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Abstract. We study drawings of planar graphs such that every inner
face has a prescribed area. A plane graph is area-universal if for every
area assignment on the inner faces, there exists a straight-line drawing
realizing the assigned areas. It is known that not all plane graphs are
area-universal. The only counterexample in literature is the octahedron
graph.

We give a counting argument that allows to prove non-area-universality
for a large class of triangulations. Moreover, we relax the straight-line
property of the drawings, namely we allow the edges to bend. We show
that one bend per edge is enough to realize any face area assignment of
every plane graph. For plane bipartite graphs, it suffices that half of the
edges have a bend.

1 Introduction

Planar graphs link graph theory and geometry. Since various real-life problems
are connected to embedded graphs on the surface of our planet, planar graphs
and their representations have many practical applications: in the manufacture of
chips and electrical circuits, in the design of network infrastructure such as roads,
subway, and utility lines. Other applications are in cartography, geography, and
visualization. Consequently, there is a large body of theoretical and applied work
on representations of planar graphs with special features [11].

One direction is the representation of planar graphs with given areas. Pro-
portional contact representations, so-called cartograms, are studied when areas
are assigned to the vertices [2, 5].

We are interested in drawings of plane graphs such that the inner faces have
prescribed face areas. Let G = (V| F) be a plane graph and F” the set of its inner
faces. A redrawing of G is a drawing such that the set of inner faces remains.
We denote the set of all redrawings of G by D.

A face area assignment is a function A : F' — RT. Let a: F/ x D — R¥ be
a function measuring the area of an inner face f in a specified redrawing D of
G. A redrawing D of G is A-realizing if a(f, D) = A(f) for each face f € F’.
The graph G is area-universal if for every face area assignment A there exists an
A-realizing straight-line redrawing of G. The graph G is equiareal if there exists
a straight-line redrawing D of G such that a(f, D) =1 for each face f € F’.



1.1 Previous Work & Our Contribution

Ringel [10] can be seen as the initiator of the study of drawings of plane graphs
with prescribed face areas. He gave examples of equiareal graphs and proved
that not every plane graph is equiareal. Moreover, Ringel conjectured that every
plane 3-regular graph is equiareal. This turned out to be true when Thomassen
[12] proved something stronger: Every plane graph with maximum degree 3 is
area-universal. There are further area-universal graph classes. A straight-forward
result is the class of planar 3-trees, also known as stacked triangulations. Biedl
& Ruiz Velazquez [3] proved that planar 3-trees have realizing drawings with
rational coordinates if the face areas are rational.

To the best of our knowledge, this is the state of the art. Clearly, many
interesting questions remain open. In this paper, we study two directions, namely
negative and positive results. In terms of negative results, all non-area-universal
graphs in literature contain the octahedron graph as a subgraph. This leads to
the following questions:

» Is the octahedron graph the only minimal counterexample (by taking sub-

graphs)? Is it the only 4-connected counterexample?

» Are highly connected planar graphs area-universal?

The answers to these questions are negative. In Section 2 we give a broad
class of triangulations which are not area-universal. This class contains many 4-
connected graphs. Additionally, we show that the 5-connected icosahedron graph
is not area-universal. Hence, high connectivity does not imply area-universality.

In terms of positive results, we investigate relaxations:

» What drawings can realize all face area assignments for every plane graph?
In Section 3 we show that every plane graph has a drawing realizing any face
area assignment such that each edge has at most one bend. Moreover, every
plane bipartite graph has a drawing realizing any face area assignment such that
at most half of the edges have a bend.

2 Non-Area-Universal Graphs

In this section we discuss non-area-universality. It is known that the octahedron
graph is not area-universal [10]. There exist two proofs. In both proofs, the used
area assignment is similar to ours; however, the concepts behind the proofs are
different. Ringel [10] shows that the system of equations has no rational solution.
A different proof relies on a classical geometric result on the area of a triangle
inscribed into a triangle. The proof is similar to [1] (for details on the geometric
result see [4]).

In contrast, we give a simple counting argument. Interestingly, the ideas
can be extended to show that every plane Eulerian triangulation is not area-
universal. Indeed, we use the fact that the dual graph of a plane triangulation is
bipartite, and hence has an inner face 2-coloring. An inner face 2-coloring of a
triangulation is a coloring of the inner faces with white and black such that every
inner edge is incident to a white and black face. For an inner face 2-coloring of
the octahedron graph, see Figure 1.



Theorem 1. Every plane Eulerian triangulation (on more than 3 vertices) is
not area-universal.

Proof. Let T be a plane triangulation on n vertices with an inner face 2-coloring.
We denote the set of white faces by W and the set of black faces by B. Recall that
the number of inner faces of a triangulation with n vertices is 2n — 5. Without
loss of generality |[W| > |B|, that is [W| > n — 2.

We show that for sufficiently small € > 0, T has no straight-line drawing
realizing the following area assignment with a total area of 1:

{5 if few,

else.

The idea is to show that an A-realizing drawing has contradicting properties.
One property is that every white face needs a big angle of almost 7. Another
property is that every inner vertex can have at most one such big angle, and
every outer vertex has none. Since the number of white faces exceeds the number
of inner vertices this gives a contradiction. To illustrate the idea of the proof, we
start with the degenerate case of € = 0.

We suppose, for the purpose of contradiction, that there exists an A-realizing
drawing D of T'. Since every inner edge e is incident to a black face, e has positive
length in D; otherwise, the area of the black face cannot be realized. This yields
the main property of D: One angle of every white face is of size 7, i.e., a big
angle. The area of a white face vanishes only if a vertex lies on a non-incident
edge. Since all edges have positive length, the vertex must lie on an inner point of
the non-incident edge. We assign (the big angle of) this white face to the vertex
with the big angle. Clearly, only inner vertices may have big angles. Recall that
T has n — 2 white faces and n — 3 inner vertices. By the pigeonhole principle,
in every assignment of big angles to inner vertices, there exists a vertex v which
is assigned to two big angles, see Figure 1. Vertex v is also incident to at least
2 black faces which are separating the white faces. However, due to the two big
angles, no space remains in order to realize the area of the black faces incident
to v. Consequently, D is not a realizing drawing, thus a contradiction.

Fig.1. The octahedron graph with an

inner face 2-coloring indicating the area Fig. 2. The icosahedron graph with an
assignment. In every assignment of white inner face 2-coloring indicating an area
faces to inner vertices, one vertex is as- assignment which cannot be realized by
signed to two faces. any straight-line drawing.



For the case € > 0, we suppose that there exists a realizing straight-line draw-
ing. Since triangles are affine equivalent, any two realizing straight-line drawings
are affine equivalent. Hence, we suppose that there exists a straight-line drawing
within an equilateral triangle with area 1 and sidelength L. It has the following
properties:

— The longest edge is of length L.
— Each edge is incident to a black face and, hence, at least of length s := 26</L.
— The height of a white face is bounded by 2¢/s.
— There exists a small «., continuously decreasing with €, such that a white
face angle is either tiny (at most al) or big (at least a. := 1 — 2al).
— Each white face has a big angle.
— There exists . such that a black face angle is at least of size f..
Recall that 2ag + 28p > 27. By continuity of a. and ., the intermediate value
theorem implies the existence of € > 0 with

20 + 28, > 2.

Consequently, in every realizing drawing no inner vertex may realize the big
angles of two white faces. However, the number of white faces exceeds the number
of inner vertices. This is a contradiction and, hence, establishes the proof. O

Remark 1. Tt suffices to choose ¢ in the order of n=3.

Remark 2. Indeed, a triangulation has an inner face 2-coloring if and only if it
has a face 2-coloring. This stems from the fact that the number of edges of a
Eulerian inner triangulation of a quadrangle is divisible by 3.

Remark 3. This construction implies that one cannot hope for drawings realizing
the areas up to a constant factor. If € is small enough, then there is no ¢ such
that a drawing of an Eulerian triangulation fulfills 1/c- A(f) < a(f, D) < c¢- A(f)
for all inner faces f.

Note that the graphs of Theorem 1 are at most 4-connected. With similar
ideas (but more work) we can show that the 5-connected icosahedron graph is
not area-universal. Here, we only sketch the proof idea.

Theorem 2. The icosahedron graph is not area-universal.

Proof (Sketch). We can show that for £ > 0 small enough, there is no straight-
line drawing of the icosahedron in which the white faces in Figure 2 have area ¢
and the black faces have area J. := 1=3°¢. Note that there are three (red)
edges adjacent to two white faces. These edges may become small, therefore, the
adjacent white triangles do not necessarily need a big angle in a realizing drawing.
Hence, a simple counting argument is not sufficient. However, as before, each of
the four white triangles with three black edges needs a big angle. In every big
angle assignment of these four white triangles, there is a red special edge whose
vertices are both assigned. Moreover, the angle between two black edges in a
white face, is either tiny (almost 0) or big (almost 7). A case distinction on the
size of the (green) angles opposite to the red special edge yields the result. O



3 Drawing Planar Graphs with Bends

We now aim for realizing each face area assignment of every plane graph. As
discussed in Section 2, this is impossible for straight-line drawings. Therefore, we
relax the straight-line property by allowing the edges to have bends. A drawing
of a plane graph is a k-bend drawing if each edge is a concatenation of at most
k 4+ 1 segments. These drawings are also called polyline drawings. In this section
we show that one bend per edge is sufficient.

Theorem 3. Let G be a plane graph and A: F' — R™ a face area assignment.
Then, there exists an A-realizing 1-bend redrawing of G.

Proof. Without loss of generality, we assume that G is a plane triangulation:
If G is not a triangulation, there exists a triangulation 7' such that G is an
induced subgraph. For each face of GG, partition the assigned area between its
subfaces in T and obtain the area assignment A’ of T. Given an A’-realizing
1-bend redrawing of T', delete the artificial vertices and edges. The result is an
A-realizing 1-bend redrawing of G.
We construct the final drawing of G in four steps (see definitions below):

1. Take a L-contact representation C which yields a rectangular layout L.

2. Obtain a weak equivalent rectangular layout £’ realizing the areas.

3. Define a degenerate drawing D .

4. Construct a non-degenerate drawing from D .
The steps are visualized for the octahedron graph in Figure 3.

© @ ® ® ®

triangulation L-contact  rectangular layout  degenerate final
representation realizing areas  1-bend drawing 1-bend drawing
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Fig. 3. Construction of a 1-bend drawing realizing the prescribed areas in 4 steps.

In the first step, we construct a |-contact representation C of G. A 1-shape
is the union of a horizontal and vertical segment such that the lower end of the
vertical segment lies in the horizontal segment. We call this point of intersection
the heart of the |-shape. Each of the other three ends of the segments is an end
of the 1-shape. A 1-contact representation of a graph G = (V, E) is a family
of L-shapes {1,:v € V} where L, and L, intersect if and only if (u,v) € E.
Moreover, if 1, and L, intersect then the intersection must consist of a single
point which is an end of L, or L,. The point is the contact point of L, and L,,.



Lemma 1 ([8]). Every plane triangulation has a L-contact representation C
such that each inner face is represented by a rectangular region.

Following the ideas of [8], C can be constructed as described in detail in Sec-
tion 3.1 in [2]. Observe that the |-shapes of two outer vertices may be pruned
to segments such that the outer face is the complement of a rectangle. The seg-
ments of the L-shapes of inner vertices partition the rectangle into finitely many
rectangles; such a partition is called a rectangular layout. By Lemma 1, C yields
a rectangular layout £ in which every rectangle r corresponds to a face f, of G.

In the second step, we want to achieve correct areas in a weak-equivalent
layout. The maximal segments of a rectangular layout yield a segment con-
tact graph. Two rectangular layouts are weak-equivalent if their segment contact
graphs are isomorphic. We apply the following lemma.

Lemma 2. For every rectangular layout with area assignment w on the inner
rectangles, there exists a weak-equivalent layout realizing the areas of w.

This lemma has several variants and proofs; we refer to [5, 6, 13]. For each
rectangle r corresponding to the face f,., we set w(r) := A(f,). By Lemma 2,
we obtain a weak-equivalent rectangular layout £’ in which the area of each
rectangle r is w(r). Due to the weak-equivalence of £ and £’, the layout £’ can
be viewed as a |-contact representation C’, which now realizes the areas.
In the third step, we obtain a (degenerate) 1-bend drawing D, of G from C’:
— Place each vertex v in the heart of L,; (for a pruned L-shape, the heart
coincides with the bottom or left end of the remaining segment),
— The edges are supported by the segments of C’ in the following way: If two
vertices u and v share an edge, 1, and L, have a point of contact in which
a vertical and a horizontal segment meet. We define the edges to run from
the heart of one L-shape (along the horizontal segment) to the contact point
and then (along the vertical segment) to the heart of the other L-shape.
Up to the fact that two edges may intersect interiorly (but do not cross), the
properties of a plane redrawing of G are fulfilled. We call such an embedding
degenerate drawing. By construction, each edge consists of a horizontal and a
vertical segment and, hence, has at most (and in general exactly) one bend.

Observation 1 D, is a degenerate 1-bend redrawing of G realizing A.

For the fourth step, it remains to remove the degeneracies of D, . A bend of an
edge e can be interpreted as a vertex w, of degree 2, which we call bend vertex.
Moreover, we refer to the two incident edges of w, as its horizontal and vertical
segments. As part of the degeneracies, bend vertices intersect non-incident edges.
We handle this issue by parallel shifts. A parallel shift of a bend vertex w in a
drawing D yields a (planar) redrawing D’ of D in which only vertex w has a new
special position: Let p and p’ denote the positions of w in D and D’, respectively.
Let £ be the line through the two neighbors of w in D. A redrawing D’ of D is
obtained by a parallel shift of w if p’ lies on the line ¢ parallel to ¢ through p,
see Figure 4. A bend vertex w is shiftable if there exists a parallel shift of w.



Fig. 4. A parallel shift of w.  Fig.5. The neighborhood of a typical vertex in the de-
generate drawing D and in the final 1-bend drawing.

Observation 2 A parallel shift of a bend vertex keeps all face areas invariant.

The 1 -contact representation induces a coloring and an orientation of the inner
edges: each edge corresponds to a contact point of two | -shapes. Orient the edge
such that it is an outgoing edge for the vertex belonging to the 1-shape whose
end is the contact point. Color the edge red, blue, or green, if the contact point is
the top end, left end, or right end of the L-shape, respectively. (Such a coloring
and orientation is a Schnyder wood of G.) We analyze the typical situation for a
vertex v in D, see Figure 5. By construction, v has three outgoing edges such
that all incoming edges partially run on one of these outgoing edges. Observe that
the vertical segments of the incoming blue and green edges are free of segments
touching it from the top: Due to the |-contact representation, every horizontal
segment has exactly one vertical segment touching it from above. Moreover, the
vertex is placed on this intersection point. Thus, the bend vertex of the lowest
green and blue incoming edges is shiftable topwards. Due to the fact that every
rectangle has positive area, some space is guaranteed. Therefore, we can parallel
shift the bend vertex such that the edge is free of degeneracies. In particular,
the bend vertex does not intersect non-incident edges anymore. Hence, the bend
vertex of the second lowest incoming edge of v becomes shiftable. We iterate this
process for all v such that all blue and green bend vertices do not intersect non-
incident edges. Afterwards, only red bend vertices are involved in degeneracies.

For every vertex, we consider the incoming red edges, which have either a
left or a right bend with respect to the orientation. Consider the rightmost right
bend (and likewise the leftmost left bend) vertex. Its horizontal segment is free
to the bottom since it is rightmost (leftmost) and the vertical segment is free to
both sides, since by the first step there is no green or blue bend vertex on a red
segment. Consequently, the rightmost right bend (leftmost left) vertex is shiftable
to the bottom. We shift it parallel downwards such that no new degeneracies are
introduced. Hence, the number of degeneracies decreased. Moreover, this process
achieved that the second rightmost (leftmost) bend vertex becomes shiftable. By
iterating, we remove all degeneracies. Finally, we have a 1-bend drawing realizing
the areas prescribed by A. a

Knowing that one bend per edge is always sufficient, we wonder how many
bends may be necessary to realize a face area assignment of a plane graph? We
construct a family of lower bound examples with the octahedron graph.



Lemma 3. For every k > 3, there is a graph G on n := 4k — 6 vertices and a
face area assignment A, such that in every A-realizing polyline drawing of G at
least 1/12 of the edges have a bend.

Proof. Recall that, by Theorem 1, the octahedron graph is not area-universal.
Hence, there are area assignments such that at least one of its twelve edges needs
a bend. We call such an area assignment bad.

Now, we construct a graph for each k£ > 3. Take a triangulation on k vertices
with an inner face 2-coloring. Without loss of generality, assume that k£ — 2 inner
faces are white. Stack an octahedron graph into each white face f, i.e., identify
three outer vertices of a plane octahedron graph and with the vertices of f. This
yields a graph G on k+3(k—2) = n vertices, consisting of k—2 octahedron graphs
which are pairwisely edge-disjoint. Let A be a face area assignment such that
the inner faces of the stacked octahedron graphs obtain a bad area assignment
and the remaining black faces receive some arbitrary value.

Consider an A-realizing polyline drawing D of GG. By Theorem 1, each of
the octahedron-subgraphs has least one edge with a bend in D. By the edge-
disjointness, every edge with a bend can satisfy only one of the octahedron
graphs. Hence, in each of the octahedron graphs at least one of the twelve edges
has a bend. This implies the claim. ad

Corollary 1. For a plane graph G with area assignment A, let Bi(G, A) denote
the minimum number of bends in a k-bend drawing realizing A. For all k > 1

12|E| < mgxmjxx{Bk(G,A)} < |E|.

Note that the octahedron graph may not yield a better lower bound.

Proposition 1. For every face area assignment of the octahedron graph, there
ezists a realizing drawing with at most one bend in total.

Proof (Sketch). The proof consists of two ideas. Firstly, let G be the octahedron
graph and e an edge of the triangle of inner vertices, see Figure 1. Deleting e
gives a quadrangle ). Replacing e by the other diagonal € of @) yields a planar
3-tree. Planar 3-trees are area-universal.

Secondly, the intermediate value theorem asserts a position for a bend vertex
of e in @ such that the area of @) is arbitrarily split among the two adjacent
faces of e. Hence, each area assignment of G is realizable with a bend on e. O

Observation 3 The last argument shows that every 2-degenerate quadrangula-
tion is area-universal since it can be constructed by iteratively inserting a degree
2 vertex in a quadrangle.

3.1 Fewer Bends for Planar Bipartite Graphs

Now, we improve the number of sufficient bends for plane bipartite graphs. We
show that at most half of the edges need a bend. Interestingly, no plane bipartite
graph is known that needs a bend.



Theorem 4. Let G = (X UY, E) be a plane bipartite graph and A: F' — RT
a face area assignment. Then, there exists an A-realizing 1-bend redrawing of G
with at most |El/2 bends.

Proof. First, we assume that G is a quadrangulation. The proof consists of four
steps, illustrated in Figure 6. The main difference to the proof of Theorem 3 lies
in Step 1. Steps 3 and 4 are relatively more involved.

1. Take a segment contact representation C yielding a rectangular layout L.

2. Obtain a weak equivalent rectangular layout £’ realizing the areas.

3. Define a degenerate drawing D.

4. Construct a non-degenerate drawing from D by parallel shifts.
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Fig. 6. Construction of a 1-bend drawing realizing the prescribed areas in 4 steps.

The first step is to take a segment contact representation of G = (X UY, E).
This is a family {s,|v € V} of horizontal and vertical segments where s, and
s, intersect if and only if (u,v) € E. Moreover, each non-empty intersection
consists of a single point which is an endpoint of at least one of the segments.

Lemma 4 ([7, 9]). Every plane quadrangulation has a segment contact repre-
sentation such that each inner face is represented by a rectangle.

Let C be a segment contact representation of G. We assume that the vertices
of X are represented by vertical segments. Segments of C partition a rectan-
gle into rectangles, and hence, C yields a rectangular layout L. In the second
step, we obtain a weak equivalent rectangular layout £’ realizing the areas by
Lemma 2; let C’ denote the corresponding segment contact representation. In
the third step, we define a degenerate drawing D from C’. The challenge is to
place the vertices such that, firstly, we save one bend per vertex, and secondly,
the degeneracies can be removed by parallel shifts. We distinguish two cases de-
pending on the minimal degree § of G. Note that in a quadrangulation J is 2 or 3.

Case 1: 6(G) = 3. Since every segment has only two endpoints but at least three
contacts, every segment has an inner contact point. We construct D as follows:
— v € X is placed on topmost inner contact point of the vertical segment s,,.
— v €Y is placed on leftmost inner contact point of the horizontal segment s,,.
— e = (v,w) € E is supported by the segments s, and s,, in C: e runs from v

along s, to the contact point of s, and s,,, and then along s,, to w.



Observation 4 D is a degenerate (orthogonal) 1-bend redrawing of G realizing
the areas prescribed by A. The number of bends is at most |E| — |V]|.

For the number of bends, observe that by placing the vertex on an inner contact
point, the corresponding edge has no bend. Hence, we save one bend per vertex
and the number of bends is at most |E| — |V].

In the fourth step, we remove the degeneracies; again, by parallel shifts of
bend vertices. Indeed, we iterate twice through all vertices. For a vertex v € X
(v € Y) with a vertical (horizontal) segment s,, let By(s,) denote the set of
bend vertices on s, with a horizontal (vertical) segment touching s, from the
right (bottom); we exclude the endpoints of s,,. Likewise Ba(s,), denotes the set
of bend vertices on s, not in By (s,).

Loop 1: For each v € X (v € Y), do: while B;(s,) is not empty, choose the
topmost (leftmost) bend vertex b € Bi(s,), parallel shift b. Delete b from By (sy).
Loop 2: For each v € X (v € Y), do: while By(s,) is not empty, choose the
topmost (leftmost) bend vertex b € Ba(s,), parallel shift b. Delete b from By (s, ).

In order to prove that Loopl is possible, consider a vertex v € X with
vertical segment s,, see Figure 7. We need to argue that the topmost b € B (s,)
is shiftable. By definition, each w € Y is placed on the leftmost contact point
of s,,. Hence, the horizontal segment of b is the leftmost part of some s, and
therefore free of bend vertices. Since b is the leftmost bend vertex in Bi(s,),
the vertical segment of s, is free to the right. Therefore, b is shiftable down-
rightwards. Moreover, after shifting b, the second topmost bend vertex becomes
shiftable. Consequently, by the order from top to bottom, the horizontal segment
of each bend vertex is free to the right if considered. The argument for v € Y is
analogous. After Loop 1, every segment is free to one side in the following way:
Every vertical segment is free to the right and every horizontal segment is free
to the bottom.

In Loop 2, a considered bend vertex b € By(s,) is shiftable due to the or-
der and the 1-side-freeness guaranteed by Loop 1. Now, no bend vertex sits on
a non-incident edge. Consequently, this process yields a non-degenerate 1-bend
drawing of G which realizes the prescribed areas and has at most |E|—|V| bends.

Case 2: §(G) = 2. If it exists, choose an inner vertex of degree 2 and remove
the segment s, in C’. This results in a quadrangulation where two old faces are
unified to a new face. Assign the sum of the two old face areas to the new face.
Delete inner vertices of degree 2 until all inner vertices are of degree at least 3.
This yields a graph G’ with area assignment A’. Proceed with G’ as in Case 1
with some extra care. If an outer vertex is of degree 2, we injectively place the
outer vertices of degree 2 on incident endpoints of their segments. Moreover, we
make the parallel shifts small enough, such that the following special property
is fulfilled in an A’-realizing drawing of G’: up to a tiny € with 2" << Apin,
each face f of G’ contains an axis-aligned rectangle with area A’(f) — e, where
Apin = mingepr (@) A(f). We use the special property to reinsert the degree 2
vertices in reverse order of deletion and obtain a sequence of drawings G;. We
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use the invariant that Gj, is a non-degenerate drawing where each face area is
realized by an axis-aligned rectangle up to 2Fe. Consider the (k + 1)th vertex
v of degree 2 and the face f in Gj where v must be inserted. Assume f has
area a; + az and must be split into two faces f; and fo with area a; and as,
where ay,as > Api,. By the invariant, f contains an axis-aligned rectangle R
of area a; + ay — 2%¢, see Figure 8. Assume that v € X. By the intermediate
value theorem, there exists a vertical segment s within R such that s dissects f
into two parts of area a; and as, respectively. Place v on one endpoint of s and
a bend vertex b on the other endpoint of s. Note that the areas of fi; and fs
are realized by a rectangle up to 2¥¢. In order to remove the degeneracies, use
parallel shifts of v and b which are small enough to guarantee that f; contains a
rectangle of area a; — 2¥*'e. This ends Case 2.

If G is not a quadrangulation, then we consider a quadrangulation ¢ with
G as an induced subgraph. For each face in G, dividing its area assignment
among its subfaces in @ yields A’. Clearly, an A’-realizing 1-bend drawing of @
induces an A-realizing 1-bend drawing of G. However, the number of bends may
exceed |E|/2. Therefore, we ensure to save one bend per vertex by placing the
vertices on inner contact points which belong to edges of G. To do so, delete all
segments belonging to artificial vertices in C. If necessary, remove vertices of low
degree iteratively as in Case 2. Afterwards, place vertices, remove degeneracies
and reinsert vertices of G with low degree as in Case 1 and Case 2. Note that
degree 1 vertices may also appear, but are no problem to be reinserted.

A planar bipartite graph has at most (2|V|—4) edges. Therefore, the number
of edges with bends is at most |E|—|V| < |V|—4 and without bends at least |V].
Consequently, in all cases the number of bends is less than 1Z/2. a

If two adjacent contact points around a corner are chosen, one can save an
additional bend. For the cube graph this saves 4 bends and shows that it is not
only area~universal (partial 3-tree, cubic), but also conver area-universal, i.e. for
every face area assignment there exists a realizing drawing with convex faces.

Proposition 2. The cube graph is conver area-universal.

Proof. Assign the doubled area to the four boundary faces. Theorem 4 and Fig-
ure 9 show the existence of a 1-bend drawing realizing the perturbed face areas
with one bend on each outer edge. Replacing the boundary edges by segments
halves the area of the boundary faces and gives a realizing straight-line drawing
with convex faces. d

11
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Fig. 9. The cube graph is convex area-universal.

Open Questions

Various interesting questions remain. We want to emphasize three of them:
» Are plane bipartite graphs area-universal?
» Are 3-connected plane bipartite graphs convex area-universal?
» How many bends are necessary and sufficient to realize arbitrary prescribed

areas for all planar graphs?

Acknowledgements. We thank Stefan Felsner und Udo Hoffmann for discussions
about the problem and helpful comments on drafts of this manuscript.
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