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Abstract—Power failures in data centers and Cloud Computing
infrastructures can cause loss of data and impact revenue. Exist-
ing best practice such as persistent logging and checkpointing
add overhead during operation and increase recovery time.
Other solutions like the use of an uninterruptable power supply
incur additional costs and are maintenance-intensive.

Novel persistent main memory, i.e. memory that retains stored
data without an external source of power, firstly prevents data
loss in case of a power outage, secondly reduces the time for a
system reboot and thirdly enables to continue operation at full-
speed after a recovery. Yet new architectures and programming
models are required to utilize persistent main memory.

We present Temporality a virtualization layer that runs virtual
machines in persistent memory and offers virtual persistent
memory. It can be used as a basis for future Cloud platforms to
allow applications the utilization of persistent memory without
any changes. It provides safety of volatile data, significantly
decreases overall recovery time and prevents subsequent per-
formance degradation.

I. INTRODUCTION

In recent years the number of Internet services hosted by

Cloud platforms has been steadily growing and this trend

still continues. Due to economic reasons and ease of use

many consumer applications like Netflix, Spotify or Dropbox

are backed by Cloud infrastructures. Therefore, it is not

surprising that outages of Cloud infrastructure can cause a

potentially high loss of revenue.

A recent study [1] assessed the most common failures (55 %)

in data centers are related to power outages. Power failures

often cause long downtimes: according to the study an

average duration of a partial outage is 56 minutes, while a

complete unplanned outage takes 119 minutes. The average

cost of an unplanned power outage per incident is almost

$8,000 per minute. Main factors are indirect costs for example

due to service level agreement misses and the loss of runtime

data (i.e. state that is not secured on persistent storage).

To mitigate the latter, techniques like logging and check-

pointing [2] are applied. However these mechanisms require

additional resources and delay recovery. Protective technolo-

gies, which specifically address power outages, such as

uninterruptable power supply (UPS) can prevent the loss

of runtime data, by extending the time until the inevitable

shutdown. This can be used to finalize running processes

but once power returns it requires a time-consuming restart.

In some cases an UPS enables to bridge the power gap.

Nevertheless, UPSs are expensive, maintenance-intensive and

often fragile [3].

Despite numerous measures power outages in data centers

occur and existing best practice to handle their effects have

serious drawbacks. Therefore, we investigated alternative

ways to handle power outages and how to decrease the

downtime after such events. Novel non-volatile random-

access memory (NV-RAM) can retain in-memory data

without an external source of power. The benefit of a system

equipped with NV-RAM lies in the ability to store all runtime

data of an application inside persistent memory without

a significant decrease in performance. Hence after system

restart all runtime data is still available or can be recovered

swiftly without the need of time-consuming data retrieval

from background storage or the rerun of requests.

Despite the benefits, NV-RAM is a technology which is still

under development and has sparse system support. However,

adapting virtualization technology to NV-RAM enables off-

the-shelf software appliances to utilize it for fast power outage

recovery without any changes to the appliance. This creates

for cloud providers the opportunity to offer persistence as a

value-added service for Infrastructure-as-a-Service clouds.

In this paper, we present Temporality a virtualization layer

that adopts NV-RAM to enable persistent virtual machines

(pVMs). A pVM is an persistent entity without any volatile

state and the use of NV-RAM is transparent to the hosted

virtual appliances. Temporality extends our preliminary

design [4] by introducing virtual persistent memory (VPM).

This allows to run multiple pVMs in parallel, which together

or individually exceed the physical NV-RAM capacity, by

on-demand outsourcing of persistent pages to background

storage. Thereby, for applications with a linear access pattern

Temporality can virtually increase the amount of persistent

memory by 40% at a performance penalty of 10%.

The remainder of the paper first introduces the architecture

of Temporality. Next, our implementation of the VPM is

explained in detail together with the support for multiple

virtual machines. Section V is devoted to evaluation. Finally,

Section VI describes related work, followed by a conclusion.



Hypervisor

NV-RAM

RAM

POD

HAL
POD

Driver

Virtualization

Enginev
p

m
li

b

NV-RAM

Control

POD-

Notifier

VM#1 VM#NpVM#1

༃

༄

H
a

rd
w

a
re

K
e

rn
e

l
U

se
r

Host Kernel

NV-RAM

Driver

Hardware

༆

༅

Storage

pVM#N… …

Figure 1. Architecture of the NV-Hypervisor with Temporality extensions
indicated in black

II. ARCHITECTURE

Temporality is an extension of our preliminary work [4]

on NV-Hypervisor. There, we presented an architecture for

a hypervisor that is capable of running persistent virtual

machines (VMs). In this section we give a brief overview of

the NV-Hypervisor architecture which forms the basis for

Temporality.

A. Persistence Model

The minimum persistent executable unit in Temporality is a

VM, which can be subdivided into the following components:

a RAM image of the guest system, a CPU state and virtual

device states. The RAM image is a flat chunk of host memory

and is used as a RAM emulation for the guest system. It holds

all runtime data of the VM. The CPU state is a structure

that describes the current state of the guest systems virtual

CPU. Finally, the virtual devices are described as independent

stateful modules that communicate via the virtual bus. The

state of the virtual devices and CPU can be combined as a

virtual environment.

Persistence in Temporality is data-centric and is provided by

the NV-Hypervisor. Data-centric specifically means we do

not continue execution of the hypervisor process in case of a

recovery. Instead we restart the hypervisor and reconnect the

pVMs with the RAM image and the virtual environment that

is stored persistent in NV-RAM. The host system with its

drivers and the NV-Hypervisor itself stay volatile and shall

be restarted after every failure. In summary, we have volatile

devices in the kernel connected to non-volatile devices in the

pVM and both need to be coherent, even at time of recovery.

B. Components

As Figure 1 depicts, Temporality follows a multilayer

architecture involving hardware and software components.

All components provided by NV-Hypervisor are colored in

gray while Temporalitys modifications are shown in black.

1) Hardware: Our hardware consists of a commodity server

platform with a general-purpose CPU, DRAM main memory

and hard drives. Additionally NV-RAM and a power outage

detector (POD) are included in this system. NV-RAM and

DRAM are used simultaneously, sharing the same memory

controller. We assume that the CPU and peripherals will

utilize current volatile technologies in the near future.

Accordingly the state of these components will be lost in

case of a power failure. The virtual environment of a pVM

is located in the cache and registers of the CPU during

active operation and is therefore volatile. In order to continue

operation after recovery the virtual environment needs to

be saved before a power failure shuts down the machine.

Detection of a power failure is the purpose of the POD

in our system. A POD continuously monitors the input

voltage and immediately sends a signal to the system when

it drops below a defined threshold. On detection of a power

failure residual energy, i.e. all the energy accumulated in the

electrical circuits, is spent to store the virtual environment

inside NV-RAM. In the remainder of the paper we will refer

to this process as fixation.

2) Software: The software components of our system are a

general-purpose operating system with a POD-driver and a

POD-notifier. On top of this software stack we run our NV-

Hypervisor who manages all VMs, including initialization,

execution, stopping and recovery. Access and management

to the NV-RAM is provided through the NV-RAM Control

and a library called vpmlib. The operating system kernel

performs only usual functions related to the management

and sharing of standard system resources. In case of a power

outage all components work together to reliably save the

pVMs as presented in Figure 1. Any interrupt from the POD

is processed by the POD-driver ➀ and forwarded to the

POD-Notifier located in the NV-Hypervisor ➁ that stops all

running VMs. Afterwards, it initiates the fixation and notifies

the kernel about the end of the saving process ➂. Finally,

the kernel clears all caches and stops memory operations ➃.

III. A LIBRARY FOR VIRTUAL PERSISTENT MEMORY

Our initial prototype [4] did not involve any specific memory

management service for NV-RAM. Free memory was simply

indicated by a pointer and whenever a memory region was

allocated in NV-RAM this pointer was moved to a subsequent

free region. When pVMs are restored all virtual memory

regions need to be reconnected to the exact same locations

as assigned before the shutdown. However modern systems

operate in symmetric multiprocessing mode which introduces

nondeterminism during normal operation and recovery. In

consequence the order of allocations is not deterministic

which leads to inconsistencies.
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Figure 2. Simplified memory allocation example with VPM: six persistent pages shall be allocated but only three pages can be stored in NV-RAM at once

For Temporality we extended the NV-Hypervisor with capabil-

ities to allocate and restore memory of multiple concurrently

operating pVMs. Additionally, we added support for virtual

persistent memory thereby enabling pVMs to utilize more

than the physically available NV-RAM. All capabilities are

provided by our vpmlib library that, for now, is placed in

user space of the virtualization layer.

For the application developer, vpmlib provides a minimal

API to allocate (nvalloc) and free (nvfree) memory regions

of a given size. Internally this is achieved through the system

calls mmap and munmap to map pages from the persistent

memory located in /dev/mem into the virtual memory of the

running process. In between these levels vpmlib coordinates

to persistent memory, provides name-based allocation, and

implements the swapping mechanism. Furthermore, vpmlib

stores its state completely in persistent memory to enable a

recovery of allocated regions after restart.

According to best practice, we implemented a lazy page

allocation for persistent pages and coupled it with swapping.

The whole mechanism is explained by the allocation example

presented in Figure 2. When a pVM is started, it initializes

the vpmlib and registers a signal handler (vpm_fault_handler)

for the page fault signal SIGSEGV. At the end of initialization

the virtual memory and the swap file are in a state without

any mappings (see Figure 2a).

In Figure 2 we want to allocate six consecutive persistent

pages of virtual memory but the NV-RAM in this example

can only store three pages at once. For the page allocation we

call the nvalloc-function and create a flat region without any

permissions in the virtual memory by means of the mmap

system call. As a result nvalloc returns a pointer to a set of

six continuously mapped pages in the virtual memory. At this

point none of the allocated pages is mapped to the NV-RAM

or to the swap-file (see Figure 2a). All following access to any

of these mapped pages causes a page fault that is processed

by the vpm_fault_handler. The vpm_fault_handler maps the

first free page in NV-RAM to the accessed virtual memory

page. We also have to add some meta data with information

about the mapping to the persistent-page table (PPT) located

in the header of the memory region (see Figure 3).

Eventually the vpm_fault_handler changes the mapping of

the accessed page to read-write and the page may be accessed.

Figure 2b shows the state of the virtual memory after three

different pages have been accessed. Now the NV-RAM is

fully occupied. When we access any of the other virtual

pages, we again get a page fault because there is no free

page left in the NV-RAM, which we can map directly. Hence

we need to swap-out a page first. According to a simple first-

in first-out strategy we look for the oldest allocated page

and move its data to the swap-file. Afterwards we unmap

the swapped-out page from virtual memory and map it to

the currently accessed virtual memory page. Again we have

to store some meta data in the PPT to be able to restore

the mapping later. The result is shown in Figure 2c, with

one page in the swap file (0), three pages (1, 2 and 3) in

NV-RAM and two pages (4 and 5) are still unmapped.

With multiple concurrently running pVMs, page allocation

and recovery may happen in different order. In this case the

traditional allocation techniques are not sufficient to enable

a recovery of allocated regions. Therefore we implemented

a name-based allocation of regions in our nvalloc-function.

Every time we call nvalloc to allocate a region of persistent

memory, we assign a unique identifier to it. This identifier is

a hash value generated from the pVM name provided by the

NV-Hypervisor and an allocation sequence number. Figure 3

shows an example with two pVMs, each with one region.

To be able to find regions by their unique identifier we store

the physical persistent memory address together with the

size of the region in the table of contents (TOC) which

is located at the beginning of the persistent memory. The

identifiers are used here as a key to find the corresponding

location of the region. In addition we also have a general

configuration section (CONF) in persistent memory that

contains information like total size, number of descriptors,

page size and other management related information.

In summary, the allocation of persistent pages via the nvalloc-

function consists of two parts. We have the name-based

allocation of persistent memory regions and the VPM. This

architecture provides competitive access to persistent memory

by multiple applications without blocking. Every application
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Figure 3. Name-based allocation

works with its own region of memory and any change to the

state of a page is stored locally inside the PPT. Global

locks are only required in case of allocation or freeing

of regions. Since these tasks happen only sporadically the

performance is not affected. For the deallocation of persistent

memory regions we have implemented the nvfree-function. A

call to this function removes all previously allocated pages,

belonging to one region from persistent memory and the

swap file. In this procedure we retrieve the initial address of

the region from the TOC and consecutively read every page

from it. Regardless of the location, by reading we ensure that

the page is stored in persistent memory afterwards. Next, we

set all data inside the page to zero, remove its descriptor from

the PPT and unmap it from virtual memory. We used this

basic approach to decouple the implementation of allocation

and deallocation, however a tighter integration would lead

to a more efficient solution.

IV. PERSISTENT VIRTUAL MACHINE LIFE CYCLE

A pVM is created, executed, can be snapshotted and loaded

again. Next, we describe the implementation of mechanisms,

which manage the life cycle of a pVM and how the vpmlib

is linked into this process.

Creation and execution. Initially every pVMs is equipped

with a user-provided unique identifier. Next, during the

creation of the pVMs our persistent memory allocator

provided by pvmlib is used to place all sections in NV-RAM.

Fixation. The fixation is initiated by a signal (i.e. number

44 from the range of real-time signals) sent from the POD-

driver to the NV-Hypervisor once a power outage is detected.

Locks are applied to ensure that any initialized swapping

operations is finished beforehand. During the fixation of a

pVM we save the state of the virtual environment like it is

accomplished for QEMU-based snapshots. This way we can

apply the existing serialization capabilities of virtual devices

in QEMU. However, contrary to taking a snapshot, we store

the virtual environment as a file in persistent memory.

pVM Recovery. First, the NV-Hypervisor creates an «empty»

pVM that has a default state for the virtual environment but

does not have any virtual memory. Second, this pVM is

connected with all regions of persistent memory, which were

mapped to this pVM before the system went down. In a third

step the default state of the virtual environment is replaced

with the state we have stored previously in a file inside

persistent memory. Next, the pVM is ready for operation.

V. EVALUATION

We addressed the following questions in our evaluation:

• Does VPM influence the time to recover?

• Does VPM influence runtime performance? E.g. due to

swapping of pages.

For all tests we used a uniform hardware stetting, as described

next, either with or without NV-RAM enabled.

A. Environment

As previously mentioned, Temporality follows a multilayer

architecture consisting of specialized hardware and software.

1) Hardware: We use a server platform from Viking Tech-

nology equipped with two six-core Xeon CPUs, 8 GB RAM

and 4 GBs of Non-Volatile Dual In-line Memory Modules

(NVDIMMs) as persistent memory technology. NVDIMMs

are DRAM memory modules that are backed by a flash

memory of the same size and a capacitor [5]. In case of a

voltage drop the module uses the capacitor energy to mirror

the DRAM state to flash memory. At system restart, the state

stored in flash memory is written back to the volatile DRAM.

2) Software: Our software runs on a Linux (kernel version

3.4.12) as a host operating system. For simplicity only the

POD and NVDIMM drivers reside in the kernel while all

other parts of Temporality are implemented in the user space.

As virtualization layer we used QEMU (1.4.2). However,

there are no restrictions to implement Temporality within

other hypervisors such as Xen and NOVA.

B. Influence on Recovery

In our preliminary work [4], we demonstrated that our NV-

Hypervisor ensures safety of runtime data and reduces the

time to restore the original performance of the system. To

test the ability of a quick performance recovery we used

one pVM with a typical Apache web server setup, including

a MySQL database. As a workload we have chosen the

Sysbench OLTP Test Suite [6] that creates a table of one

million lines and measures the request response time for

a random query. At a random point in time we initiated a

power outage and observed the recovery procedure of the

pVM. In summary, after booting the host OS we needed

93 s less to start the services with original throughput. For

comparison, our reference system needed (566 s) to achieve

the same throughput after database startup. In contrast to

the benefits we had to add an overhead of 117 s which can

be split up into 109 s to restore the state of our persistent

memory and 8 s for connecting the NV-Hypervisor with all

persistent pages. We were unable to influence the persistent
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memory initialization but we assume that persistent memory

will not have this issue in near future. However with lazy

page allocation and VPM we could remove the entire startup

overhead of the NV-Hypervisor.

C. Runtime performance

To evaluate the performance impact of our implementation

we used the key-value store Redis. For load generation the

set and the get test have been used as provided by the redis-

benchmark tool.

Initially, we have conducted experiments with three pVMs

running in parallel. Each pVM was allocated a fixed amount

of persistent memory, which was filled by the database. We

experimented with different memory sizes of up to one GB.

Since the results were similar, we present in this paper the

numbers for small pVMs with 256 MB memory.

As long as no pages need to be swapped-out, we couldn’t

observe any performance degradation. This is not surprising

since VPM allows any mapping or access of persistent pages

to be executed in parallel. Synchronization is only required

when we request new regions of persistent memory, which

happens only on pVM startup.

However with increased persistent memory demand, we

noticed a decrease in performance relative to the amount of

swapping. Therefore, in a second test run, we used the same

setup of three pVMs but changed the amount of swapped

out pages. We present the configuration of our pVM by the

memory residence ratio (MRR):

MRR = InMemory/(InMemory + InSwap) ∗ 100
MRR describes the data size located in persistent memory

(InMemory) relative to the total amount of allocated

memory (InMemory + InSwap).

Our results presented in Figure 4 show the performance of

a pVM. Performance is given as the percentage value of

requests per second relative to a plain VM. As can be seen,

without swapping (MRR=100%) the pVM performs at the

same speed as a usual VM, both for get and set requests.

However by decreasing the MRR the performance drops near

linear for the get requests while set request performance stays

at 90% until the MRR reaches 60%. This difference can be

explained by the access pattern used in these benchmarks.

During the set request benchmark, new memory is allocated

linearly for storing keys. With a MRR of 90% the system

will have to swap-out pages only when the amount of free

memory falls below 10%. Opposed to this, the benchmark

for get requests performs random get requests on a prefilled

database. Therefore, the probability for get requests to access

a swapped out page is very linear to the MRR.

To further analyze our swapping mechanism, we have

investigated the amount of page-faults during the get and set

benchmark. The results for a fixed workload of one million

requests are presented in Figure 5. For random access pattern,

during the get benchmark, the page-fault rate stays constant

on one level, depending on the MRR. In contrast, for the

linear access pattern of the set benchmark, the page-fault

rate always starts low. When the access reaches the memory

limit the page-fault rate begins to rise linearly since every

new access involves a page swap. Thereby lower MRR leads

to an earlier increase of page-faults since the memory limit

is reached faster.

VI. RELATED WORK

Our work was inspired by rapilog [7] where residual energy

was used to reactively store transaction logs of a database

only in case of a power outage on persistent background

storage. We use a similar approach but for a different purpose:

to store the virtual environment in persistent memory.



Persistence can be provided at different levels. The most

extensive approach is the idea of whole-system persistence [8]

where everything becomes non-volatile. Another way is to

make processes persistent like proposed in NV-process [9].

These approaches do not consider persistence of devices in-

ternal state, which we circumvented by a volatile hypervisor.

On a finer granularity only parts of an application can

be made persistent. In particular NV-Heaps [10] and

Mnemosyne [11] provide name-based allocators for objects

with transactional semantics. For Temporality we have also

implemented a name-based allocation in order to support

the NV-Hypervisor. However our main goal is not to offer

software primitives to create new persistent applications from

scratch. We provide a platform which enables proprietary

and legacy software to take advantage of persistence without

any changes to the virtual appliances.

Since NV-RAM is byte-wise addressable, but current file

systems are designed for block-wise access, there are several

projects like BPFS [12], SCMFS [13], PMFS [14], and

Aerie [15] which are devoted to develop new in-memory

file systems. These projects have in common that they use

persistent memory as a storage in combination with improved

performance of the file system interface. This is achieved

by means of removing layers in the Linux kernel (BPFS,

SCMFS, PMFS) or by increasing the performance by direct

access of persistent memory [15]. To make whole applications

persistent with these file systems, substantial refactoring is

needed. In contrast, our approach is a customized hypervisor,

which provides persistence transparently to any application

running inside a pVM.

The idea to use VMs in conjunction with persistent memory is

presented in Ex-Tmem [16]. Here, persistent memory is used

as a fast caching system for swapped out pages. However,

this only improves performance during runtime and does not

decrease recovery time.

VII. CONCLUSION

Power outages in Infrastructure-as-a-Service clouds may

cause a loss of data and after a system restart the performance

is often degraded. In this paper, we presented Temporality an

virtualization layer that is robust against power outages by the

utilization of NV-RAM and provides transparent persistence

to virtual machines. By introducing VPM and name-based

memory regions, provided by our vpmlib, we are able to

run multiple pVMs in parallel. Moreover with VPM we can

swap-out pages to the background storage and safely allocate

more persistent memory than physically available.
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