 while |Ak| > 0 {
4 Ck := arg max

A∈Ak−1

I(A)

5 Nk := cover Ck tracking tangents
6 set I(p):=dI(p)e − 1

2 for all p outside of kernel
7 Ak := (Ak−1 ∪Nk)\{Ck}
8 k := k + 1
9 }

graph, so it is no longer guaranteed that this graph is a tree at all times, even
if it is when the algorithm starts.

Theorem 4.4.4. An agent executing Algorithm 4.5 in a star shaped environ-
ment will reach the signal source in finite time.

Proof. The proof is analogous to the general case (Theorem 4.3.4). Since the
number and total boundary length of all obstacles and intensity rings is finite,
so is the number of critical points the agent ever encounters. It follows that
the environment will be split into a finite number of cells only, each of which
can be covered in finite time. Since all neighbors of covered cells are added to
A and all cells in A are covered eventually as long as the signal source is not
encountered, the source is encountered after finite time if it is reachable.

Theorem 4.4.5. For each value nI ∈ N there is an environment so that
Agorithm 4.5 covers Cfree ∪ Csemi-free (almost) completely.

Proof. We construct the environment as shown in Figure 4.4. Intensity ring
borders in this kind of environment run either vertical or horizontal. In both
cases tangents obtained from them do not change the structure of the intensity
ring graph for Cfree ∪ Csemi-free (the not yet covered part of Cfree ∪ Csemi-free is
completely inside the kernel at all times). Due to the layout of the environment
as shown in the figure it is clear, that the agent will cover it completely before
reaching pT .

4.5 Environments of limited ring width
4.5.1 Model
In this section we will narrow down the specification given in Section 4.1. Ad-
ditionally to the constraints given there we want to limit the width of intensity
rings in the environment, see Definition 4.5.3 for a precise description. As in the
general case presented in Section 4.3 the agent shall be able to perceive tangents
of walls (only necessary for Section 4.5.4).
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(a) (b)

Figure 4.4: A malicious environment for Algorithm 4.5. a) Light gray tones
indicate signal intensities. Note it is necessary for high-valued intensity rings
to be a little more narrow than low-valued ones so they can be nested. b) An
U-shaped obstacle “hides” the small passages on the side so the agent is forced
to cover Cfree completely. The dotted line is an example intensity ring tangent.

As we are considering hypothetical optimal online algorithms it is important
to note that the agent knows about the ring width limit d (see below) but not
about the structure of the environment, especially it does not know the number
of intensity rings, nI .

Definition 4.5.1 (Intensity adjacency graph). Given a set of intensity rings
R(I) (or just R for short if there are no ambiguities possible), we construct the
intensity adjacency graph G (R) = (VI , EI) with

VI = R and
EI = {(a, b) ∈ R×R | ais adjacent to b}.

Definition 4.5.2 (Nested environments). An environment is called nested iff its
intensity adjacency graph G(R) is a tree and there is a node SR so that for G(R)
rooted at SR, ∀R1, R2 ∈ R : (R1 is a child node of R2) ⇔ (I(R1) > I(R2)).
Note that for each intensity adjacency graph there is at most one SR that fulfills
that condition and if it exists it is the node with the lowest intensity value. A
leaf of a nested environments tree G(R) is called hill of the environment.

Definition 4.5.3 (Ring width limit). A nested environment with intensity rings
R(I) has a ring width limit d ≥ 2r iff for all R ∈ R that are not hills

∀pl ∈ R : ∃ph ∈ C : (I(ph) > I(pl)) ∧
(
|pl − ph|2 ≤ d

)
holds and the hill which contains the source is contained in a circle around the
source of radius d.

4.5.2 Lower bound for the case without geometric obsta-
cles

In this section we are going to give a lower bound for the task of finding a signal
source in a limited discrete environment without geometric obstacles. As a first
step we provide a lower bound for the task of covering any given area completely
as this will be an unavoidable sub-task for finding the signal source.
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Lemma 4.5.4. Be A ⊆ R2 an area, then an agent with a coverage radius of r
must travel at least

lcovmin(|A|) =
{
|A|−πr2

2r for |A| ≥ πr2

0 else

in order to cover A completely.

Proof. First consider |A| < πr2. Obviously, 0 is a lower bound for all coverage
path lengths, so the claim holds true in that case. Additionally it might be the
case that A fits completely in the scanning circle of the agent so no movement
is required, which shows that this bound is actually sharp.

Now consider an agent which moves along a straight line of length a. The
agent covers a total area of |Atube| = 2ra + πr2. Just before it starts moving,
the agent already covers a circle with an area of πr2. During movement it covers
2rε for each movement step of length ε > 0, so the agent covers a total area of
2ra while in motion. Since the sum of this covered areas is exactly |Atube|, we
conclude that there is no “wasting” behavior, i.e. the movement of the agent
could not possibly be altered in a way so that a path shorter than a would cover
Atube completely. So lcovmin (|Atube|) = 2ra+πr2−πr2

2r = a is indeed the shortest
path length for coverage of Atube.

Figure 4.5: Atube

As we already noticed in the example, the start position together with all
movement steps sum up to exactly |Atube|, so there is no “unnecessary” move-
ment. That means there can be no area that could be covered more efficiently
than Atube. More precisely given any area A′, an agent that covers A′ travels
lcovmin(|A′|) or more depending on the shape of A′. We see that also in the case
|A| ≥ πr2, lcovmin(|A|) is indeed a lower bound for the coverage path length
for A. Because Atube can be covered with a path of length lcovmin (|Atube|) as
shown above, also in this case the bound is sharp.

Note that the optimal (offline) algorithm for the problem of finding the signal
source has a maximum path length of nId. Since any online algorithm has to
use covering at some point which involves a d2-term, an online algorithm can
not have a constant competitive factor. The next theorem gives a bound for
online algorithms which is better suited for comparison.

Theorem 4.5.5. For each online algorithm ONL that finds a radio source in
ring width limited, nested environments with exactly one hill and no geometric
obstacles, there exits such an environment R whose ring width is limited by
d ≥ 2r, with nI ≥ 3 ∈ N intensity rings so that an agent with a coverage radius
of r executing ONL in R travels a total distance DONL bounded by:

DONL ≥
(
l1/2 + π(d− r)

)
nI +

(
10π
3

+ 1
)
d+

π

2
d2

r
−

23π
6
r + l2/3

≥
((

π +
1
√

2

)
d−
(
π +

3
2

)
r

)
nI +

(
10π
3

+ 2
)
d+

π

2
d2

r
−
(

23π
6

+
3
2

)
r
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with l2/3 =
√
d2 − 3dr + 3r2 ≥ d− 3

2 r and

l1/2 = 1√
2

√
d2 − r3

d − 3dr + 5r2 ≥ 1√
2

√
d2 + 9

4 r
2 − 3dr = 1√

2

(
d− 3

2 r
)

.

Proof. As a first step, the algorithm has to find the intensity ring R2 with
I(R) = 2. By definition of an environment with ring width limit d, this has to
be in a maximum distance of d relative to the agents starting point. We place
R2 in a way that it overlaps the d-circle around the agents starting position only
by a tiny bit at the point at the circles border that is covered last by the agent.
This way the agent will always at least travel d − r for getting to near enough
to the border to scan it and at least 2π(d− r) in order to reach scan every other
point on the circles border (see Figure 4.6a).

For R3 the procedure is almost the same. However the last point on the
d-circles border visited by the agent might be inside the previous d-circle. If
we chose such a point for the “first” point of R3, the agent could conclude that
the signal source must be located inside the union of this two circles and just
cover them and find the source early. Therefore, we do not force the agent to
cover pieces of the previous circle again, Figure 4.6b illustrates the 2

3 -circle we
are considering. Instead of the latest point on the whole circle we now place R3
on the latest point on this 2

3 -circle, again forcing the agent to cover points on
the border. This can not be done more efficiently for the agent than walking
straight to the first point on the new (d− r)-circle (black line in Figure 4.7) and
then walk the circle.

Figure 4.7: Transition to a 2
3 -circle

The length l2/3 of that line is calculated using the cosine rule:

l22/3 = (d− r)2 + r2 − 2(d− r)r cos π3
= d2 + 3r2 − 3dr

⇔ l2/3 =
√
d2 + 3r2 − 3dr

≥ d− 3
2r

The length of the 2
3 circle is given by 4π

3 (d− r).
For Rk with 3 ≤ k < nI again we place a point of Rk+1 so it is on the latest

visited point on the d-circle border that is not inside of a previous d-circle.
Note however that there might be two or more circles overlapping the current
one. As Figure 4.6c shows, two of such circles can shorten the current circles
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(a) (b) (c)

(d)

Figure 4.6: a) The intensity rings are placed in a way that force the agent to
cover each point on the d-circle circumference in the first step.
b) In search for R3 the agent needs to cover the circumference of a 2

3 -circle
completely. If the “reachable” point of R3 would be located on the inside of the
first circle, that would play into the agents hands: The area is already partially
covered and the agent might isolate that R3 must be contained completely inside
the circles, it could start covering earlier.
c) In following steps the agent can shorten the path length to a half-circle by
visiting points near previous circles last.
d) Example illustration of the fact that its the best strategy for the agent to
enforce half-circles. Even if shorter segments can be reached by choosing to
walk 2

3 circles before, half-circles are always cheaper in sum. (For the sake of
a more comprehensible illustration we only depicted the d-circumferences here
and left out the agents path and intensity borders)
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“outer” circumference about half so the resulting length is π. If the agent would
behave accordingly, there could also be cases where this distance goes down to
π
3 . However in order to achieve that the agent would have had to walk two
2
3 -circles instead of two 1

2 -circles before, so it would not shorten its path with
such a technique (see Figure 4.6d). Besides in our model nI is unknown to the
agent so it could not know if its “investments” pay off.

Figure 4.8: Transition to a 1
2 -circle

The transition cost for this case can again be calculated by using the cosine
rule. Once for determining cos θ:

(d− r)2 = d2 + d2 − 2d2 cos θ

cos θ = −(d− r)2 + 2d2

2d2

= 1−
(

1
2 −

r

2d

)2

And a second time for the actual calculation of l1/2:

l21/2 = d2 + (d− r)2 − 2d(d− r) cos θ

l1/2 =

√√√√d2 + (d− r)2 − 2d(d− r)
(

1−
(

1
2 −

r

2d

)2
)

= 1√
2

√
d2 − r3

d
− 3dr + 5r2

≥ 1√
2

(
d− 3

2r
)

Eventually the agent will discover a point of the maximum intensity ring RnI
.

By definition the signal source must be contained in a d-circle around that point.
We choose the last location in that area to be covered by the agent as position
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Figure 4.9: Calculating the upper bound for Adone

of the signal source, forcing the agent to cover the circle completely. Note that
due to “forced” motions in the previous steps the agent has already covered

|Adone| ≤ 3 δ

2π
(
πd2 − π(d− 2r)2)

The cosine rule gives

d2 = d2 + (d− 2r)2 − 2d(d− 2r) cos δ

⇔ δ = cos−1 (d− 2r)2

2d(d− 2r) = cos−1
(

1
2 −

r

d

)

|Adone| ≤ 12r cos−1
(

1
2 −

r

d

)
(d− r)

So the agent has to cover πd2 − |Adone| followed by r for actually contact with
the source.

lnI
≥ lcovmin

(
max

{
πd2 − |Adone| , 0

})
+ r

= max
{

1
2r

(
πd2 − 12r cos−1

(
1
2 −

r

d

)
(d− r)− πr2

)
+ r, r

}
= 6 cos−1

(
1
2 −

r

d

)
(d− r) + π

2
d2

r
+
(
−π2 + 1

)
r

≤ 3πd+
(
−7π

2 + 1
)
r + π

2
d2

r

In total the agent travels at least
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DONL ≥ (2π + 1)(d− r) + l2/3 + 4π
3 (d− r)

+ (nI − 3)
(
l1/2 + π(d− r)

)
+ lnI

= (2π + 1)(d− r) + l2/3 + 4π
3 (d− r)

+ (nI − 3)
(
l1/2 + π(d− r)

)
+ lnI

=
(
l1/2 + π(d− r)

)
nI +

(
10π
3 + 1

)
d− 23π

6 r + π

2
d2

r
+ l2/3

≥
((

π + 1√
2

)
d−

(
π + 3

2

)
r

)
nI

+
(

10π
3 + 2

)
d+ π

2
d2

r
−
(

23π
6 + 3

2

)
r

4.5.3 Circular motion planning
In an environment of limited ring width d ≥ 2r, we can be sure that there is
a point with a higher intensity at most d away if we are not on a hill. Note
however, this does not mean such a point is always reachable, as Definition 4.5.3
does not guarantee ph ∈ Cfree ∪Csemi-free. In this section we assume there are no
geometric obstacles so C = Cfree holds. In order to take advantage of the ring
width limit, we need a modified moving pattern so we can actually provide a
bound for the agents travel distance depending on the ring width limit.

When an agent located at position c searches a ring of higher intensity we
know that it must be located within a d-circle around c if the agent is not on a
hill (in which case the signal source must be located in that circle). The idea
behind our approach is: Without obstacles in the way, the agent can just try
finding a ring of higher intensity by walking a d-circle around c. If that does not
find a ring of higher intensity or the signal source, this will become a full circle.
Since a potential ring of higher intensity must be in a d-radius around c, it must
now be enclosed completely by the circle the agent just walked (this is because
the intensity rings are connected areas). Because the environment is nested, any
higher intensity ring and also the signal source must also be enclosed by that
circle, so the source can now be found with simple covering.

See Algorithm 4.6 for a more technical description of this idea.

Theorem 4.5.6. An agent executing Algorithm 4.6 will reach the radio source
with a total maximum travel distance of

DCMoP ≤ ((2π + 1)d− (2π + 2)r)nI + π

2
d2

r
+ (2π − 1)d+ (8π + 4)r

Proof. When the agent starts executing the algorithm, it travels a straight line of
length d−r, followed by at most a complete circle around c0 of length 2π(d−r).

For the following circles around a point ck, a point p of intensity I(p) > I(ck)
can either be found during circling or not. If it is, a new circle is started around
ck+1 = p and the way costs for the circle around ck are d− 2r for getting to the
closest point on the circle and not more than 2π(d− r) for actually walking it.
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Algorithm 4.6 Circular motion planning (CMoP)
Preconditions:

• nI ≥ 2

1 c0 := current position
2 i := 0
3 walk straight length d− r
4 do {
5 walk circle around ci
6 on intensity increase at p {
7 i := i+ 1
8 ci := p
9 walk to nearest point q with ‖ci − q‖ = d− r
10 }
11 } until circle complete without intensity increase
12 drive covering spiral towards ci

If the agent has not found a point with higher signal intensity than I(ck)
this way, such a point must still be inside the d-circle around ck by definition
of a d-limited environment. Since the environment has only one hill, each of
the inverse images of the possible intensity values under I : C → {1, . . . , nI} is
connected and thus in this case all points with intensity value higher than I(ck)
can only be located within the d-circle around ck which is especially true for the
signal source.

The last step of the algorithm is always a (partial) shrinking spiral towards
ck followed by a motion of not more than r in order to contact the source.

DCMoP ≤ (2π + 1)(d− r) + (nI − 2)(d− 2r + 2π(d− r)) +

⌈
d

2r

⌉∑
i=1

2π(2i+ 1)r + r

= (nI − 2)((2π + 1)d− (2π + 2)r) + 4πr

⌈
d

2r

⌉∑
i=1

i+ 2πr
⌈
d

2r

⌉
+ (2π + 1)(d− r) + r

= (nI − 2)((2π + 1)d− (2π + 2)r) + 2πr
⌈
d

2r

⌉(⌈
d

2r

⌉
+ 2
)

+ (2π + 1)d− 2πr

≤ (nI − 2)((2π + 1)d− (2π + 2)r) + 2πr
(
d

2r
+ 1
)(

d

2r
+ 3
)

+ (2π + 1)d− 2πr

= (nI − 2)((2π + 1)d− (2π + 2)r) +
πd2

2r
+ 3πd+ πd+ 6πr + (2π + 1)d− 2πr

= ((2π + 1)d− (2π + 2)r)nI +
π

2
d2

r
+ (2π − 1)d+ (8π + 4)r

4.5.4 Circular coverage planning
In the previous section we showed that in a d-limited environment without
geometric obstacles it is always possible to find an area of higher signal intensity
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by walking a circle with radius d (d-circle for short).
When adding obstacles to the limited environment, we can not guarantee

anymore that it is possible for the agent to walk that circle without being
interrupted by a wall. We alter the procedure to have the agent walk spirals of
increasing radius (up to d). If the agent is interrupted by an obstacle wall, it
already has covered a circular area. Like in Section 4.3, the agent will split the
environment at the wall and cover the resulting cells individually. It might be
the case though, that a part of the d-circle around the agents starting position
can only be reached by circling an obstacle. In order to take care of that, the
agent will keep a list of encountered obstacle wall pieces. When it has finished
covering all cells that were directly reachable, the agent picks an obstacle wall
from its list and follows it until it reaches an uncovered part of the d-circle
and continues covering. Since the environment is limited, after having covered
the d-circle completely the agent will have discovered an area of higher signal
intensity, where it starts a new circle.

Note that it is not possible to provide a single Morse function that describes
this covering pattern completely as the circle centers are not known in advance
but depend on the intensity distribution. That is why we introduce a more
general form of function here.

Definition 4.5.7 (Rooted function). Be Croot ⊆ (Cfree ∪ Csemi-free) a set of root-
ing points and g : R2 → R an arbitrary function. Then, for all s ∈ Croot we call
a function fs : Cfree ∪ Csemi-free → R with fs(p) = g(p− s) rooted at s.

Corollary 4.5.8. With g, fs as in Definition 4.5.7, fs(p) is a Morse function
for all s ∈ Croot, p ∈ Cfree ∪ Csemi-free iff g(p − s) is a Morse function for all
elements of

{
x ∈ R2|∃s ∈ C : ∃p ∈ (Cfree ∪ Csemi-free) : x = p− s

}
.

Algorithm 4.7 formalizes the discussed procedure.
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Algorithm 4.7 Circular coverage planning (CCoP)
Notes:

• fc(p) = ‖p− c‖ is a Morse function if c is a point on an intensity border

• pA is always the current position of the agent

1 i := 1
2 c1 := pA
3 mark area in d-radius around c1 as “to search”
4 N := {new cell at current position}
5 W := ∅
6 while ∃N ∈ N {
7 cover N with circles fci(pA) = {r, 3r, 5r, . . . }
8 switch(what happened) {
9 case found signal source {
10 walk straight to signal source
11 stop execution
12 }
13 case found point p with higher intensity {
14 clear “to search” markings
15 i := i+ 1
16 ci := p
17 mark area in d-radius around ci as “to search”
18 N := {new cell at current position}
19 }
20 case distance to ci is > d {
21 close current cell and remove from N
22 }
23 case found wall tangent {
24 add wall piece to W
25 do split/close walk
26 remove closed cell from N
27 add found unknown cells to N
28 }
29 case N = ∅ {
30 walk to next wall piece in W
31 turn right and follow wall
32 thereby combine connected wall pieces into one
33 when obstacle circled completely {
34 mark circled area as covered
35 remove wall piece form W
36 }
37 when reached “to search” area {
38 start new cell and add to N
39 }
40 } // case
41 } // switch
42 } // while
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(a) (b)

(c)

Figure 4.10: Example run of Algorithm 4.7.
a) The agent starts at pS and covers the circle depicted by the solid line until it
finds an area of higher intensity. The dotted line describes the d-circle around
pS .
b) The dashed line indicates the part already covered in (a).
b1) The agent covers a circle and splits the environment at the obstacle wall.
The obstacle position is saved to a list for potential later circling.
b2) The agent covers the new cell again splitting the environment as it encoun-
ters an obstacle. To the agent there is no connection to the obstacle in b1
known, so it is added to the list as new obstacle.
b3,4) The agent covers cells 3 and 4 stopping when it reaches the d-circle. Dur-
ing covering the agent tracks obstacle walls so it concludes there are two obstacle
pieces which touch multiple cells each (2,3,4 and 1,2,3,4).
b5) The agent has covered as much of the d-circle as was reachable without
leaving it and thus now follows the nearest obstacle piece. During that process
it concludes that the two found obstacle pieces belong to the same obstacle.
b6) The agent enters the d-circle again and starts resuming its coverage pattern
(although in this case it starts with radius d and decreases that instead of in-
creasing the radius like it did on the other side of the obstacle. During its first
circle, the agent discovers an area of higher intensity.
c) The agent covers a circular area until touching of the obstacle enforces a split.
While covering the new cell the signal source is found.
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Theorem 4.5.9. Consider an agent executing Algorithm 4.7 in an environment
with one intensity hill, nO ∈ N obstacles O1, . . . , OnO

with boundary lengths
∂O1, . . . , ∂OnO

∈ R+ and a radio source that is reachable by the agent. The
agent will reach the signal source by traveling no more than

DCCoP ≤
(

(2π + 1)d+ π

2
d2

r
+ (2π + 2)r

)
nI + 2

nO∑
i=1
|∂Oi|

Proof. The agent starts with a covering loop around its starting position. The
actual covering happens in

⌈
d
2r
⌉
circles with radii r, 3r, 5r, . . .

(
2
⌈
d
2r
⌉
− 1
)
r.

Then the circular part of the covering loops is bound by
∑d d

2r e
i=1 ((2i− 1)2πr).

In order to move from one covering circle to the next one the agent needs to
walk a distance of at least

(
2
⌈
d
2r
⌉
− 1
)
r if there are no obstacles. Additionally

the agent will travel nI path segments of not more than r each for getting from
one spiral to the next or to the source respectively.

If there are obstacles that limit the covering loop, these transitions will
happen on the obstacles and thus be bound by

∑nO

i=1 |∂Oi|. The finding of an
unexplored part of the covering circle also travels along obstacle borders so it is
also bounded by

∑nO

i=1 |∂Oi|.
In total we get

DCCoP ≤

d d
2r e∑
i=1

((2i− 1)2πr) + 2
⌈
d

2r

⌉
r

nI + 2
nO∑
i=1
|∂Oi|

=

4πr
d d

2r e∑
i=1

i− 2πr
⌈
d

2r

⌉
+ 2

⌈
d

2r

⌉
r

nI + 2
nO∑
i=1
|∂Oi|

=
(

2πr
⌈
d

2r

⌉2
+ 2

⌈
d

2r

⌉
r

)
nI + 2

nO∑
i=1
|∂Oi|

≤

(
2πr

(
d

2r + 1
)2

+ 2
(
d

2r + 1
)
r

)
nI + 2

nO∑
i=1
|∂Oi|

=
(

(2π + 1)d+ π

2
d2

r
+ (2π + 2)r

)
nI + 2

nO∑
i=1
|∂Oi|

4.5.5 Circular coverage planning II
We want to show an apparent improvement to the algorithm defined in the
previous section. We will present a simple modification to Algorithm 4.7 which
intuitively behaves better in terms of total travel distance.

When evaluating Algorithm 4.7 it is noticeable it tends to cover certain
areas twice: When a circular area has been covered and a point with higher
intensity has been found, the next circular area is being covered around that
point, leading to the overlapping path of those circles being covered two times.
We want to explore that room for improvement by definition of Algorithm 4.8.
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Algorithm 4.8 Circular coverage planning 2 (CCoP2)
Execute Algorithm 4.7 but instead of marking full d-circles around the current
position for covering, subtract from these circles the circular areas that already
have been covered.

The rest of this section will be dedicated to the algorithms runtime. Since
we did not change its behavior with respect to obstacle walls, no change is to be
expected concerting the portion of the path length that depends on the obstacle
boundary length. Therefore, we will focus on environments without obstacles.
See the following definition for how environments we want to examine look
exactly.

Figure 4.11: Example of an obstacleless environment for Algorithm 4.8. The
(partial) circles represent covering loops of the agent (without loop transitions).
The dotted line represents the border of the covered area. The gray tones
indicate areas with different intensities.
The environment is constructed in a way that circular areas only overlap with
their predecessor (i.e. it can not happen that 3 circular areas overlap), which
makes calculations more manageable.

Definition 4.5.10 (Example environment for Algorithm 4.8.). We define an
environment without obstacles like shown in Figure 4.11. The concrete example
in the figure can easily be extended to any number nI ∈ N of intensity rings
by being continued in the horizontal direction so that the center points of the
covering circles all lay on a straight line.

The shape of the intensity rings will be chosen so that an agent executing
Algorithm 4.8 has to walk mi ∈ N, i ∈ {1, . . . , nI} covering loops to reach the
(i+ 1)’th intensity ring (or the signal source if the agent is located on the hill).
The choice of the parameters m1, . . . ,mnI

for this type of environment shall be
constrained by the following conditions:

(1) A circular covering area is only allowed to intersect with its predecessor
but not with its pre-predecessor, so only the previously covered circular
area has to be subtracted when calculating the path length for an area.
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Figure 4.12: Geometry of overlapping circular covering areas

(2) No circular covering area is allowed to completely enclose another, i.e.
∀i ∈ {2, . . . , nI} : mi < 2mi−1 holds.

We can easily construct similar environments that force the agent to cover
nI circles with m1,m2, . . . ,mnI

∈ N covering loops.

Lemma 4.5.11. The path an agent executing Algorithm 4.8 travels in an en-
vironment according to Definition 4.5.10 with enforced covering loop counts
m1,m2, . . . ,mnI

∈ N has length

DCCoP2
(
m1, . . . ,mnI

)
= 2πrm2

1 + 2rm1 +

nI∑
i=2

(
2πrm2

i + xi

+

mi∑
j=1

(
∆(mi−1, j)− (4j − 2)r · cos−1 j

2mi−1

)
+ r

)

With ∆(mi−1, j) = r

√
(8j2 + 2)− (8j2 − 2) cos

(
cos−1 j

2mi−1
− cos−1 j+1

2mi−1

)
and

x2, . . . , xnI
∈ [0, 2r] dependent on the environment, where xi is the distance the

agent travels from the last loop of the (i−1)’th circular covering area to the first
loop of the i’th one.

Proof. The total path length is the sum of path length for each circular area
plus the distances xi ∈ [0, 2r] that are traveled when the agent found an area
of higher intensity and walks to the starting point of the first loop (which has
radius r) in the new circular area. Finally the agent needs to travel a distance
of r to reach the found signal source.

DCCoP2 (m1, . . . ,mnI
) = Dfull

CCoP2(m1) +
nI∑
i=2

(
xi +Dpartial

CCoP2(mi−1,mi)
)

+ r

Dfull
CCoP2(m1) consists of m1 loops with radii r, 3r, 5r, . . . between these

loops the agents needs to walk a distance of 2r, which we will hence call loop
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transition.

Dfull
CCoP2(m1) =

m1∑
j=1

(2π(2j − 1)r + 2r)

= 2πrm2
1 + 2rm1

The following areas each have a piece “cut out” by the predecessor. Figure
4.12 shows this for the second area. The piece cut out for the j’th loop in the
second area has length (2j − 1) · r · 2θ(m1, j). Where θ(j1, j2) = cos−1 j2

2j1
. The

transition distance for a circular area that has a piece cut out is a little more
complex to describe. Figure 4.13 illustrates how the length of such a transition
is calculated. ∆(mi−1, j) is the distance the agent travels in the i’th circular
area for transition from the j’th loop to the (j + 1)’th loop.

Figure 4.13: Calculation of ∆(m1, j)

∆2(mi−1, j) is given by the cosine rule:

∆2(mi−1, j) = ((2j − 1)r)2 + ((2j + 1)r)2

−2r2(2j − 1)(2j + 1) cos (θ(mi−1, j)− θ(mi−1, j + 1))

= r
2
(

8j2 + 2
)
− r2

(
8j2 − 2

)
cos
(

cos−1 j

2mi−1
− cos−1 j + 1

2mi−1

)
∆(mi−1, j) = r

√
(8j2 + 2)− (8j2 − 2) cos

(
cos−1 j

2mi−1
− cos−1 j + 1

2mi−1

)
We can also provide bounds for ∆:

∆(mi−1, j) ≥ r
√

(8j2 + 2)− (8j2 − 2)
= 2r

∆(mi−1, j) ≤ r

√
(8j2 + 2)− (8j2 − 2) cos

(
cos−1 1

2
− cos−1 2

2

)
= r

√
(8j2 + 2)− (8j2 − 2)

1
2

= r
√

4j2 − 1

≤ 2rj

51



Putting that together we get:

DCCoP2
(
m1, . . . ,mnI

)
= 2πrm2

1 + 2rm1 +

nI∑
i=2

(
xi +

mi∑
j=1

(2π(2j − 1)r

−(2j − 1)r · 2θ(mi−1, j) + ∆(mi−1, j))

)
+ r

= 2πrm2
1 + 2rm1

+

nI∑
i=2

(
xi + 2πrm2

i +

mi∑
j=1

(
−(2j − 1)r · 2 cos−1 j

2mi−1
+ ∆(mi−1, j)

))
+ r

= 2πrm2
1 + 2rm1

+

nI∑
i=2

(
2πrm2

i + xi +

mi∑
j=1

(
∆(mi−1, j)− (4j − 2)r · cos−1 j

2mi−1

))
+ r

The interesting question arises, with given nI and d, which combinations for
values form1, . . . ,mnI

lead to the longest path. Recall from the previous section
that mi ≤

⌈
d
2r
⌉
must hold for any i ∈ {1, . . . , nI} so that path can not be in-

finitely long. Intuitively, given a configuration m1, . . . ,mx, . . . ,mnI
with mx <⌈

d
2r
⌉
one can create a more “expensive” configuration m1, . . . ,mx + 1, . . . ,mnI

,
soDCCoP2 (m1, . . . ,mx + 1, . . . ,mnI

) ≥ DCCoP2 (m1, . . . ,mx + 1, . . . ,mnI
) holds.

Informally speaking: Increasing the radius of one covering circle (where al-
lowed) will increase the total path length so the configuration m1 = m2 =
· · · = mnI

=
⌈
d
2r
⌉
is the worst case for the presented algorithm. Although

this hypothesis is supported by numerical path length calculations we were not
able to come up with a lower bound for DCCoP2 (m1, . . . ,mx + 1, . . . ,mnI

) −
DCCoP2 (m1, . . . ,mx + 1, . . . ,mnI

) that is guaranteed to be positive.
Claim 4.5.12. Be DCCoP2 (m1, . . . ,mx + 1, . . . ,mnI

) the path length of an ex-
ecution of Algorithm 4.8 in an environment that conforms to Definition 4.5.10
with mx ∈

{
1, . . . ,

⌈
d
2r
⌉
− 1
}
for an x ∈ {1, . . . , nI} and mi ∈

{
1, . . . ,

⌈
d
2r
⌉}

for
i ∈ {1, . . . , x− 1, x+ 1, nI}. Then

DCCoP2 (m1, . . . ,mx + 1, . . . ,mnI
) ≥ DCCoP2 (m1, . . . ,mx, . . . ,mnI

)

holds.
Claim 4.5.13. In an environment conforming to Definition 4.5.10 with a ring
width limit of d an agent executing Algorithm 4.8 will travel a path of length

DCCoP2 (m1, . . . ,mnI
) ≤

((
4π
3 + 3

2

)
d+

(
π

3 + 1
4

)
d2

r
+
(

4π
3 + 4

)
r

)
nI

+
(
π

3 −
1
2

)
d+

(
π

12 −
1
4

)
d2

r
+
(π

3 + 1
)
r
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Note that direct comparison of this value with DCCoP is not possible since
not only both values are upper bounds but also DCCoP2 is a value for an
environment without geometric obstacles. Nevertheless it is quite plausible
that in an environment with obstacles the runtime of Algorithm 4.8 would be
DCCoP2 + 2

∑nO

i=1 |∂Oi|, analog to DCCoP.
It is open how a worst case environment for Algorithm 4.8 is shaped and

thus, which upper bound for its path length can be given. We claim that such
an environment enforces maximal covering circle radii i.e., m1 = m2 = · · · =
mnI

=
⌈
d
2r
⌉
which we showed turns out harder to prove than one might suspect.

The lower bound given in the previous section will certainly hold for this variant,
intuitively it is clear that Algorithm 4.8 is more efficient in terms of path length.

53



54



Chapter 5

Conclusion

We considered a variety of models for the problem of finding a signal source,
which led to a number of approaches of different nature.

For the problem of finding a signal source using only a compass-like device
and rotation tracking we have introduced a new approach that works different
to the known Angulus algorithm in Chapter 3. Our method, though more
complex in algorithmic terms, makes even lower demands on the agents abilities.
In contrast to Angulus, the agent only needs to be able to leave an obstacle
whenever it faces the source with our solution. The benefit of that being that
all possible points are determined only by the shape of the obstacles but not
by the agents starting position. Also with our approach an agent only executes
turning motions that adjust its heading to an adjacent wall (assuming it faces
the source when the algorithm starts). These two facts could make it possible
to let the environment provide assistance for agents with imprecise hardware.

We have shown that like it is the case with Angulus, the time our algorithm
needs to reach the signal source is not boundable by the sum of the obstacle
perimeter lengths. The total path length for Angulus depends on the number
of windings of a signal source circling obstacle. With our algorithm the path
length depends on the number of leave points, thus it can serve as a time-saving
alternative for spiral-like environments with relatively few leave points.

We could illustrate that known signal forms can allow exact calculation of
the signal source position even when working with discrete intensities. This
approach is very modular as it can be easily transferred to any signal form
whose center is calculable from intensity border points. Also, due to factual
calculation of the sources position, a huge number of motion planning algorithms
can be used to actually guide the agent to the source. There is still room for
ideas on how agents can efficiently spread out in order to find intensity borders
without harmful interference of each others motions. Another open problem is
a situation in which the agents are located on unlucky positions that lead to an
unsolvable equation system. In this case a procedure would be useful that lets
one of the agents find a different point on a known intensity border, which is
especially challenging if the environment limits the agents motion at the border.

We introduced the general idea of our new combination of covering and
motion planning that can be used to find signal sources with discrete signal
intensities among geometric obstacles. We showed how known properties of the
environment like star-shapedness of the intensity distribution could be incorpo-
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rated into the algorithm in order to improve its runtime.
We gave a lower bound for online algorithms in limited environments without

geometric obstacles and an example algorithm that does not quite reach that
bound. However, we could demonstrate that for this setting an agent only needs
to actually cover a circular area of fixed size and apart from that only travels a
path of length linear to the number of possible intensities. It is not clear yet if
the lower bound we presented is actually sharp, so further work could continue
here.

For environments with geometric obstacles we provided a more covering-
oriented approach. An improvement for that approach was provided and we
conjectured an upper bound for its path length which depends on a claim about
how a worst-case environment for this approach looks. It is however open if the
proposed environment is indeed a worst-case and what the path length of an
optimal online algorithm is.

Summarizing we could show that mobile agents can navigate in environ-
ments that provide very little information. We introduced a variety of different
algorithms and with one exception delivered proofs about their runtime. There
is some room for improvements regarding the bounded cases. Also a practical
examination of our findings could provide further insight on the quality of the
proposed algorithms.
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