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Abstract. We study upward planar straight-line embeddings (UPSE)
of directed trees on given point sets. The given point set S has size at
least the number of vertices in the tree. For the special case where the
tree is a path P we show that: (a) If S is one-sided convex, the number
of UPSEs equals the number of maximal monotone paths in P. (b) If
S is in general position and P is composed by three maximal monotone
paths, where the middle path is longer than the other two, then it always
admits an UPSE on S. We show that the decision problem of whether
there exists an UPSE of a directed tree with n vertices on a fixed point
set S of n points is NP-complete, by relaxing the requirements of the
previously known result which relied on the presence of cycles in the
graph, but instead fixing position of a single vertex. Finally, by allowing
extra points, we guarantee that each directed caterpillar on n vertices
and with k£ switches in its backbone admits an UPSE on every set of
n2F~2 points.

Keywords: upward planarity - directed graph - digraph - tree - caterpillar
- path - NP-completeness - counting - upper bound

1 Introduction

A classic result by Fary, Stein, Wagner [11, 15, 16|, known as Fary’s theorem,
states that every planar graph has a crossing-free straight-line drawing. Given a
directed graph (called digraph for short), it is natural to represent the direction
of the edges by an upward drawing, i.e., every directed edge is represented by
a monotonically increasing curve. Clearly, it is necessary for the digraph to be
acyclic in order to allow for an upward drawing.

In nice analogy to Fary’s theorem, if a planar digraph has an upward planar
drawing, then it also allows for an upward planar straight-line drawing [8]. In
contrast, not every planar acyclic digraph has an upward planar drawing [8].
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Nevertheless, some classes of digraphs always allow for such drawings. For instance,
every directed tree has an upward planar straight-line drawing [7, p. 212].

In this work, we study upward planar straight-line drawings of directed trees
on given point sets. An upward planar straight-line embedding (UPSE, for short)
of a digraph G = (V, E) on a point set S, where |V| < |5/, is an injection from
V to S such that the induced straight-line drawing is planar (crossing-free) and
upward, i.e., for the directed edge uwv € E(G), the point representing wu lies
below the point representing v. As point-set embeddings of planar undirected
graphs [3-6, 14], UPSEs have been an active subject of research [1,2,12,13]. In
the following we review the state of the art in relation to our problems.

Kaufmann et al. [12] showed that in case |[V| = |S] it is NP-complete to decide
whether an upward planar digraph admits an UPSE on a given point set. We note
that the upward planar digraph obtained in their reduction contains cycles in its
underlying undirected graph. The same authors gave polynomial-time algorithm
to decide if an upward planar digraph admits an UPSE on a convex point set.

A digraph whose underlying undirected structure is a simple path is called
oriented path. For the class of oriented paths multiple partial results have been
provided, by either limiting the class of the point set, the class of oriented paths,
or by considering the case where |S| > |V/|. In particular, by limiting the class
of point sets, Binucci et al. showed that every oriented path admits an UPSE
on every convex point set of the same size [2]. By limiting the class of oriented
paths, it has been shown that the following subclasses of oriented paths always
admit an UPSE on any general point set of the same size:

1. An oriented path with at most five switches® and at least two of its sections’
having length!® two [1].

2. An oriented path P with three switches [2].

3. An oriented path P = (vy1,...,v,), so that if its vertex v; is a sink, then its
vertex v;11 is a source [2].

4. An oriented path P such that its decomposition into maximal monotone paths
Py, P, ..., P satisfies that [P;| > Y., [P for every i = 1,2,...,r — 1 [6].
Given these partial results, it is an intriguing open problem whether every

oriented path P admits an UPSE on every general point set S with |P| = |S|.
In contrast to this question, there exists a directed tree T" with n vertices and
a set S with n points in convex position such that T' does not admit an UPSE
on S [2]. While restricting the class of trees to directed caterpillars, Angelini et
al. [1] have shown that an UPSE exists on any convex point set.

The variant of the problem where the point set is larger than the oriented
path, was considered by Angelini et al. [1] and Mchedlidze [13]. They proved that
every oriented path P with n vertices and k switches admits an UPSE on every
general point set with n2*~2 points [1] or on (n — 1)2 + 1 points Mchedlidze [13],
respectively.

8 A vertex of a digraph which is either a source or a sink is called switch.
9 A section of an oriented path is a subpath that connects two consecutive switches.
10 The length of a path is the number of vertices in it.
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Our Contribution. In this paper we continue the study of UPSE of digraphs.
We tackle the aforementioned open problem from multiple sides. Firstly, we show
that the problem of deciding whether a digraph on n vertices admits an UPSE
on a given set of n points remains NP-complete even for trees when one vertex
lies on a predefined point. (Section 5). This strengthens the previously known
NP-completeness result, where the underlying undirected structure contained
cycles [12]. Thus, even if it is still possible that every oriented path admits an
UPSE on every general point set, this new NP-completeness might foreshadow
that a proof for this fact will not lead to a polynomial time construction algorithm.
Secondly, we provide a new family of n-vertex oriented paths that admit an
UPSE on any general set of n points (Section 3), extending the previous partial
results [1,2]. Thirdly, by aiming to understand the degrees of freedom that one
has while embedding an oriented path on a point set, we show that the number
of different UPSEs of an n-vertex oriented path on a one-sided convex set of n
points is equal to the number of sections the path contains (Section 2). Finally,
as a side result, we study the case where the point set is larger than the graph
and show that the upper bound n2*~2 on the size of a general point set that
hosts every oriented path [1] can be extended to caterpillars (Section 4), where k
is the number of switches in the caterpillar. The proof is largely inspired by the
corresponding proof for oriented paths. However, the result itself opens a new
line of investigations of providing upper bounds on the size of general point sets
that are sufficient for UPSE of families of directed trees.

Definitions. A set of points is called general, if no three of its points lie on the
same line and no two have the same y-coordinate. The conver hull H(S) of a
point set S is the point set that can be obtained as a convex combination of the
points of S. We say that a point set is in convex position, or is a convex point set,
if none of its points lie in the convex hull of the others. Given a general point set
S, we denote the lowest and the highest point of S by b(.S) and ¢(S), respectively.
A subset of points of a convex point set S is called consecutive if its points appear
consecutively as we traverse the convex hull of S. A convex point set S is called
one-sided if the points b(S) and t(S) are consecutive in it; refer to Fig. 1.

Let I be an UPSE of a digraph G = (V, E) on a point set S. For every
v € V, I'(v) denotes the point of S where vertex v has been mapped to by I". A
directed tree is a digraph, whose underlying graph is a tree. A digraph, whose
underlying graph is a simple path is called oriented path. A directed caterpillar
is a directed tree in which the removal of the vertices of degree 1 results in an
oriented path: the backbone. For an oriented path (vi,ve,...,v,), we call v;v;41
a forward (resp., backward) edge if it is oriented from v; to v;41 (resp., from v;1
to v;). A vertex of a digraph with in-degree (resp., out-degree) equal to zero is
called a source (resp., sink). A vertex of a digraph which is either a source or
a sink is called switch. A subpath of an oriented path P connecting two of its
consecutive switches is said to be monotone and called a section of P. A section
is forward (resp., backward) if it consists of forward (resp., backward) edges.
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2 Counting Embeddings of Paths on Convex Sets

In this section, we study the number of UPSEs that an n-vertex oriented path
has on a one-sided convex set of n points. We show that this number is equal to
the number of sections in the oriented path. We start with the following

Lemma 1. Let P be an n-vertex oriented path with v, being one of its end-
vertices and let S be a one-sided convex point set with |S| = n. For any two
different UPSEs I'y and Iy of P on S, it holds that I'1(v1) # Ta(v1).

Proof. Let {p1,...,pn} be the points of S sorted by y-coordinate. For the sake of
contradiction, assume that there exist two different UPSEs I'y and I of P on S
with Iy (v1) = I»(v1). Additionally, assume that the considered counterexample is
minimal, in the sense that for the vertex v of P, adjacent to vy, It (v2) # Ia(ve).
By [2, Lemma 3], vertices v; and vq lie on consecutive points of S. We assume
that the edge vivy is a forward edge; the case when vyvs is a backward edge is
symmetric. Conditions I'1 (v1) = I'x(v1), 1 (v2) # I'a(ve), and the fact that vy, ve
lie on consecutive points of S, imply that 'y (v1) = Ia(v1) = p1, and I;(ve) = pp,
I'j(v2) = po, with 4,5 € {1,2}. Embedding I;; is an UPSE of P when the edge
vovs is backward, while I; is an UPSE of P when the edge vyvs is forward. We
arrive to a contradiction. a

We are now ready to prove the result of this section.

Theorem 1. An n-vertex oriented path P with k sections has exactly k UPSEs
on a one-sided convex set of n points.

Proof. We first show that P has at least k¥ UPSEs. To do so, let P = (v1,...,v,)
be an oriented path with k£ sections and let S be a one-sided convex point set
with points {p1,...,pn} ordered by the increasing y-coordinate. Let v; be the
switch of P preceding v,,. Thus, the subpath of P between v; and v,, is P’s last
section. Let denote the subpath of P between v; and v; by P’. We prove the
statement of the theorem by the following stronger induction hypothesis: there
are k UPSEs of P on S, such that one of them maps v, to p, (resp., p1) if the
last section is forward (resp., backward). The base case of k = 1 is trivial. Assume
that the k-th section of P is forward (resp., backward) and let S = {p1,...,pi}
(resp., 8" = {pPn_i+1,.--,pn}). By induction hypothesis, the path P’ has k — 1
UPSEs on S’, with one of them mapping v; to p; (resp., p,). Let I" be one of
them. Assume that I'(v;) = p;, p; € S’. We shift every vertex that has been
mapped to point p;, i < j <1 (resp., n —l+1 < j < i) by n— points up (resp.,
down); refer to Fig. 1(a). We map the k-th section to points pi11,. .., Pitn—i
(vesp., p; — 1,...,Di—n+1). This gives us k — 1 UPSEs of P on S.

Recall that, by induction hypothesis, P’ has an UPSE I'¥ on S’ that maps v,
to p1 (resp., p,) on S’, since its last section is backward (resp., forward). Thus,
we can also extend I by mapping the k-th section to points p;41,...,p, (resp.,
D1y .., Pn—i1); refer to Fig. 1(b). Hence, there exists a UPSE of P that maps v,
to py(resp., p1) if the last section is forward (resp., backward). By Lemma 1,
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Fig.1. (a-b) An illustration for the proof of Theorem 1, showing an extension of an
UPSE of P’ (black) to an UPSE of P (gray). In (a) v; lies on a non-extreme point of S,
in (b) v; is an extreme point of S’. (¢) Description of path P presented in Theorem 2.

no two of the constructed embedding of P on S are the same. Thus, P has at
least kK UPSEs on S.

We now apply a counting argument to show that each oriented path with &
sections has exactly £ UPSEs on S. Note that the total number of possible UPSEs
of different directed paths of size n on an n-point one-sided convex point set is
n -2"~2, To see this, note that an UPSE can be encoded by the start point and
the position (clockwise or counterclockwise consecutive) of the next point. For
the last choice the clockwise and the counterclockwise choices coincide. Moreover,
the number of oriented paths with n — 1 edges and k sections is py := Z(k 1)

and the number of n-vertex oriented paths is Zk:l pr = 2" 1. Let 1 denote
the number of UPSEs of all oriented paths on n vertices with & sections.

As shown above, an oriented path with k sections has at least k UPSEs on S.
By the symmetry of the binomial coefficient, it holds that py = p,,—x. Therefore,
the number of UPSEs of all oriented paths with k and n — k sections evaluates
to at least kpy + (n — k)pn—r = 5(px + pn—k). This implies

n—1 n—1 n—1
n—2 __ _ n n—1 _ n— 2
n2 —anzzkpk—§'zpk—*2 n2
k=1 k=1 k=1
Consequently, each oriented path with k sections has exactly k UPSEs on S. O

3 Embedding of Special Directed Paths

In this section we present a family of oriented paths that always admit an UPSE
on every general point set of the same size. For an illustration of paths in this
family, consider Fig. 1(c).

Theorem 2. Let P be an oriented path with three sections Py = (uq,...,uq),
Py, = (v1,...,v) and P3 = (wy,...,w.), where u, = v1, vp = wy and b > a,c.
Then path P admits an UPSE on any general set S of n =a+ b+ ¢ — 2 points.

Proof. We assume that P; is forward, otherwise, we rename the vertices of P by
reading it off from vertex w,.. Let £ denote the line through #(S) and b(S), and
let £~ (resp., £T) be the halfplane on the left (resp., on the right) when walking
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Fig. 2. An illustration of the proof of Theorem 2. (a) Embedding of P in Case 1.
(b) Embedding of P in Case 2. Point set S lies in the red convex polygon.

from b(S) to t(S) along . We assume that both £~ and ¢* are closed, and hence
[SNET|+[SNE7| =a+ b+ c. We now consider two cases.

Case 1: |SN{T| > a+cor [SNE| > a+c. We consider the case [SN{™| > a+c
(refer to Fig. 2(a), with |SN¢T| > a+ ¢ being symmetric. We rotate a left heading
horizontal ray r emanating from ¢(S) in counter-clockwise direction until it hits
the a-th point (including ¢(.5)); we let p denote this point and let S; denote the
points swept by r. Notice that b(S) ¢ S1 because |[S N ¢~| > a. We embed P; on
the points in Sy, by sorting them by ascending y-coordinate.

From |SN{¢7| > a+ c it follows that |(S\ S1) N £~| > c. Hence, we can
embed P; on SN¢~. To do so, we rotate around b(S) a left-heading horizontal
ray 7’ in clockwise direction until it hits the c-th point of (S\ S;) N £~ ; denote
these ¢ points by S3 and let p’ be the last point hit by ’. We embed P53 on the
points of S5 by sorting them by ascending y-coordinate.

Let Sy = (S\ (S1US3))U{b(S),t(S)}. Then, the polygonal region determined

by the horizontal lines through #(S) and b(.S), the line through ¢(S) and p, the
line through b(S) and p’, and the vertical line through the rightmost point of So
is a convex region that contains all points in Se and and has t(s) (resp., b(s)) as
its topmost (resp., bottommost) vertex. Therefore, we can embed P, onto Sy by
sorting them by descending y-coordinate. We observe that u, = v; and v, = w;
have been consistently embedded on b(.S) and ¢(S), respectively.
Case 2: |[SN{T| <a+cand |SNE| <a+c It follows that [SNET|>b>a
and [SNLT| > b > ¢ refer to Fig. 2(b). Since |S N ¢~| > a, we can construct the
set S1 C SN similarly to Case 1, and embed P on its points. We then rotate
a right-headed horizontal ray ' in counter-clockwise direction around b(.S) until
it hits the c-th point p’ of £t and denote by Ss the points swapped by r’. Since
[SNET| > ¢, t(S) & S3. We embed P3 onto S3 by sorting the points by ascending
y-coordinate.

Finally, let So = (S'\ (S1 U S3)) U {b(5),t(S)}. We note that the polygonal
region determined by the horizontal lines through ¢(.S) and b(S), the line through
t(S) and p, and the line through b(S) and p’ is a convex polygon that contains
all points of Ss. Also recall that b(S) and ¢(S) are respectively the bottommost
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and the topmost points of S5. Thus, we can embed P, onto the points in S5 by
sorting them by descending y-coordinate. Note that u, = v, and v, = w; have
been consistently mapped to ¢(S) and b(S), respectively. O

4 Embedding Caterpillars on Larger Point Sets

In this section, we provide an upper bound on the number of points that suffice to
construct an UPSE of an n-vertex caterpillar. We first introduce some necessary
notation. Let C be a directed caterpillar with n vertices, r of which, vy, vs, ..., v,,
form its backbone. For each vertex v; (i = 1,2,...,r), we denote by A(v;) (resp.,
B(v;)) the set of degree-one vertices of C' adjacent to v; by outgoing (resp.,
incoming) edges. Moreover, we let a; = |A(v;)| and b; = | B(v;)].

Theorem 3. Let C be a directed caterpillar with n vertices and k switches in its
backbone. Then C admits an UPSE on any general point set S with |S| > n2kF=2.

Proof. Assume that C' contains r vertices vi,vg, ..., v, in its backbone. Let C, g

denote the subgraph of C' induced by the vertices Uf:a {vi} U A(v;) U B(v;). We
first make the following observation.

Observation 4 If the backbone of C contains exactly one section, C has an
UPSE on any general set S of n points.

To see that, we sort the points in S = {p1,...,pn} by ascending y-coordinate
and, assuming C is forward (the backward case is symmetric), we embed v; on
Dy, Where © =i+ b; + Z;;ll(bj + a;). See to Fig. 3(a) for an illustration.

We now prove the theorem by induction on k. We assume as the induction
hypothesis that a directed caterpillar C' with ¢ switches and n; vertices has an
UPSE on any general point set S of at least n;2°~2 points. Let v denote the first
vertex of the backbone of C. We additionally assume that if v is a source (resp.
sink), then v is mapped on the (|B(v)| + 1)-th bottommost (resp. (|A(v)| + 1)-th
topmost) point of S. For k = 2, the backbone of C' contains one section; hence,
the induction hypothesis follows from Observation 4 and its proof.

We now consider a caterpillar C' with ¢ + 1 switches and n; 1 vertices. Let vy
and v; denote the first and the second switches of the backbone of C, respectively.
Let S be a set of at least N = n;; 12! points. In the following, we only consider
the case where the backbone of C ; is forward; the backward case is symmetric.

We construct an UPSE of Cy ;_1 on the ¢; = Zi;} (1 + b; + a;) lowest points
of S by applying Observation 4. Let p denote the point where v;_; is mapped.
Let S’ denote the unused points of S; thus, |S'| = N —¢;. We have n;11 = n;+¢1,
where n; is the number of vertices of Cj . Recall that N = n;;12°~!. Therefore,
|S"| > n;2'71. Let p’ be the (a; + 1)-th topmost point in S’ and let ¢ denote the
line through p and p’. Line ¢ partitions S’ into two sets, so that for the largest,
say S”, it holds that |S”| > n;2¢=2. Let S”” be the union of S” with the set of
points lying above v;. Since Cj, contains 7 switches, by induction hypothesis, we
can construct an UPSE of Cj, on S”” such that v; is mapped on the (a; + 1)-th
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topmost point of S”/, which is the point p’. The only edge of the drawing of Cy
that interferes with the drawing of C, is (v;—1,v;); however, the drawing of C;
(except for the edges incident to v;) lies on one side of the edge (v;—1,vy). O

Fig. 3. Illustration of the proofs of (a) Observation 4; (b) Theorem 3; (c) An illustration
of the tree T in the proof of Theorem 5.

5 NP-Completeness for Trees

In this section, we consider the following problem: Given a directed tree T with
n vertices, a vertex v of T', a set S of n points in the plane, and a point p in S,
does T have an UPSE on S which maps v to p? Our goal is to show the following.

Theorem 5. UPSE of a directed tree with one fized vertex is N P-complete.

The 3-Partition problem is a strongly NP-complete problem by Garey and
Johnson [9, 10], which is formulated as follows: For a given multiset of 3m inte-
gers {ai,...,asn,}, does there exist a partition into m triples (a11, as1,a31), ...,
(@1, @2m; a3m), SO that for each j € [m], 327, ai; = b, where b= (322" a;)/m.
In this section, we present a reduction from 3-Partition. Without loss of generality,
we may assume, possibly multiplying each a; by 3, that each a; is divisible by 3.

Given 3m integers {ay, ..., asm }, where each a; is divisible by 3, we construct
an instance of our problem as follows. Let ¢ and h be two large numbers such
that £ > mb and h = m+ 1. We construct a tree T" with n := mb+ hf+ 1 vertices,
and a point set S with n points. As illustrated in Fig. 3(c), (the undirected
version of) the tree T is a subdivision of a star, that is, 7" has a single vertex s
of degree greater than two. Specifically, the degree of vertex s is 3m + h, i.e.,
3m + h paths meet in their initial vertex s; we call each such path a branch of T.
Let T1,...,T3m+n denote the branches, respectively. For i € {1,...,3m}, the
branch 7T; is a path with a; edges and called small; for i € {3m+1,...,3m + h},
the branch T} is a path with ¢ edges and called large. Note that a; and ¢ may also
be interpreted as the number of vertices of a branch that are different from s.

For each branch T;, we define its root r; as follows. For a small branch T},
r; is the first vertex on T; that is different from s; for a large branch, r; is the
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second vertex different from s. For every branch, all edges are oriented so that its
root is the unique sink of the branch. Thus the sinks of T" are exactly the 3m + h
roots of the branches, and the sources of T' are s and the 3m + h leaves of T

The point set S is depicted in Fig. 4(a) and constructed as follows. The
lowest point of S is p = (0,0). Let E be an ellipse with center at p, (horizontal)
semi-major axis 5 and (vertical) semi-minor axis 3. Let C' be a convex x- and
y- monotone curve above E and also above the point (—3,3), represented by
the filled square mark in Fig. 4(a). Consider the cone defined by the upward
rays from p with slopes -1, -2, and subdivide this cone into 2m + 1 equal sectors
by 2m upward rays from p. Let sq, ..., S2,, denote the obtained sectors ordered
counter-clockwise. For each odd i = 2k + 1 with 0 < ¢ < 2m, consider the
intersection between the sector s; and the ellipse E (the orange arcs in Fig. 4(a))
and let By be the set of b equally spaced points on this intersection.

For each even i = 2k with 0 < k < m, consider the intersection c; between
sector s; and curve C (the green arcs in Fig. 4(a)). Let the point set Ly be
constructed as follows. Place the first point gj, of Ly in the sector s; slightly to
the right of (and thus slightly below, to stay inside the sector) the topmost point
of the arc c¢g. Let, for k > 0, x; be the point of intersection between c¢; and the
line through ¢}, and the topmost point of the set Bj. For k = 0 let z; be the
highest point of cg. Place the second point g of Li on ¢ slightly below zy, but
still above gj,, see also Fig. 4(a). Place ¢ — 2 points equally spaced on ¢ below gy.
This concludes our description of 7" and S. In the remaining, the point sets By
are called small sets, and the point sets Ly are called large sets.

To prove Theorem 5, we show that {a1,...as,,} admits a 3-partition if and
only if T admits an UPSE I" on S where I'(s) = p. In particular, our proof is
based on the fact that if such an UPSE exists, then it nearly fulfills the special
property of being a consistent embedding of T on S (Lemma 2). An embedding
I is consistent if I'(s) = p and each large branch of T is mapped to exactly one
large point set; for a schematic illustration consider Fig. 4(b).

I /f//
L% »-d0
Lyd Lo N\
L Cp;aéql
"y B
. ..,/‘ ! /@Ll\\\
5 2
C \Bm \\\\ \g(qm \\
<0 ~ < FLo> o AR
E \\ )) \\\ \\
o\p\\\ ///‘B\V'rr:_Bl

(a) (b)

Fig. 4. An illustration for the proof of Theorem 5 with zoomed portions: (a) the point
set S, and (b) a schematic illustration of a consistent embedding of 7" on S.
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By construction of S, if the large branches are mapped to the large point sets,
then the small branches of T' must be subdivided into m groups each with a total
of b vertices. Each such group then corresponds to a triple (a1;, a9, as;) of the
partition of (a1, ...,as;) that sums up to b. Conversely, a 3-partition directly
yields a consistent embedding. This proves the following fact:

Observation 6 T has a consistent embedding on S if and only if {ay,...azm}
has a 3-partition.

Now we prove the main lemma, of this section in order to conclude Theorem 5.

Lemma 2. If T admits an UPSE I" on S mapping s top (I'(s) =p), then T
also admits a consistent UPSE on S mapping s to p.

Proof. To show that T admits a consistent embedding, we work our way from
right to left. Let I'; denote the partial embedding of T" induced by restricting I’
to the points in S; := Uk<;(Ly U By) for every i. We say I is consistent if large
branches are mapped to large sets of S; and small branches are mapped to small
sets of S;. In particular, we prove the following: If there is an embedding I" with
I'(s) = p whose partial embedding I is consistent, then there is an embedding I’
with I''(s) = p whose partial embedding I7,, is consistent.

For unifying notation, we define By, B_1,L_1 := (). Suppose there is an
embedding I" such that I is consistent. Suppose that the partial embedding ;11
of I' is not consistent (otherwise let I'” be I'). Since ¢;4+1 is the highest point of
S\ 'Si, I'(rj) = git1 for some branch T;. We distinguish two cases depending on
whether T} is a small or large branch. If T is a small branch, then B;;1 and ¢;
is to the right of segment pg;yi. Depending on whether T} continues left or
right, a set of small branches is mapped on B;;1 U {q; 1} or Biy1 U {qit1,4;41},
respectively. (In the latter case, T; is one of the small branches mapped on
Biy1 U{qi+1,qi+1}-) However, the cardinality of these sets is not divisible by
three; a contradiction. Therefore T} is a large branch.

Then there exists a point y # ¢;,, such that the segments py and yg;i1
represent the first two edges of 7. If y belongs to a large set, then yg;+1 separates
all points between y and g;11 on C from p. Therefore, there are only three different
options for the placement of y on a large set: g;12, ¢, or the left neighbour of
¢i+1in Ligp1. If y is qiy2 or ¢ 5, then a number of small branches are mapped to
Biy1 U{qj 0, qi 41} or to Biy1 U{q;,}, respectively. However, the cardinality of
these sets is not divisible by three, a contradiction. In the case that y is the left
neighbour of g; 41 in L;41, branch T; must continue to the right of ¢;1.1. However,
this would imply that 7 contains at most b+ 3 points, a contradiction to £ > b+3.
Therefore, y belongs to a small set B; with j > 7 + 1. Moreover, y belongs to
B2, otherwise ¢;, had to be the root of a large branch which would lead to a
contradiction. Let A be the set of all points of B;15 to the right of y. The set
AU {qj,} is separated from the rest of the points of S\ (S; U I'(T;) U B;;1) by
the segments py and yg;41. Since there are less than £ points in AU{q;,,} UB;;1,
several small branches of T" are mapped to AU {g;,,} U B;;1. In addition, since
|Biy1U{q;,}| is not divisible by three, for the small branch that maps its root to
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Fig. 5. (a) A partial embedding I11 of I' that is not consistent, while I'; is. (b) A
modification I of I" such that I, ; is consistent.

g1, the rest of this branch is mapped to the left of pg; ;. To construct a sought
embedding I'" we modify I" as follows. Consider the point ¢’ in B; o (y' lies to
the right of 3) such that the segment y'q;, ; is in the partial embedding of I ;.
First, we map to ¢/, the vertex of T} previously mapped to y (i.e., I'"(y)). Let
A’ C A be all the points to the left of y’ in A. For each vertex mapped to a point
z in A’ U{y’}, we map such vertex to the left neighbour of z in A’ U {y}. Finally,
the vertex that was mapped to ¢;,, is now mapped to . See Fig. 5.

The obtained embedding I" is such that I7, ; is consistent. Indeed, in I" the
branch T} is embedded entirely on L;1; otherwise some point of L;;; would be
separated from p. And since |B;41| = b < ¢, a set of small branches is embedded
on B;,1. Together with the obvious fact that in any UPSE I" of T on S, I'_; is
consistent, the above observation implies the claim of the lemma. a

6 Conclusion and Open Problems

In this paper, we continued the study of UPSE of directed graphs, specifically
of paths, caterpillars, and trees. On the positive side, we showed that a certain
family of n-vertex oriented paths admits an UPSE on any general n-point set
and that any caterpillar can be embedded on a general point set if the set is
large enough. Moreover, we provided the exact number of UPSEs for every path
on a one-sided convex set. On the negative side, we proved that the problem
of deciding whether a directed graph on n vertices admits an UPSE on a given
set of n points remains NP-complete even for trees when one vertex lies on a
pre-defined point. We conclude with a list of interesting open problems:

1. Given any oriented path P and any general point set S with |P| = |S|, does
there exist an UPSE of P on S?

2. If the answer to the previous question turns out to be negative, what is the
smallest constant ¢ such that a set of ¢ paths on a total of n vertices, has an
UPSE on every general point set on n points? This problem could also be an
interesting stepping stone towards a positive answer of the previous question.
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3. Given a directed tree T on n vertices and a set S of n points, is it NP-hard
to decide whether T" has an UPSE on S?

4. Can the provided upper bound on the size of general point sets that host every
caterpillar be improved to polynomial in the number of vertices, following
the result in [13]7 If yes, can this be extended to general directed trees?
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