Dependable Non-Volatile Memory

Arthur Martens
TU Braunschweig
Braunschweig, Germany
martens@ibr.cs.tu-bs.de

Niklas Lehnfeld

TU Braunschweig
Braunschweig, Germany

lehnfeld@ibr.cs.tu-bs.de
ABSTRACT

Recent advances in persistent memory (PM) enable fast, byte-
addressable main memory that maintains its state across
power cycling events. To survive power outages and prevent
inconsistent application state, current approaches introduce
persistent logs and require expensive cache flushes. Thus,
these solutions cause a performance penalty of up to 10x for
write operations on PM. With respect to wear-out effects,
and a significantly lower write performance compared to
read operations, we identify this as a major flaw that impacts
performance and lifetime of PM. In addition, most PM tech-
nologies are susceptible to soft-errors that cause corrupted
data, which implies a high risk of a permanently inconsistent
system state.

In this paper, we present DNV Memory, a library for per-
sistent memory management. For securing allocated data
against power outages, multi-bit faults that bypass hardware
protection and even usage violations, DNV Memory intro-
duces reliable transactions. Additionally, it reduces writes
to PM by offloading logging operations to volatile memory,
while maintaining durability on demand by an early detec-
tion of upcoming power failures. We compare DNV Memory
to pmemobj, a persistent object-store, and show that our
system only causes a moderate overhead. In fact, our bench-
mark results indicate that DNV Memory is even faster than
pmemobj for transactions of moderate size.

1 INTRODUCTION

Persistent memory (PM) summarizes various technologies
of byte-addressable non-volatile memory (NVM) with access

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

© 2018 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

This is the author’s version of the work. It is posted here for your personal
use. Not for redistribution. The definitive Version of Record was published
in SYSTOR ’18: International Systems and Storage Conference, June 4-7, 2018,
HAIFA, Israel, https://doi.org/10.1145/3211890.3211898.

Rouven Scholz
TU Braunschweig
Braunschweig, Germany

scholz@ibr.cs.tu-bs.de

Marc A. Kastner
TU Braunschweig
Braunschweig, Germany
kastner@ibr.cs.tu-bs.de

Phil Lindow

TU Braunschweig
Braunschweig, Germany
lindow@ibr.cs.tu-bs.de

Ridiger Kapitza
TU Braunschweig
Braunschweig, Germany
kapitza@ibr.cs.tu-bs.de

times and throughput comparable to DRAM. By allowing di-
rect access to persistent data through in-memory file systems
and experimental libraries like the Non Volatile Memory Li-
brary (NVML) [44] or Mnemosyne [46], persistent memory
can be used as a fast storage that outperforms commodity
flash memory-based solutions.

Recent research is centered around the SNIA! NVM pro-
gramming model (NPM) [40], that manages persistent mem-
ory through a PM-aware file system [19, 45]. For accessing
persistent data directly, files are mapped into the user-space.
In order to keep data consistent in case of power failures,
library support [14, 44, 46] provides transactional semantics.
Internally, all approaches rely on persistent logs and frequent
cache flushes to ensure durability. However, this causes up
to 10 times more write operations to persistent memory [30].
With respect to the limited write endurance of currently avail-
able PM-technologies a significant lifetime degradation is the
consequence. Furthermore, Phase Change Memory (PCM)
and resistive random-access memory (RRAM) based PM have
higher write latencies than DRAM, thus, frequent write op-
erations to persistent memory further decrease performance.

Additionally, transient fault resilience is an important and
so far largely neglected issue for persistent data in system
software. For instance, PCM suffers from resistance drifts,
RRAM has sneak currents and battery backed DRAM is still
susceptible to environmental radiation during runtime. The
latter also causes transient bit flips in the circuits and the
static random-access memory (SRAM) buffers that contribute
to more than 40% of a memory chip’s area [50].

While proposals for hardware solutions exist [7, 39, 50],
they negatively impact the circuit space, energy demand
and latency, and on top lead to increased device cost. Al-
though these are not limiting factors for high-end server
hardware, we assume that due to aggressive pricing, no ex-
tensive hardware fault tolerance measures will appear in
entry level servers as well as consumer and embedded de-
vices. However, for applications using persistent memory,

1Solid State Storage Initiative

https://doi.org/10.1145/3211890.3211898

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

state corruptions need to be considered as severe since these
corruptions are persistent and plain system restarts cannot
mitigate such issues.

In this paper we present DNV Memory, a system architec-
ture for efficient, yet robust allocation and access of persis-
tent memory. With DNV Memory application programmers
can build static and dynamic data structures of any kind
that survive system restarts. To keep data consistent in the
presence of power failures, DNV Memory employs software
transactions. On top of this basic functionality, DNV Memory
makes three core contributions:

e First, we identify that applying frequent flushes and
persistent logs highly increases the number of write
operations on persistent memory, which has a severe
negative impact on dependability, lifetime and perfor-
mance. As a countermeasure, DNV Memory enforces
durability on demand by utilizing a hardware power
failure detector and leveraging hybrid systems that
are equipped with volatile and persistent memory.
All write overhead caused by transaction logs is of-
floaded to volatile memory and copied to persistent
memory only in case of an imminent power failure.
Additional cache flushes are only performed when
needed, i.e. when a power failure demands it. Our eval-
uation proves that even under high load, durability
can be achieved on demand and in time, with more
than 32 ms left before the final power outage.

e Our second contribution is focused on securing per-
sistent data from transient faults. For all persistent
data in user-space, DNV Memory transparently stores
redundancy information and uses reliable transactions
to verify data whenever they are accessed.
Omitting transactions when accessing persistent mem-
ory is essentially a usage error that may lead to state
corruption in case of power failures, transient faults or
concurrent access. Therefore, our third contribution
provides programming support that enforces transac-
tions for persistent memory access.

This paper is structured as follows: we present the system
model of DNV Memory in Section 2. The main contributions
can be found in Section 3 which highlights our concepts in
detail. Section 4, briefly describes implementation details of
DNV Memory and is followed by our evaluation in Section 5.
In Section 6 we discuss related work followed by concluding
remarks in Section 7.

2 SYSTEM MODEL

We believe that hybrid system architectures equipped with
both, volatile and persistent main memory, will dominate the
market in the near future. This means, processes still have a

Martens et al.

volatile and a persistent state. While PCM is the most promis-
ing PM technology today, PM modules can also be built us-
ing RRAM, spin-transfer-torque magnetoresistive random
access memory (STT-MRAM) or even battery-backed DRAM.
Thereby, all processes in a system should be able to access
persistent memory directly through load and store opera-
tions in order to achieve optimal performance.

CPU caches can be used to further speed up access to
persistent data, however, in order to survive power failures,
cache lines containing data from persistent memory must
be flushed and the data must reach the Durability Domain
of the persistent memory module before the machine shuts
down due to a power loss. This requires platform support
in form of an asynchronous DRAM refresh (ADR) [3] or a
Flush Hint Address [4]. Under these premises, we assume that
word-level power failure atomicity is reached.

Currently, hybrid systems are built mainly for server envi-
ronments, however, there is also a great opportunity for hy-
brid systems in consumer and embedded devices. Here, per-
sistent memory can be used to speed up access to databases
[6], can enable very efficient sleep modes [12] or can simply
be used to speed up access to frequently used persistent data.
We assume that both, new and legacy applications, would
benefit from utilizing persistent memory. In order to limit
the refactoring overhead for legacy applications, accessing
persistent memory should be designed with the concepts of
traditional volatile memory in mind.

The importance of persistent data may vary depending
on the use case. Errors in self-contained persistent data like
documents or media files can be acceptable if the effect is not
severe or backup copies are available. However, persistent
meta data must be extremely robust in order to prevent a
corrupted application state, as this could only be repaired by
purging and recreating the entire persistent state. Thus, we
argue that selective protection of persistent state is favorable.

Depending on the used main-memory technology, vari-
ous effects exist that may cause transient faults. The main
source of faults in DRAM cells is environmental radiation,
leading to state transitions over time. This means that the
longer the data is stored, the more likely it is affected by
such an error. Novel persistent memory technologies like
PCM or RRAM are inherently robust to radiation, as their
state transitions demand a higher energy, but at the same
time they introduce new sources of transient errors. RRAM
cells, for instance, suffer from sneak-currents [39] that cause
non-uniform distributed cell transitions. For PCM cells the
short-term resistance drift is the dominant source of transient
faults [48, 50]. It corrupts the information that is stored in
the cell right after it was written. In contrast to DRAM, the
probability of errors does not increase over time but with
the number of write operations. Additionally, all PCM and
RRAM have a limited write endurance that lies in the range

Dependable Non-Volatile Memory

of 10° up to 10'° operations [6, 19, 25]. Once worn out, the
cell’s value can only be read but not modified anymore.

We assume that all SRAM cells inside the CPU are guarded
by hardware fault tolerance and are sufficiently reliable to
ensure correct operation. Of course reliable DRAM support-
ing hardware error correction code (ECC) exists and persis-
tent memory can be protected by hardware solutions too
[35, 37-39, 48, 50]. However, the common hardware ECC
mechanisms only provide singe-bit-error correction, double-
bit-error detection (SECDED) capabilities, which has been
reported to be not always sufficient [41, 42]. We assume that
due to economic reasons not every persistent memory mod-
ule will support the highest possible dependability standard,
leaving a fraction of errors undetected. Some persistent mem-
ory modules may even lack any hardware protection. This
paves the way for software-based dependability solutions.

3 CONCEPTS OF DNV MEMORY

The main goal of our design is to provide the familiar mal-
loc interface to application developers for direct access to
persistent memory. At the same time, we want data stored
in persistent memory to be robust against power failures,
transient faults, and usage errors.

Our core API functions (see Table 1 (a) and (b)) resemble
the interface of malloc and free. As developers can use na-
tive pointers or references to interconnect data, this provides
the opportunity to build all persistent data structures such
as lists, vectors, trees, or hash-tables. The only additional
requirement for persisting legacy volatile structures with
DNV Memory is using our API functions and wrapping all
persistent memory accesses in atomic blocks (see Table 1 (e)).

These atomic blocks provide ACID? guarantees for thread
safety, and additionally preserve consistency in case of
power failures. Furthermore, DNV Memory combines soft-
ware transactional memory (STM) with the allocator to man-
age software-based ECC. Every data word that is accessed
during a transaction is validated and can be repaired if nec-
essary.

In order to store entry points to persistent data structures
that survive process restarts, DNV Memory provides the pos-
sibility to create static persistent variables (Table 1 (c) and
(d)). In the next sections we will discuss each of our features
in detail.

3.1 Tolerating Power Failures

If a power failure occurs meanwhile persistent data struc-
tures are modified they might be in an inconsistent state after
restart. In the example presented in Figure 1, that shows two
core functions of a linked list, persistent memory will leak
if a power failure occurs right after dnv_malloc or directly

ZAtomicity, Consistency, Isolation, Durability

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

1 void push_front(widged_t widged) {

2 __transaction_atomic {

3 node_t* node = dnv_malloc(sizeof (node_t));
4 node->pload = widged;

5 node->next = head_;

6 head_ = node;

7 } //transaction commit

10 widged_t pop_front(void) {

11 __transaction_atomic {

12 widged_t widged = head_->pload;
13 node_t* node = head_;

14 head_ = head_->next;
15 dnv_free(node);

16 return widged;

17 } //transaction commit

18 3

Figure 1: Example of a persistent linked list

before dnv_free. Even more severe would be a power fail-
ure during the dnv_x functions as internal structures may
become inconsistent.

To prevent inconsistent data or persistent memory leaks,
DNV Memory follows the best practices from databases and
other PM-allocators [14, 44, 46] and wraps operations on
persistent memory in atomic blocks. This can be achieved
with STM provided by modern compilers or libraries like
TinySTM [22, 23]. In the example (Figure 1) everything that
is wrapped in the __transaction_atomic{. . . } block is
done atomically. The transactions must also be applied to
the allocator itself, as its internal state must be stored in
persistent memory too.

State of the Art. Power failures must not be able to inter-
rupt a transaction in a way that leaves persistent data in
an inconsistent state. A common state of the art approach
to prevent this is redo logging [47]. During the transaction
commit, all modifications to persistent data are first written
to a persistent log. Then, in a second step, the actual data is
modified. After each step a memory fence is needed and it
must be ensured that the data reaches the durability domain
before the next step is executed. Otherwise, log and data
modifications may be partially durable when a power failure
occurs. For persistent memory, this approach has several
negative implications that affect performance, lifetime and
dependability.

First, to ensure durability, a memory fence combined with
cache line flushing is required. This enforces not only a slow
write operation to persistent memory, but also invalidates
the cache line. Thus, follow-up reads will have to pay the
latency of a full memory access. Second, logs do not only

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

Martens et al.

Table 1: Overview of the DNV Memory application programming interface (API)

Category Function Description Ref.
Core API void* dnv_malloc(size_t sz) allocates persistent memory like malloc(3) (a)
void dnv_free(void* ptr) releases persistent memory like free(3) (b)

Static DNV_POD variable statically places plain old data in PM at definition (c)
Variables =~ DNV_OB]J variable statically places the object in PM at definition (d)
Transactions __transaction_atomic{...} atomic block with ACID guarantees and reliability (e)

store the data that is modified but also contain additional in-
formation like the address, timestamps etc. For instance, the
write-back log in tinySTM [22, 23], that is essentially a redo
log, occupies a full cache line for every written word during a
transaction. Even if applied only on persistent memory, this
increases the write operations by 8% and likewise reduces
the lifetime of persistent memory. Fortunately, writes are
typically sparse [30], thus write-back logs can be held well
in caches. However, flushing the cache, on every commit
prevents taking any advantage from data locality. While In-
tel proposed new instructions like CLWB to overcome this
problem, a significant overhead on the memory bus still
remains that will likely impact the performance. The fact
that log-memory is typically allocated once during a process
aggravates the wear-out even more. Because all write op-
erations take place on a local memory range, wear leveling
algorithms like bank rotation [37] cannot efficiently distrib-
ute writes across memory cells, thus permanent faults may
arise quickly. Finally, increasing the amount of writes will
equally increase the probability of transient faults on PCM-
based persistent memory due to the short term resistance
drift effects that may occur when data is written.

Durability on Demand. Other than the previous work,
DNV Memory aims at minimizing the writes to persistent
memory. We store all transaction logs in volatile memory
and utilize a power failure detection to enforce duarility on
demand. When a power outage is imminent the operating sys-
tem copies the write-back logs back to persistent memory in
order to prevent state inconsistency. Therefore every thread
has to register its volatile memory range for the write-back
log at our kernel module, which in turn reserves a persistent
memory range for a potential backup copy. After restart, the
write-back logs are restored from persistent memory, and
every unfinished commit is eventually repeated. If too many
registrations occur, so that copying all volatile write-back
logs to persistent memory cannot be ensured within a given
time frame, the kernel module may respond with a decline.
In that case, the thread has to fall back to using persistent
memory for its write-back log.

Since durability is actually required only in case of a power
failure or process termination, memory fences and cache
flushing can be performed on demand. This preserves per-
sistent data inside the CPU cache and consequently reduces
writes to persistent memory. Additionally, according to our
fault model, persistent data inside the cache is less suscepti-
ble to transient faults and can be accessed faster.

Enforcing durability on demand, requires the ability to
detect power failures in advance. For embedded devices the
power outage detection is a part of the brownout-detection
and state of the art [34]. On servers and personal computers
power outages can be detected via the PWR_OK signal ac-
cording to the ATX power supply unit (PSU) design guide [1].
Although the PWR_OK signal is required to announce a
power outage at least 1 ms in advance, much better fore-
casts can be achieved in practice. For instance some Intel
machines provide a power failure forecast of up to 33 ms
[31]. An even better power failure detection can be achieved
by inspecting the input voltage of the PSU with a simple
custom hardware [24]. With this approach power failures
can be detected more than 70 ms in advance which leaves
more than enough time to enforce durability and prevent
further modification of persistent data.

System Crashes and Hardware Failures. Crashes that are
not caused by power failures can be handled just like power
failures if durability can be secured. For instance, our kernel
module is aware of any process using persistent memory
that terminates and enforces durability in that case. Crashes
in the operating system kernel, can be handled either as part
of a kernel panic procedure or by utilizing a system like
Otherworld [18].

3.2 Reliable Transactions

In order to protect persistent data from -corruption,
DNV Memory reserves additional memory in each allocation
that is meant to store ECC data. Afterwards fault tolerance
is provided through reliable transactions.

As described in the previous section, all accesses to persis-
tent memory should be wrapped by atomic blocks in order
to protect persistent data from power failures. These atomic

Dependable Non-Volatile Memory

0 Original Word a0 ECC Word 6
w | + E
A B

C D
=A®B®D = CRC32(W)

Figure 2: DNV Memory ECC

blocks simply wrap all read and write operations in TM_LOAD
and TM_STORE functions provided by the STM-library. For
instance, line 5 in Figure 1 will be transformed into:

5 TM_STORE (&node->next, TM_LOAD (&head_));

This way, every word access is controlled by the STM-library.
In combination with support from the memory allocator this
can be exploited to provide transparent fault tolerance.

Essentially, any ECC can be used to provide fault toler-
ance in software. For instance, we considered the SECDED
hamming code that is common in hardware protected mem-
ory. It protects 64-bit words with additional 8 bit, resulting
in a 12,5% memory overhead. However, if implemented in
software, the hamming code would highly impact the perfor-
mance of the application. Additionally, as already mentioned,
we do not think that SECDED is enough to protect persistent
data. Consequently, we decided to implement an ECC that
provides a high multi-bit error correction with a memory
overhead no more than dual modular redundancy. In addi-
tion, we want a fast error detection in software by exploiting
commonly available hardware support. This requirements
lead to the following algorithm:

Whenever a data word W is written inside an atomic block,
an ECC word E is created and stored in the additional space
that the allocator has reserved. In theory, any fault-tolerant
encoding is possible as long as error detection can be con-
ducted in a few CPU cycles.

Error Correction Code. For DNV Memory we combine
cyclic redundancy check (CRC) for fast error detection with
an error location hint. Thus, we subdivide E into two halves
C and D as shown in Figure 2. The error detection half word
D is generated with CRC32c (D = CRC32c¢(W)). We have
chosen CRC because hardware support is available on many
architectures, including most commodity CPUs. Addition-
ally, with CRC32c that is supported by SSE 4.2, a hamming
distance of 8 is achieved on a word length of 64 bit [26].
Without further assistance, error correction of up to 3 bits
can be achieved by guessing the error location. However,
by augmenting the CRC-based error detection with an error
location hint C, less trials are needed and more bit-errors can
be corrected. Inspired by RAID level 5 [33], we subdivide
the data word W into two halves A and B and compute C
according to Equation 1.

C=A®B®D (1)

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

Error Detection and Correction. The data validation takes
place during a transaction whenever a word W is read for
the first time. At that point, we recompute E’ from W and
compare its value with E. Normal execution can continue if
both values match. Otherwise error correction is initiated.

Since errors can be randomly distributed across W and
E we start the error correction by narrowing the possible
locations of errors. Therefore we compute the error vector F
via Equation (2) that indicates the bit position of errors.

F=A®B®Ca®D)

This information is, however, imprecise as it is unknown
whether the corrupted bit is located in A, B, C or D. Thus, for
f errors detected by F, 4 repair candidates R; are possible
that are computed via Equation (3). The masking vectors M,
My, M., My are used to partition F between all four half
words.

R; = Wi||E;

Wi =Aa (FAM,)|B® (FAMp) (3)

Ei=C® (FAM.)|Da®(FAMy)

To find the repair candidate Ry that contains the right solu-
tion, each R; needs to be validated by recomputing E; from
W; and compare it to E;. In order to repair all errors, ex-
actly one R; must be found with matching E; and E;. For
instance, if all errors are located in A the repair candidate
using M, = F and other masking vectors set to zero will be
the correct result. Additionally, all combinations need to be
considered that have an error at the same bit position in two
or all half words, as these errors extinguish each other in C.

Please note, that the set of repair candidates may yield
more than one solution that can be successfully validated
if more than three errors are present. To prevent a false
recovery, all repair candidates must be validated for up to n
errors. As an optimization step, we estimate n by counting
the population in E @ E’ and limit the result to a maximum
ofn=17.

Prevention of Usage Errors. To optimize the performance in
a cache-aware way, we store the ECC words interleaved with
the original words W as presented in Figure 3. However, this
interleaved data layout cannot be accessed correctly outside
atomic blocks because the original layout is always expected
here. Unfortunately, omitting atomic blocks around persis-
tent memory access is a very common mistake. We encoun-
tered such usage errors in every single STAMP benchmark
and whenever we ported or wrote persistent applications our-
selves. Since the access to PM outside atomic blocks should
be prevented to keep data consistent during power failures,
we introduce the concept of a transaction staging (TxStaging)
section as shown in Figure 3. All memory that is allocated
by DNV Memory returns addresses residing in the TxStaging
section. The same applies to the location of persistent static

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

original data layout stored data layout

wo W, W, W I W, BN w. R w. B3 w3

o) 0, 0, o, 0, O 2 0,
%, Oy, Ory Ory . k. . k.
%y 006’ 019 10y,) 200) 20 io 2020 2030

PV A Section

Addr. N 1.5N 2N 3N

TxStaging

Figure 3: DNV Memory persistent data layout and
memory sections

variables. The TxStaging section is only a reserved virtual
address space without any access rights. Consequently, any
access to this segment will cause a segmentation fault that is
easy to debug. However, inside an atomic block every access
to the TxStaging section is intercepted by the STM library
and redirected to the persistent virtual address (PVA) section
where the actual persistent data is stored. To simplify the
address transformation, the PVA section should be located
at the address of the TxStaging section multiplied by 2. For
instance, assuming the TxStaging section begins at address
0x1000 the PVA section should be placed at 9x2000. In that
case a 32 byte object that is located in the address range from
0x1000 to 0x101f will be transformed into the address space
0x2000 to 0x203f as shown in Figure 3.

4 ARCHITECTURE

Memory Allocator PM-Framework STM-Library } SI[J)Zire

Physical Access Control Power Failure Kernel
Memory Manager Handler Space

. Hardware
Power Failure Detector }

Figure 4: Architecture

We implemented DNV Memory on Linux in the form of a
user space library with a small companion kernel module
and a hardware power failure detector as shown in Figure 4.
Our design does not require any changes to the operating
systems kernel or the machine itself. All components are
pluggable and can be replaced by more extended solutions if
needed.

All user-space code is written in C++ and compiled with
an unmodified GCC 5.4.0. A small linker script extension
provides additional sections like the TxStaging or the PVA

Martens et al.

section as shown in Figure 3. In the following sections we
discuss each component of our architecture in detail.

4.1 User Space Library

Our user-space library consists of three components: the
memory allocator, the PM-framework and the STM-library.

Memory allocator. For the memory management we use
an own memory allocator that implements the concept of
binning similar to jemalloc [21] or hoard [9]. The alloca-
tor essentially provides multiple heaps which manage the
requested memory in blocks of equal size of 2" bytes. When-
ever a user calls dnv_free, the released block is attached to a
free-list that is stored in place of the freed memory. While this
design is relatively straight forward, it eases the integration
of the proposed persistence and dependability features.

PM-framework. While the memory allocator is responsi-
ble for managing memory in blocks of 2" bytes, our PM-
framework manages persistent memory mappings in chunks
that combine a coherent set of 2" pages. Whenever a heap re-
quires more memory a new chunk is allocated by our kernel
module. In order to control the memory mapping of chunks,
DNV Memory has its own persistent virtual address manager
that is based on the buddy algorithm. It is implemented as
an array of linked lists and the dynamic memory is managed
within our memory allocator.

To be able to restore persistent memory on application
startup, each memory chunk is identified with a location
Id (LID). This is stored together with the virtual address and
the size of the chunk, inside a red-black tree (rb-tree) called
Chunk Table. When a process is restarted the Chunk Table
is traversed and every chunk that has its information stored
in that table is restored.

STM-library. In order to provide an easy accessible API for
atomic blocks we use the language extensions from GCC and
redirect the transformed code to our STM-library. Similar
to [46] we use TinySTM 1.0 a lightweight, word-based STM
implementation [22, 23] to provide power failure tolerance.
Our reliable transactions are currently implemented as an ex-
tension of TinySTM. However, they do not rely on TinySTM
and can be implemented on top of any other STM-library.
Please note, that due to the provided durability on demand,
the entire STM-library remains in volatile memory, including
the write-back log.

4.2 Kernel Module

Current state of the art [40] suggests using a specialized PM-
aware file system like PMFS [19] or BPFS [15] to manage
physical persistent memory. However, according to [45] the
features of file systems are not always needed and perfor-
mance can be improved when data structures are tailored

Dependable Non-Volatile Memory

Table 2: Hardware setup

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

Table 3: Critical tasks related to a power failure

Component Description
PC Model Viking ArxCis-Developers-Kit
PSU 2Xx Ablecom PWS-702A-1R (700 W)
CPU 2% Intel Xeon E5-2640 (6 cores)
Main Memory 4 GiB DDR3 @ 1333 MHz

Persistent Memory 4 GiB Viking ArxCis-NV [2]
0sS Ubuntu 16.04.3 (4.4.0-119-generic)

for the task in the user space. Therefore, we provide only
a lightweight solution that manages persistent memory on
chunk granularity via the buddy algorithm. This has a second
advantage in minimizing the need for persistent memory
inside the kernel that also needs to be secured from power
failures and transient faults. Our implementation is based on
a binary tree that is stored as an array and all state transitions
are implemented in a fault-tolerant, atomic way.

To isolate chunks from other applications that use the
same kernel module, each chunk is stored under a key that
must be provided by the user when it is mapped. For a pro-
duction version of DNV Memory, there are no fundamental
issues to integrate standard access control mechanisms pro-
vided by the operating system.

Power failure forecasts are implemented with a small cus-
tom external hardware Power Failure Detector that is plugged
in the same power source as the computers PSU. For compa-
rability with Rapilog [24], we have chosen a similar hardware
layout. It emits a signal via serial port that in turn triggers
an interrupt. Then, the Power Failure Handler of the kernel
module is responsible to enforce durability. It stops all but
one cores, transfers the write back logs of running commits
to persistent memory and finally flushes all caches.

5 EVALUATION

With the evaluation of DNV Memory in this section, we aim
to answer the following questions:

(1) Is it possible to detect power failures sufficiently early
to perform all necessary clean-up operations and save
the write back log to persistent memory?

(2) How much time do we need to repair a word with mul-
tiple bit errors and how reliable is our ECC approach
when more than 3 bits have flipped?

(3) What is the performance of DNV Memory compared
to other persistent memory libraries?

(4) How large is the performance overhead implied by
reliable transactions?

For the investigation of our system we use micro benchmarks,
applications from the STAMP benchmark suite [29] and the
key-value store Memcached with retrofitted transactions. All

Time in ms

‘Workload)
avg min max

Measurement

Stop CPU and kernel compilation 2.6 2.3 33

flush cache idle 49 44 56
Store kernel compilation 4.2 3.8 4.8
write back log idle 80 74 86
Machine kernel compilation 36.8 34.6 39.4

shutdown idle 328 252 368

benchmarks were conducted on the same machine with the
specification shown in Table 2.

5.1 Timing Analysis

DNV Memoryrelies on an early detection of power failures in
order to avoid flushing the CPU caches whenever durability
of persistent data needs to be ensured. Therefore, we investi-
gated the time between the detection of a power failure and
the eventual machine shutdown as well as the duration of
critical cleanup operations.

To measure the time between power failure detection and
the machine shutdown, we repeatedly wrote timestamps
into persistent memory after detecting a power failure and
derived the duration from the first and the last timestamp.
In addition we stored a timestamp after stopping all cores
and flushing their caches and when the write back log was
fully stored in persistent memory. For the computation of
the timestamp we use the RDTSC assembly instruction [5] to
keep the effort as low as possible.

The timings for 100 enforced power failures, with and
without workload, are presented in Table 3. All numbers pre-
sented in this table are relative to the detection of a power
failure and include all previous steps. With a power drain
of approximately 100 W when idling and 250 W during ker-
nel compilation with 24 threads, one would expect that the
timings are better when the machine is idling. The reality
however shows the opposite. As the CPU frequency is scaled
down to 1.2 GHz when idling, the cleanup operations take
twice the amount of time. Furthermore, the more power
is drained, the more residual energy remains in the PSU’s
inductor and capacitors on power failure, which explains
the extended time until the machine shuts down. We also
measured the time until the machine shutdown on a laptop
and a desktop machine with a 365 W PSU. Both achieved
more than 70 ms in every measurement. All in all, the PSU
provides sufficient residual energy to fulfill all cleanup oper-
ations, despite the workload.

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

5.2 Error Correction Analysis

To investigate the capabilities of our ECC algorithm we con-
ducted one billion fault injection experiments on random
words with an error of up to seven random bits in a word. In
a total of 12,163 cases, we failed to repair a seven-bit error,
while no successful repair returned a wrong result. We also
conducted the time to repair an error for 200 million fault
injections per bit error length. As can be seen in Figure 9 the
time to repair an error increases exponentially with the num-
ber of flipped bits. However, even for correcting seven-bit
errors, the the mean repair time is less than 1.4 ms which is
acceptible considering the low probability of such errors. In
contrast, without any error, the validation only takes 34 ns.

5.3 Performance Analysis

We evaluated our system with the following library configu-
rations to estimate the performance of DNV Memory.

e RTx: DNV Memory with reliable transactions

o Tx: DNV Memory with plain STM

e NoTx: DNV Memory without transactions

e NVML: pmemobj v1.1, with C++ bindings v1.0.0 [44]

All experiments were repeated 100 times.

Micro Benchmarks. For investigating the performance of
transactional memory allocation, deallocation, writes and
reads under controlled conditions we implemented a trans-
actional, circular doubly linked list.

As part of a transaction, pushBack allocates persistent
memory for a new list element and adds it to the tail of
the list. Similarly, popFront removes an element from the
lists head and releases the persistent memory. The results
presented in Figure 5 and 6 show average values for a list of
500 elements with varying payloads. As can be seen in the
figures, the reliable transactions approximately increase the
runtime of plain transactional execution by factor 1.2 to 1.4x.
However, even with with reliable transactions, DNV Memory
outperforms pmemobj by factor 4 to 7X in the pushBack and
by factor 3% in the popFront benchmark. This outcome is
partially explained by the cache flushes that pmemobj uses
to establish durability. For instance in the case of pushBack,
cache flushes increase runtime by factor 1.4 to 2.6X. Another
source that affects performance are the smart pointers, which
are also copied to the redo log when modified.

We also investigated the pure persistent data access with-
out involving the allocator. In iterate & write the persistent
list is traversed in one single transaction modifying 8 byte in
each element. Accordingly, iterate & read traverses the list
in one big transaction and reads 8 byte from each element.
This time we kept the payload size fixed at 128 bytes and
varied the number of list elements which correlates with the
transaction log size.

Martens et al.

The results are shown in Figure 7 and 8. For pure read ac-
cess, we observe that raising the size of transactions increases
the performance gap between reliable and plain transactions
from factor 1.2 to 1.9%. Since large read operations heavily
benefit from the cache, the doubled memory demand for
dependability takes its toll here. With larger write sets, how-
ever, the performance impact of dependability becomes less
prevalent as cache inefficiency effects become the dominant
factor.

Comparing to pmemobj, DNV Memory is again faster by
factor 2 to 3x with plain transactions in the iterate & read
benchmark. This performance difference is caused by the
persistent smart pointers that are used in pmemobj to in-
terconnect the list elements. In case of the iterate & write
benchmark, pmemobj additionally suffers from the object
granularity and as it always stores the full payload in its redo
log instead of the modified 8 byte. For a list of 10 elements
this leads to an extreme 67X runtime increase compared
to DNV Memory with reliable transactions. However, the
write-back log of tinySTM scales worse than the redo log
of pmemobj, because every modified word leads to an entry
with a size of a cache line.

In summary, as long as write sets stay moderate,
DNV Memory greatly benefits from durability on demand
and the word-based transaction model provided by tinySTM
[23]. However, comparing the transactional execution with
uninstrumented code reveals potential for optimizations.

For the application benchmarks we omit the comparison
with pmemobj and focus on the performance impact of de-
pendability and transactions in general.

Application Benchmarks. To test the performance impact
under realistic conditions we applied DNV Memory to the
STAMP benchmark applications [29]. Additionally, we retro-
fitted DNV Memory into the Memcached key-value store. All
key-value pairs were stored in persistent memory with our
allocator and every access was wrapped into reliable transac-
tions. The bars depicted in Figure 10 show the mean runtime
of each benchmark. All values are relative to plain transac-
tional execution (Tx) and the error bars represent the 95%
and the 5% quantile. Over all applications, a median runtime
of 106,5% is achieved with reliable transactions. We observed
that applications above this median have a workload that is
dominated by reads or short transactions, hence the overhead
of data validation has a higher impact here.

We also looked at the general runtime impact of transac-
tions. Our results are roughly in line with the original STAMP
publication [29]. On our machine, transactions moderately
increase the runtime by zero to 73% in most cases. Please note,
that benchmarks suffering significant performance impact
from reliability, are similarly affected by standard transac-
tions too. In contrast to our microbenchmarks however, the

Dependable Non-Volatile Memory

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

100000 , =*=RTx —+Tx NoTx ===NVML 1000.0 . —=RTx —+Tx NoTx ===NVML - 10.000.000
] ® < 1.000.000
= 10000 E— :; 100,0 E 100.000
5 5 £ 10.000
B 1000 osp > - > - * g 100 = 1,000
= = 8=
S 100 S 10 = 100
~ & S 10 I
10 0,1 1
32 64 128 256 512 1.024 2.048 10 100 1.000 10.000 1 2 3 4 5 6 7
Payload size in byte # List elements # Bit errors
Figure 5: PushBack Figure 7: Iterate & read Figure 9: Time to repair
10000 ——RTx +Tx NoTx =s=NVML 1000000-’0 ——RTx —Tx NoTx =s=NVML ?;’8 mRTX NoTx —Tx (reference)
(%] E— of 2 160
a @ 1000000 < 140
S 1000 & - *> *> > > * g 10000,0 5 }(2)8
2 o 10000 - £ 5] .
£ E 100,0 - ER :
= 100 = & 40
= =} 10,0 20 -
& & 1.0 0 i
10 0.1 S ¢ ¢ & & P &I &
- A &5 $ S S ¥ @ F
2 64 128 256 512 1024 2.048 10 100 1.000 10000 % o°°° \Q\x‘ & V_},\,«f‘ %%Q & 7 Q\Qmo
Payload size in byte # List elements W

Figure 6: PopFront

results indicate that transactions can be used efficiently in
practice. Kmeans and Yada, however, exhibit different behav-
ior with a very high transactional impact on the runtime. For
Yada, we introduced many additional transactions in order
to access all persistent memory reliably, which led to per-
formance penalties. We assume, the result can be improved
with code optimizations and a more rigorous partitioning
between persistent and non persistent data. In the case of
Kmeans we identified caching effects as a likely cause for the
high performance impact, since the transactions are small
in this case and most of the time is spent outside transac-
tions. In summary, our results indicate a very acceptable
performance impact for reliable transactions.

Performance Impact of Durability on Demand. We also in-
vestigated the performance gain from applying the durability
on demand. The results highly correlate with the cache ef-
ficiency of the benchmark. For instance, no performance
impact was achieved for our linked list iteration with large
write sets, Bayes, Labyrinth and Yada. However, in the bench-
marks pushBack, popFront, Genome and Kmeans, as well as
in iterating our linked list with moderate read sets, a perfor-
mance increase of up to 4,4X was observed.

6 RELATED WORK

Among different ways of using persistent memory like pro-
cess wide persistence [12, 28, 31, 36] and specialized file sys-
tems [16, 20, 45, 49] DNV Memory shares the most similari-
ties with libraries that provide safe access to a persistent heap
[10, 13, 14, 46]. Mnemosyne [46] shows the overall steps that
are needed to build a persistent heap while NV-Heaps [14]
focuses mainly on usability aspects. Both Libraries rely on a

Figure 8: Iterate & write

Figure 10: Applications

transactional memory model that stores logs in persistent
memory and executes expensive flush operations to ensure
data consistency in presence of power failures. In order to
improve performance, the memory allocator of Makalu [10]
guarantees the consistency of its own meta data without
the the need of transactions. However, it does not extend
this ability to the data stored within. Thus, library support,
similar to Mnemosyne[46] or Atlas [13] is still needed to
enforce durability.

Although DNV Memory shares the transactional model
and the goal to provide a persistent heap, our approach dif-
fers in several ways. First, DNV Memory aims at improving
the performance and lifetime of persistent applications by
reducing the amount of writes to persistent memory without
sacrificing durability guarantees. Second, our architecture
is modular and does not require pervasive kernel or hard-
ware modifications. Our components are standalone and can
be integrated easily in other systems. Finally, DNV Memory
provides transparent dependability guarantees that none of
the previous work has covered.

Other important works that loosely fall into this area are
pVM [25], Atlas [13] and NVML [44]. The first, aims at ef-
ficient scaling of volatile memory into persistent memory
regions by using the non-uniform memory access NUMA)
interface of Linux. However, durability and consistency is
only guaranteed inside the OS kernel and not extended to
the user-space. In Atlas, power failure atomicity is enabled
for critical sections, that are guarded by synchronization
objects (e.g. mutexes). However, applications typically try to
minimize critical sections to cover only concurrent access.
Therefore, not necessarily all persistent memory is accessed

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

concurrently and a power failure between two critical sec-
tions may still result in an inconsistent state. We believe that
in general a transactional memory model better fits the idea
of a transition between two consistent states. Finally, NVML
grounds on the NVM programming model and provides a
pack of libraries all related to accessing persistent memory.
The core of this library is pmemobj an object store that is
very similar to a persistent heap at first glance. However,
technically this heap is placed in a file and suffers from all
the drawbacks of the file system interface. Nevertheless, we
use this library for comparison in our evaluation since its
high level programming model shares some similarities with
DNV Memory.

Dependability. All previous approaches have in common
that they neglect dependability. As explained in Section 2,
this is risky because without countermeasures, any error
in persistent memory can render the whole persistent data
useless. This is especially critical for persistence models that
span whole applications [12, 28, 31, 36] as without additional
measures every crash will become permanent.

In order to improve dependability of persistent mem-
ory, recent research focused on hardware solutions. With
ECP [37], Safer [38] and Pay-As-You-Go [35], wear out-
related hard errors can be corrected. ReadDuo [48] and Shev-
goor et. al. [39] provide solutions only for soft errors, while
FREE-p [50] aims at tolerating both, hard and soft errors.
However, hardware protection increases access latency, adds
a memory overhead and usually leads to increased device
cost. This price may be too high if dependability is not always
needed, as it is the case for persistent data that is backed
up on a secondary storage, for example. Moreover, the avail-
able hardware protection may not always be sufficient for
some mission critical tasks, as indicated by recent studies
on DRAM memory in high performance computing clus-
ters [41, 43].

Software solutions are a good alternative if the depend-
ability needs to be improved in a tailored way. Plenty of
work has been done to secure commodity main memory
state [8, 11, 17, 32]. However, the proposed solutions are
either limited to specific programming models (Samurai [32],
PASC [17], GOP [11]), impose a high overhead (SEP [8]),
or only cover bit-flips inside the CPU (HAFT [27]). De-
spite previous work, the dependability measures provided
by DNV Memory are fully transparent to the application and
do not imply any programming model beside using transac-
tional memory semantics, which anyway are required to pro-
tect persistent data from inconsistencies that can be caused
by power outages. Moreover, DNV Memory heeds the fault
model of emerging persistent memory technologies and is
fully applicable to concurrent applications.

Martens et al.

Power Failure Detection. The detection of power failures
is used in [12, 24, 31, 36] to flush the state of the CPU to
storage or NVM. From these works, Rapilog [24] deserves
a special mention as it combines volatile logs with a power
failure detector hardware in order to speed up transactions
in a database. We adapt this solution to persistent memory
for reducing the write pressure.

7 CONCLUSION

With the advent of persistent memory in commodity systems,
data that is traditionally stored in volatile main memory is
about to become persistent. However, when stored persis-
tently, data is also more exposed to bit flips that may render
it unusable without further measures.

In this paper we presented DNV Memory, system support
for dependable non-volatile memory allocator. Unlike pre-
vious approaches, DNV Memory enforces durability on de-
mand, which in turn reduces write operations on persistent
memory and therefore improves reliability, lifetime and per-
formance. For tolerating power failures, DNV Memory uses
software transactions that also include and secure the al-
locator itself. Our system even goes one step further and
provides fault tolerance via software transactional memory.
In essence DNV Memory protects data at word granularity,
with an ECC word that is capable of detecting and correcting
a random distributed seven-bit error, which is by far more
than common hardware protection offered by server-class
volatile main memory.

We implemented DNV Memory as a lightweight user space
library with a fault-tolerant companion kernel module that
does not rely on any pervasive kernel or compiler modifi-
cations. Our evaluation shows that power failures can be
detected early on to conduct all necessary cleanup opera-
tions. Furthermore, we validate our ECC approach, inves-
tigate the performance impact of fault tolerance and com-
pare DNV Memory to pmemobj. The results show that fault
tolerance, can be achieved with less than 6.5% increase in
runtime. Finally, with durability on demand DNV Memory
outperforms pmemobj by a factor of 2 up to 67X for moderate
transaction sizes.

Dependable Non-Volatile Memory

ACKNOWLEDGMENT

This work was partly supported by the German Research
Foundation (DFG) under priority program SPP1500 grant no.
KA 3171/2-3.

REFERENCES

[1] 2005. ATX12V Power Supply Design Guide. (2005). http://formfactors.
org/developer%5Cspecs%5CATX12V_PSDG_2_2_public_br2.pdf
2012. Viking Technology. ArxCis-NV (TM) Non-Volatile Memory
Technology. http://www.vikingmodular.com/products/arxcis/arxcis.
html. (2012).

2014. SNIA NVDIMM Messaging and FAQ. (2014).

2016. Advanced Configuration and Power Interface Specification
(Version 6.1). http://www.uefi.org/sites/default/files/resources/ACPI_
6_1.pdf. (2016).

2016. Intel 64 and IA-32 Architectures Software Developer’s Manual.
(2016).

Joy Arulraj, Andrew Pavlo, and Subramanya R. Dulloor. 2015. Let’s
Talk About Storage & Recovery Methods for Non-Volatile Memory
Database Systems. In Proceedings of the 2015 ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD ’15). ACM, New
York, NY, USA, 707-722. https://doi.org/10.1145/2723372.2749441

[7] Manu Awasthi, Manjunath Shevgoor, Kshitij Sudan, Bipin Rajendran,

[2

—

—
W
e

—_ —_
(=) w
— [’

Rajeev Balasubramonian, and Viii Srinivasan. 2012. Efficient Scrub
Mechanisms for Error-prone Emerging Memories. In Proceedings of the
2012 IEEE 18th International Symposium on High-Performance Computer
Architecture (HPCA ’12). IEEE Computer Society, Washington, DC, USA,
1-12. https://doi.org/10.1109/HPCA.2012.6168941

[8] D. Behrens, S. Weigert, and C. Fetzer. 2013. Automatically Tolerat-

ing Arbitrary Faults in Non-malicious Settings. In Proc. of the Latin-

American Symp. on Dependable Comp.

Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R.

Wilson. 2000. Hoard: A Scalable Memory Allocator for Multithreaded

Applications. In Proc. of the International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS).

https://doi.org/10.1145/378993.379232

Kumud Bhandari, Dhruva R. Chakrabarti, and Hans-J. Boehm. 2016.

Makalu: Fast Recoverable Allocation of Non-volatile Memory. In Proc.

of Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA).

[11] Christoph Borchert, Horst Schirmeier, and Olaf Spinczyk. [n. d.].
Generic Soft-Error Detection and Correction for Concurrent Data
Structures. IEEE Transactions on Dependable and Secure Computing PP,
99 ([n. d.]).

[12] Bjorn Cassens, Arthur Martens, and Rudiger Kapitza. 2016. The Nev-
erending Runtime: Using new Technologies for Ultra-Low Power Ap-

—
=}
-

[10

[t

plications with an Unlimited Runtime. (2016). http://www.ewsn.org/

file-repository/ewsn2016/325_330_cassens.pdf?attredirects=0

Dhruva R. Chakrabarti, Hans-J. Boehm, and Kumud Bhandari. 2014.

Atlas: Leveraging Locks for Non-volatile Memory Consistency. In Proc.

of the International Conference on Object Oriented Programming Systems

Languages & Applications (OOPSLA ’14).

[14] Joel Coburn, Adrian M Caulfield, Ameen Akel, Laura M Grupp, Ra-
jesh K Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps:
making persistent objects fast and safe with next-generation, non-
volatile memories. In ACM SIGARCH Comp. Arch. News.

[15] Jeremy Condit, Edmund B. Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
Through Byte-addressable, Persistent Memory. In Proceedings of the
ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP

[13

—_

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

’09). ACM, New York, NY, USA, 133-146. https://doi.org/10.1145/
1629575.1629589

Jeremy Condit, Edmund B Nightingale, Christopher Frost, Engin Ipek,
Benjamin Lee, Doug Burger, and Derrick Coetzee. 2009. Better I/O
through byte-addressable, persistent memory. In Proc. of the Sympo-
sium on Operating Systems Principles.

Miguel Correia, Daniel Gémez Ferro, Flavio P Junqueira, and Marco
Serafini. 2012. Practical hardening of crash-tolerant systems. In Proc.
of the 2012 USENIX Annual Technical Conf., Vol. 12.

Alex Depoutovitch and Michael Stumm. 2010. Otherworld: giving
applications a chance to survive OS kernel crashes. In Proc. of the
European conference on Computer systems (EuroSys).

Subramanya R. Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
Software for Persistent Memory. In Proceedings of the Ninth European
Conference on Computer Systems (EuroSys '14). ACM, New York, NY,
USA, Article 15, 15 pages. https://doi.org/10.1145/2592798.2592814
Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip
Lantz, Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. 2014. System
software for persistent memory. In Proc. of the European Conference
on Computer Systems (EuroSys).

Jason Evans. 2006. A scalable concurrent malloc (3) implementation
for FreeBSD. In Proc. of the BSDCan Conference, Ottawa, Canada.
Pascal Felber, Christof Fetzer, and Torvald Riegel. 2008. Dynamic
Performance Tuning of Word-Based Software Transactional Memory.
In Proc. of Symposium on Principles and Practice of Parallel Programming
(PPoPP). https://doi.org/10.1145/1345206.1345241

Pascal Felber, Christof Fetzer, Torvald Riegel, and Patrick Marlier.
2010. Time-Based Software Transactional Memory. IEEE Transac-
tions on Parallel and Distributed Systems 21 (2010). https://doi.org/doi.
ieeecomputersociety.org/10.1109/TPDS.2010.49

Gernot Heiser, Etienne Le Sueur, Adrian Danis, Aleksander
Budzynowski, Tudor-loan Salomie, and Gustavo Alonso. 2013. Rapi-
Log: Reducing System Complexity Through Verification. In Proc.
of the European Conference on Computer Systems (EuroSys). https:
//doi.org/10.1145/2465351.2465383

Sudarsun Kannan, Ada Gavrilovska, and Karsten Schwan. 2016. pVM:
Persistent Virtual Memory for Efficient Capacity Scaling and Object
Storage. In Proceedings of the Eleventh European Conference on Com-
puter Systems (EuroSys ’16). ACM, New York, NY, USA, Article 13,
16 pages. https://doi.org/10.1145/2901318.2901325

P. Koopman. 2002. 32-bit cyclic redundancy codes for Internet appli-
cations. In Proc. of Dependable Systems and Networks (DSN). https:
//doi.org/10.1109/DSN.2002.1028931

Dmitrii Kuvaiskii, Rasha Fageh, Pramod Bhatotia, Pascal Felber, and
Christof Fetzer. 2016. HAFT: Hardware-assisted Fault Tolerance. In
Proc. of the European Conference on Computer Systems (EuroSys). https:
//doi.org/10.1145/2901318.2901339

Xu Li, Kai Lu, Xiaoping Wang, and Xu Zhou. 2012. NV-process: A
Fault-tolerance Process Model Based on Non-volatile Memory. In Proc.
of the Asia-Pacific Conference on Systems (APSys ’12).

Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-
tun. 2008. STAMP: Stanford transactional applications for multi-
processing. In Proc. of the International Symposium on Workload Char-
acterization (IISWC).

Sanketh Nalli, Swapnil Haria, Mark D. Hill, Michael M. Swift, Haris
Volos, and Kimberly Keeton. 2017. An Analysis of Persistent Memory
Use with WHISPER. In Proceedings of the Twenty-Second International
Conference on Architectural Support for Programming Languages and
Operating Systems.

Dushyanth Narayanan and Orion Hodson. 2012. Whole-system per-
sistence. In ACM SIGARCH Computer Architecture News, Vol. 40.

http://formfactors.org/developer%5Cspecs%5CATX12V_PSDG_2_2_public_br2.pdf
http://formfactors.org/developer%5Cspecs%5CATX12V_PSDG_2_2_public_br2.pdf
http://www.vikingmodular.com/products/arxcis/arxcis.html
http://www.vikingmodular.com/products/arxcis/arxcis.html
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://doi.org/10.1145/2723372.2749441
https://doi.org/10.1109/HPCA.2012.6168941
https://doi.org/10.1145/378993.379232
http://www.ewsn.org/file-repository/ewsn2016/325_330_cassens.pdf?attredirects=0
http://www.ewsn.org/file-repository/ewsn2016/325_330_cassens.pdf?attredirects=0
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/1629575.1629589
https://doi.org/10.1145/2592798.2592814
https://doi.org/10.1145/1345206.1345241
https://doi.org/doi.ieeecomputersociety.org/10.1109/TPDS.2010.49
https://doi.org/doi.ieeecomputersociety.org/10.1109/TPDS.2010.49
https://doi.org/10.1145/2465351.2465383
https://doi.org/10.1145/2465351.2465383
https://doi.org/10.1145/2901318.2901325
https://doi.org/10.1109/DSN.2002.1028931
https://doi.org/10.1109/DSN.2002.1028931
https://doi.org/10.1145/2901318.2901339
https://doi.org/10.1145/2901318.2901339

SYSTOR ’18, June 4-7, 2018, HAIFA, Israel

(32]

(33

—_

[34

=

(35

=

(36]

(37

—

(38

[t

(39

—

[40

[t

[41

—

(42

—

[43]

[44]

(45]

(46

=

(47]

(48]

Karthik Pattabiraman, Vinod Grover, and Benjamin G. Zorn. 2008.
Samurai: Protecting Critical Data in Unsafe Languages. In Proc. of
European Conference on Computer Systems (EuroSys). https://doi.org/
10.1145/1352592.1352616

David A Patterson, Garth Gibson, and Randy H Katz. 1988. A case for
redundant arrays of inexpensive disks (RAID). Vol. 17. ACM.

Philips Semiconductors [n. d.]. Protecting Microcontrollers against
Power Supply Imperfections. Philips Semiconductors. AN468, published
in May 2001.

Moinuddin K Qureshi. 2011. Pay-As-You-Go: low-overhead hard-error
correction for phase change memories. In Microarchitecture (MICRO),
2011 44th Annual IEEE/ACM International Symposium on. IEEE, 318-
328.

V. A. Sartakov, A. Martens, and R. Kapitza. 2015. Temporality a
NVRAM-based Virtualization Platform. In Proc. of the Symposium
on Reliable Distributed Systems (SRDS). https://doi.org/10.1109/SRDS.
2015.42

Stuart Schechter, Gabriel H. Loh, Karin Strauss, and Doug Burger.
2010. Use ECP, Not ECC, for Hard Failures in Resistive Memories. In
Proceedings of the 37th Annual International Symposium on Computer
Architecture (ISCA ’10). ACM, New York, NY, USA, 141-152. https:
//doi.org/10.1145/1815961.1815980

Nak Hee Seong, Dong Hyuk Woo, Vijayalakshmi Srinivasan, Jude A.
Rivers, and Hsien-Hsin S. Lee. 2010. SAFER: Stuck-At-Fault Er-
ror Recovery for Memories. In Proceedings of the 2010 43rd An-
nual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO ’43). IEEE Computer Society, Washington, DC, USA, 115-124.
https://doi.org/10.1109/MICRO.2010.46

Manjunath Shevgoor, Naveen Muralimanohar, Rajeev Balasubramo-
nian, and Yoocharn Jeon. 2015. Improving memristor memory with
sneak current sharing. In Computer Design (ICCD), 2015 33rd IEEE
International Conference on. IEEE, 549-556.

SNIA. 2015. NVM Programming Model. (2015). http://www.snia.org/
tech_activities/standards/curr_standards/npm

Vilas Sridharan, Nathan DeBardeleben, Sean Blanchard, Kurt B. Fer-
reira, Jon Stearley, John Shalf, and Sudhanva Gurumurthi. 2015. Mem-
ory Errors in Modern Systems: The Good, The Bad, and The Ugly.
In Proc. of the International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS).

Vilas Sridharan and Dean Liberty. 2012. A Study of DRAM Failures
in the Field. In Proceedings of the International Conference on High
Performance Computing, Networking, Storage and Analysis (SC ’12).
IEEE Computer Society Press, Los Alamitos, CA, USA, Article 76,
11 pages. http://dl.acm.org/citation.cfm?id=2388996.2389100

V. Sridharan and D. Liberty. 2012. A study of DRAM failures in the
field. In Proc. of High Performance Computing, Networking, Storage and
Analysis (SC).

PMDK team at Intel Corporation. [n. d.]. NVM Library. ([n. d.]).
http://pmem.io/nvml/

Haris Volos, Sanketh Nalli, Sankarlingam Panneerselvam,
Venkatanathan Varadarajan, Prashant Saxena, and Michael M
Swift. 2014. Aerie: flexible file-system interfaces to storage-class
memory. In Proc. of the European Conference on Computer Systems
(EuroSys).

Haris Volos, Andres Jaan Tack, and Michael M Swift. 2011. Mnemosyne:
Lightweight persistent memory. In ACM SIGARCH Computer Architec-
ture News, Vol. 39.

Hu Wan, Youyou Lu, Yuanchao Xu, and Jiwu Shu. 2016. Empirical study
of redo and undo logging in persistent memory. In Proc. of Non-Volatile
Memory Systems and Applications Symposium (NVMSA).

Rujia Wang, Youtao Zhang, and Jun Yang. 2016. ReadDuo: Constructing
Reliable MLC Phase Change Memory through Fast and Robust Readout.

[49]

[50]

Martens et al.

In Dependable Systems and Networks (DSN), 2016 46th Annual IEEE/IFIP
International Conference on. IEEE, 203-214.

Xiaojian Wu and AL Reddy. 2011. SCMFS: a file system for storage
class memory. In Proc. of High Performance Computing, Networking,
Storage and Analysis.

Doe Hyun Yoon, Naveen Muralimanohar, Jichuan Chang,
Parthasarathy Ranganathan, Norman P Jouppi, and Mattan
Erez. 2011. FREE-p: Protecting non-volatile memory against both hard
and soft errors. In High Performance Computer Architecture (HPCA),
2011 IEEE 17th International Symposium on. IEEE, 466-477.

https://doi.org/10.1145/1352592.1352616
https://doi.org/10.1145/1352592.1352616
https://doi.org/10.1109/SRDS.2015.42
https://doi.org/10.1109/SRDS.2015.42
https://doi.org/10.1145/1815961.1815980
https://doi.org/10.1145/1815961.1815980
https://doi.org/10.1109/MICRO.2010.46
http://www.snia.org/tech_activities/standards/curr_standards/npm
http://www.snia.org/tech_activities/standards/curr_standards/npm
http://dl.acm.org/citation.cfm?id=2388996.2389100
http://pmem.io/nvml/

	Abstract
	1 Introduction
	2 System Model
	3 Concepts of DNV Memory
	3.1 Tolerating Power Failures
	3.2 Reliable Transactions

	4 Architecture
	4.1 User Space Library
	4.2 Kernel Module

	5 Evaluation
	5.1 Timing Analysis
	5.2 Error Correction Analysis
	5.3 Performance Analysis

	6 Related Work
	7 Conclusion
	References

