

18th March, 2016 CoSDEO 2016, Sydney

Enabling Efficient Deep Learning Inference on Mobile Devices

Sourav Bhattacharya

((() accelerometer microphone gyroscope historical data ((• Mmm cloud computation 70 ACK: Nicholas D. Lane for

Sensing-oriented Networked Mobile Apps and Services

Mobile Health

Digital Assistants

Quantified Enterprise

Urban Sensing

Sensor-driven Cities, Enterprises & Organizations

Consumer Personal Sensing

Audio Data Inertial Data {stressed, not stressed} Sensor Inference Pipelines {walking, running, sitting} raw audio man Manna MAN {music, conversation, male voice} preprocessin admission control &duty cycling ontrol acoustic feature vector extraction {shoes, subway, coffee cup} Image Data decision tree classifier classificatio ctor activity similarity detector sifier classification voice ging previous GMM activity label classifiers sliding window smoothe Sensors Computation Resources

Sensor Inference is a core unifying process across all IoT / Wearable Systems

Sensor Inference Gap

High-value Behavior and Context Inferences Remain Unreliable in Real World Settings for Wearable/IoT Devices

Speech Recognition

Object Recognition

Language Translation

Natural Language Processing

Face recognition

Speech Recognition

Object Recognition

Language Translation

Natural Language Processing

Face recognition

.

Google Example

Launched in 2012 with the Jellybean Android release

Trained model <5 days on cluster of 800 machines

30% reduction in Word Error Rate for English

"Biggest single improvement in 20 years of speech research"

Speech Recognition

Object Recognition

Language Translation

Natural Language Processing

Face recognition

Hybrid DNN-HMM models

Convolution

1st hidde

20 x 2

16 filters

8 x 8 x 4 x 16

20 x 20 x 16

Input Layer

84 x 84

4 frames

84 x 84 x 4

Nodes

Input Layer

Recurrent Neural Networks

Convolutional Neural Networks

Fully connected

2nd hidden

32 filters 9 x 9 x 32

4 x 4 x 16 x 32 9 x 9 x 32 x 256 256 x 4

256

3rd hidden (256 fully connected)

Output (actions)

Deep Learning for Mobile Sensing: Making Baby Steps with DeepEar and DeepX

How should context and user behavior be modeled under Deep Learning?

Deep Learning for Mobile Sensing: Making Baby Steps with DeepEar and DeepX

DeepEar

How should context and user behavior be modeled under Deep Learning?

Deep Learning for Mobile Sensing: Making Baby Steps with DeepEar and DeepX

DeepEar Design: Operation and Model Architecture

Architecture

"DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments using Deep Learning", Nicholas D. Lane, Petko Georgiev, Lorena Qendro – *UbiComp 2015*

DeepEar Design: Operation and Model Architecture

"DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments using Deep Learning", Nicholas D. Lane, Petko Georgiev, Lorena Qendro – *UbiComp 2015*

DeepEar Design: Operation and Model Architecture

Architecture

"DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments using Deep Learning", Nicholas D. Lane, Petko Georgiev, Lorena Qendro – *UbiComp 2015*

DeepEar Design: Proof-of-Concept Prototype

Architecture

Wearables & Smartphones

Smartphone Prototype

• DSP to Microphone only

•

•

- Memory Acute Bottleneck
- Reduced Architecture but with Negligible Accuracy Loss

Audio Sensing Task	DNN Size (Original)	DNN Size (Downscaled)	Period
Ambient Scene Analysis	3×1024	3 imes 256	1.28s
Emotion Recognition	3×1024	3×512	5.00s
Speaker Identification	3×1024	3×512	5.00s

"DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments using Deep Learning", Nicholas D. Lane, Petko Georgiev, Lorena Qendro – *UbiComp 2015*

Overview

Distinctions from Typical Training Phases

(1) Use of Pre-Training

- Secondary use of unlabeled data
- Compensates for lack
 of labeled data

2) Role of Labels and Unlabeled Data

- Specifically Capture Environment Diversity
- Label Synthesis (includes intensity)

- No task selected features or stages
- All training for models virtually the same

Distinctions from Typical Training Phases

(1) Use of Pre-Training

- Secondary use of unlabeled data
- Compensates for lack
 of labeled data

(2) Role of Labels and Unlabeled Data

- Specifically Capture Environment Diversity
 - Label Synthesis (includes intensity)

- No task selected features or stages
- All training for models virtually the same

Overview

Distinctions from Typical Training Phases

(1) Use of Pre-Training

- Secondary use of unlabeled data
- Compensates for lack
 of labeled data

(2) Role of Labels and Unlabeled Data

- Specifically Capture Environment Diversity
- Label Synthesis (includes intensity)

- No task selected features or stages
- All training for models virtually the same

Overview

Distinctions from Typical Training Phases

(1) Use of Pre-Training

- Secondary use of unlabeled data
- Compensates for lack
 of labeled data

2) Role of Labels and Unlabeled Data

- Specifically Capture Environment Diversity
- Label Synthesis (includes intensity)

- No task selected features or stages
- All training for models virtually the same

Experiment Methodology

Baseline Systems

EmotionSense (UbiComp 2010)

StressSense (UbiComp 2012)

Model Setup

• Speaker Identification :: {23 different speakers}

- Stress Detection :: {stressed, not stressed}
- Emotion :: {happiness, sadness, fear, anger, neutral}

ullet

Ambient Scene :: {music, traffic, voicing, other}

Audio Datasets

- Labeled data for each model setup
- Background noise 168 place visits
 (50 unique places)

SpeakerSense (Pervasive 2011)

SoundSense (MobiSys 2009)

Place Visit Dataset (WWW '14)

DeepEar outperforms specialist mobile audio sensing pipelines across multiple scenarios

DeepEar shows increased robustness to a wide spectrum of background noise levels

DeepEar shows increased robustness to a wide spectrum of background noise levels

DeepEar shows increased robustness to a wide spectrum of background noise levels

Speaker Identif. 100"Clean" (%) 80 Noise Training Training Data DeepEar Data Results also hold for: 60 Accuracy Stress 40 Detection 20 Emotion Recognition 0.5 0.75 1.0 1.5 0.25 2.0 Background noise level Ambient

DeepEar: Progress Towards Mobile Deep Learning

How should context and user behavior be modeled under Deep Learning?

Ongoing study of deep models for multimodal and especially inertial data

Latest Modeling Result: Smartwatch prototype with Context & Activity Inferences from a Deep Model

"From Smart to Deep: Robust Activity Recognition on Smartwatches using Deep Learning", Sourav Bhattacharya, Nicholas D. Lane – *WristSense 2016*

	Memory	Battery	Execution Time	Execution Time		
		Life	(whole pipeline)	(RBM model-only)		
ĺ	1066KB	32 hrs	5.00 msec	0.94 msec.		

Indoor/Outdoor

DeepEar: Progress Towards Mobile Deep Learning

How should context and user behavior be modeled under Deep Learning?

Ongoing study of deep models for multimodal and especially inertial data

Representative Mobile Hardware Bottlenecks

Target Models

	Type	Size	Architecture
AlexNet	CNN	60.9M	$c:5^{i}; p:3^{\ddagger}; h:2^{\star}; n:\{\text{all } 4096\}^{\dagger}$
SVHN	CNN	313K	$c:2^{i}; p:2^{\ddagger}; h:2^{\star}; n:\{1600,128\}^{\dagger}$
Deep KWS	DNN	241K	$h:3^{\star}; n:\{\text{all } 128\}^{\dagger}$
DeepEar	DNN	$2.3\mathrm{M}$	$h:3^{\star}; n: \{ \text{all 512 or 256} \}^{\dagger}$

ⁱ convolution layers; [‡]pooling layers; ^{*}hidden layers; [†]hidden nodes

Execution Time (msec.)		Tegra		Snapdragon		Edison
		CPU	GPU	CPU	DSP	CPU
	Deep KWS	0.8	1.1	7.1	7.0	63.1
	DeepEar	6.7	3.2	71.2	<u>379.2</u>	109.0
	AlexNet	600.2	49.1	$159,\!383.1$	-	283,038.6
	SVHN	15.1	2.8	$1,\!616.5$	-	3,562.3

Target Platforms

Nvidia Tegra K1

Intel Edison

DeepX: Enabling Efficient Deep Learning Inference for Wearables, Smartphones and IoT Devices

"DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices", Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lorena Qendro, Fahim Kawsar – IPSN 2016

DeepX: Enabling Efficient Deep Learning Inference for Wearables, Smartphones and IoT Devices

Model Partitioning

Goal: Graceful resource control through accuracy trade-off

Model Partitioning

Goal: Graceful resource control through accuracy trade-off

Model Partitioning

Goal: Graceful resource control through accuracy trade-off

Example Model Compression Technique

Representative Manipulation of the Weight Matrix

$$W_{m \times n}^{L+1} = U_{m \times m} \Sigma_{m \times n} V_{n \times n}^{T}$$
$$\hat{W}_{m \times n}^{L+1} = U_{m \times c} \Sigma_{c \times c} V_{c \times n}^{T}$$
$$\hat{W}_{m \times n}^{L+1} = U_{m \times c} N_{c \times n}^{T}$$

- Applicable at runtime (SVD approach)
- Without retraining model or have local test data
- Inspired by existing SVD-methods
 - [Xue et al. '13, He et al. '14]
- Redundancy Estimation $\mathscr{E}(W_{m \times n}^{L+1}, \hat{W}_{m \times n}^{L+1}) = \sqrt{\frac{\sum_{i=1}^{m} (w_i \hat{w}_i)^2}{m}}$

Example Model Partitioning Process

Model Partitioning

Goal: Graceful resource control through accuracy trade-off

Efficient Mobile Execution of Large-scale Deep Learning Models

AlexNet (CNN)

CPU High

Efficient Mobile Execution of Large-scale Deep Learning Models

AlexNet (CNN)

Efficient Mobile Execution of Large-scale Deep Learning Models

Results also hold for:

Latest DeepX Result: Complete framework running on Ultra-wearable Hardware

53

Enabling Breakthrough: Sparsification of Layers for Extreme Compression Required by Ultra-Wearables

Approach: Use Compressive Sensing Theory to Reduce Layer Representation

Motivation: SVD-based compression can not lower resource needs to match ultra-wearables without destroying accuracy

Representative Trade-offs

Narrowing the Sensor Inference Gap using Deep Learning on Wearable and IoT Devices

New Deep Modeling Methods for Wearable/ Mobile Sensors

Missing Support for Scarce Resource Deep Model Execution

Normania Sentor Informer 2012 Technology In Computing Sentor Informer 2012 Information Sentor Informati

Nicholas D. Lane Sourav Bhattacharya Claudio Forlivesi Fahim Kawsar

New Deep Modelin Methods for Weara Mobile Sensors

Further Reading

"Can Deep Learning Revolutionize Mobile Sensing?", Nicholas D. Lane, Petko Georgiev – *HotMobile 2015*

"DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments using Deep Learning", Nicholas D. Lane, Petko Georgiev, Lorena Qendro – *UbiComp 2015*

"An Early Resource Characterization of Deep Learning on Wearables, Smartphones and Internet-of-Things Devices", Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Fahim Kawsar – *IoT-App 2015*

"DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices", Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lorena Qendro, Fahim Kawsar – *IPSN 2016*

"From Smart to Deep: Robust Activity Recognition on Smartwatches using Deep Learning", Sourav Bhattacharya, Nicholas D. Lane – *WristSense 2016*

Sourav Bhattacharya sourav.bhattacharya@bell-labs.com

Questions?

Bell Labs UBICOMP 2015 Best P564, Top