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Consumer 
Personal Sensing

Sensor-driven Cities, 
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Mobile Health
Digital Assistants Quantified Enterprise

Urban Sensing



Sensors Resources

Cluster175(College) Cluster121(Ent.) Cluster162(Shops) Cluster199(Work)

Cluster175(College) Cluster121(Ent.) Cluster162(Shops) Cluster199(Work)

Cluster175(College) Cluster121(Ent.) Cluster162(Shops) Cluster199(Work)

Image Data

Audio Data
Inertial Data

{walking, running, sitting} 
{music, conversation, male voice} 

{shoes, subway, coffee cup} 

Sensor Inference Pipelines 

Sensor Inference is a core unifying process 
across all IoT / Wearable Systems 6	
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Consumer 
Personal 
Sensing

Sensor Data-driven 
Cities, Enterprises & 
Organizations

Sensor Inference Gap 

High-value Behavior and Context Inferences Remain 
Unreliable in Real World Settings for Wearable/IoT Devices 
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Breakthroughs in Practical Modeling 
Problems Powered by Deep Learning

Object 
Recognition 
Language 
Translation

Natural Language 
Processing
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Face recognition
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Breakthroughs in Practical Modeling 
Problems Powered by Deep Learning

Object 
Recognition 
Language 
Translation

Natural Language 
Processing

…..

Speech 
Recognition

“Biggest single improvement 
in 20 years of speech 
research”

Google Example
Launched in 2012 with the Jellybean 
Android release 

Trained model <5 days on cluster of 800 
machines 

30% reduction in Word Error Rate for 
English

ACK: Jeff Dean (Google)

Face recognition
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Breakthroughs in Practical Modeling 
Problems Powered by Deep Learning

Object 
Recognition 
Language 
Translation

Natural Language 
Processing

…..

Speech 
Recognition

Face recognition

ACK: Jeff Dean (Google)

7-layer Convolutional Neural 
Network (CNN) won 2012 ImageNet 
Challenge 16.4% top-5 result

24-layer CNN won 2014 ImageNet 
Challenge 6.67% top-5 result

Google Example

10	



Breakthroughs in Practical Modeling 
Problems Powered by Deep Learning

Object 
Recognition 
Language 
Translation

Natural Language 
Processing

User Behavior

Context Modeling

Speech 
Recognition

Face recognition ?
11	



Brief Deep Neural Network (DNN) Background

Input Layer

Hidden Layers

Output
Layer
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Input Layer

Hidden Layers

Output
Layer

Hybrid DNN-HMM models
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Recurrent Neural Networks 

Multi-modal Stacked 
Networks

Convolutional Neural Networks



How should context and user behavior be 
modeled under Deep Learning?

How can we scale down Deep Learning 
algorithms to run on wearables and phones?

Deep Learning for Mobile Sensing: Making Baby 
Steps with DeepEar and DeepX
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How should context and user behavior be 
modeled under Deep Learning?

How can we scale down Deep Learning 
algorithms to run on wearables and phones?

Pre-Processing

Shared 
Input Layer

Ambient Scene Analysis DNN 

Voicing Indicator
Audio Stream

Emotion Recognition DNN 

Stress Detection DNN 

SpeakerID DNN Silence Filtering

Unlabeled Audio from 
Multiple Environments

Labeled Audio Data

Mixed Condition 
Synthesis

Unsupervised 
Pre-Training

Supervised 
Fine-Tuning

Initialized DNN 
Parameters

Trained DNN

DeepEar
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Deep Learning for Mobile Sensing: Making Baby 
Steps with DeepEar and DeepX

Best Paper, Top 1%
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Pre-Processing

Shared 
Input Layer

Ambient Scene Analysis DNN 

Voicing Indicator
Audio Stream

Emotion Recognition DNN 

Stress Detection DNN 

SpeakerID DNN Silence Filtering

RBMs

Output Layer

Input Layer

Hidden

Visible

Restricted 
Boltzmann 
Machine

Audio Stream

DeepEar Design: Operation and Model Architecture

Internal DNN Design •  Concurrent Model Execution
•  Same Architecture Across all DNNs
•  No Task Specific Features
•  MFCC or Freq. Bank Representation
•  Modest Model Complexity

Architecture

Wearables & 
Smartphones

“DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments using Deep Learning”, 
Nicholas D. Lane, Petko Georgiev, Lorena Qendro – UbiComp 2015
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DeepEar Design: Proof-of-Concept Prototype

Pre-Processing

Shared 
Input Layer

Ambient Scene Analysis DNN 

Voicing Indicator
Audio Stream

Emotion Recognition DNN 

Stress Detection DNN 

SpeakerID DNN Silence Filtering

Architecture

Smartphone Prototype •  DSP to Microphone only
•  Memory Acute Bottleneck
•  Reduced Architecture but with 

Negligible Accuracy Loss 

Qualcomm 
SnapDragon 800 SoC

Wearables & 
Smartphones

“DeepEar: Robust Smartphone Audio Sensing in Unconstrained Acoustic Environments using Deep Learning”, 
Nicholas D. Lane, Petko Georgiev, Lorena Qendro – UbiComp 2015
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DeepEar Design: Model Training Pipeline

Unlabeled Audio from 
Multiple Environments

Labeled Audio Data

Mixed Condition 
Synthesis

Multi-Environment Labeled Data

Unsupervised 
Pre-Training

Supervised 
Fine-Tuning

Initialized DNN 
Parameters Trained DNN

Overview

Distinctions from Typical Training Phases 

(2) Role of Labels and Unlabeled Data(1) Use of Pre-Training (3) No Task-Specific Stages
•  Specifically Capture 

Environment Diversity
•  Label Synthesis (includes 

intensity)

•  Secondary use of 
unlabeled data

•  Compensates for lack 
of labeled data

•  No task selected 
features or stages

•  All training for models 
virtually the same
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Experiment Methodology
Baseline Systems

•  EmotionSense (UbiComp 2010)
•  StressSense (UbiComp 2012)

•  SpeakerSense (Pervasive 2011)
•  SoundSense (MobiSys 2009)

Model Setup
•  Speaker Identification :: {23 different speakers}
•  Stress Detection :: {stressed, not stressed}
•  Emotion :: {happiness, sadness, fear, anger, neutral}
•  Ambient Scene :: {music, traffic, voicing, other}

Audio Datasets
•  Labeled data for each model setup
•  Background noise 168 place visits 

(50 unique places) Place Visit Dataset (WWW ‘14)
28	



DeepEar outperforms specialist mobile audio 
sensing pipelines across multiple scenarios 

Existing Specialist Mobile Pipelines 
DeepEar

168
Place Visits
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DeepEar shows increased robustness to a wide 
spectrum of background noise levels

Speaker Identif.

DeepEar

168
Place Visits

Existing Specialist Mobile Pipelines 
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Speaker Identif.

Noise Training
Data

“Clean” 
Training Data

168
Place Visits

DeepEar

DeepEar shows increased robustness to a wide 
spectrum of background noise levels
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Speaker Identif.

Ambient 
Scene

Emotion
Recognition

Stress
Detection

DeepEar shows increased robustness to a wide 
spectrum of background noise levels

Results also hold for:

32	

Noise Training
Data

“Clean” 
Training Data DeepEar



DeepEar Performance: Low-energy overhead and 
three simultaneous inferences in near real-time

CPU

Battery Assumption 2300 mAH

Features 
only Whole 

Pipeline

DeepEar (DSP)

DeepEar (DSP)
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DeepEar Performance: Low-energy overhead and 
three simultaneous inferences in near real-time

CPU

Battery Assumption 2300 mAH

DeepEar (DSP)

DeepEar (DSP)
Workload: 1 second of audio
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How should context and user behavior be 
modeled under Deep Learning?

Pre-Processing

Shared 
Input Layer

Ambient Scene Analysis DNN 

Voicing Indicator
Audio Stream

Emotion Recognition DNN 
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SpeakerID DNN Silence Filtering

Unlabeled Audio from 
Multiple Environments

Labeled Audio Data
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Trained DNN

DeepEar: Progress Towards Mobile Deep 
Learning

Accelerometer

Gyroscope
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Magnetometer

User 
Behavior 
and 
Context 
Inferences

Sensor Modalities

….

Features Multi-Modal DNN

Ongoing study of deep models for multimodal and especially inertial data 
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Latest Modeling Result: Smartwatch prototype with 
Context & Activity Inferences from a Deep Model

RBMs

Output Layer

Input Layer

Hidden

Visible

Restricted 
Boltzmann 
Machine

Audio Stream

“From Smart to Deep: Robust Activity Recognition on Smartwatches using Deep Learning”, 
Sourav Bhattacharya, Nicholas D. Lane – WristSense 2016

Inertial sensors, GPS 
environmental etc. 

Gesture Recognition Transportation & Activity Indoor/Outdoor
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How can we scale down Deep Learning 
algorithms to run on wearables and phones?

40	



Representative Mobile Hardware Bottlenecks

Execution Time (msec.)

Target Platforms

“An Early Resource Characterization of Deep Learning on Wearables, Smartphones and Internet-of-Things Devices”, 
Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Fahim Kawsar – IoT-App 2015

Snapdragon 800 Intel EdisonNvidia Tegra K1

Target Models
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DeepX: Enabling Efficient Deep Learning Inference 
for Wearables, Smartphones and IoT Devices 

•  Enhanced Privacy with 
increased on-device execution

•  Seamless optimal network 
assistance

•  Allow use of the state-of-the-art 
modeling algorithms

1)  Cloud-bound
2)  Task-specific Hand-optimized Models

Current Wearable/IoT Deep 
Learning Solutions

DeepX Advantages

“DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices”, 
Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lorena Qendro, Fahim Kawsar – IPSN 2016 42	



DeepX: Enabling Efficient Deep Learning Inference 
for Wearables, Smartphones and IoT Devices 

•  Online Model Compression
•  Activation / Static Analysis
•  Redundancy Identification
•  Model Partitioning
•  … 

Develop general purpose resource control 
algorithms for optimizing the inference stage of all 
Deep Learning models 

GOAL

Small Cells
Apps
Mobile OSs

DeepX Techniques

43	“DeepX: A Software Accelerator for Low-Power Deep Learning Inference on Mobile Devices”, 
Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lorena Qendro, Fahim Kawsar – IPSN 2016



Model Compression Model Partitioning

Sensing 
Apps

Global Task Queue

Goal: Graceful resource control 
through accuracy trade-off

Goal: Reduce bottlenecks and 
increase resource utilization
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Model Compression Model Partitioning
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Sensing 
Apps

Global Task Queue

GPU DSP CPU



•  Applicable at runtime (SVD approach)
•  Without retraining model or have local test data
•  Inspired by existing SVD-methods 

•  Redundancy Estimation

Example Model Compression Technique

Additional 
Layer

Compressed 
Model

Initial 
Model

Runtime 
SVD-based 

Process
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•  [Xue et al. ‘13, He et al. ‘14]

Representative Manipulation of the 
Weight Matrix 
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Example Model Partitioning Process
CPU GPU DSP

•  Reduced Dependencies    
using Static Analysis

•  Projections/Reductions          
for Novel Partitioning

•  Processor assignment      
based on efficiency & load

•  Tuning of compression strength

Initial 
Model Partitioned 

Model

…
NETWORK

Load 
Estimation & 
Monitoring

Partition 
Assignment

Results 
Collation
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Simplified Optimization

Partition
Stages

min. ↵
PX

i=1

EiBi + �max

i2P
{TiBi}

s.t.

PX

i=1

Bi = N

Bi  Li, 8i 2 P,

Bi � 0, Bi 2 Z, 8i 2 P,



Model Compression Model Partitioning

Goal: Graceful resource control 
through accuracy trade-off

Goal: Reduce bottlenecks and 
increase resource utilization
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Sensing 
Apps

Global Task Queue

GPU DSP CPU



Efficient Mobile Execution of Large-scale 
Deep Learning Models

Prototype 
Platform

Nvidia Tegra K1 SoC

AlexNet (CNN)

Energy
(mJ)

CPU-only GPU-only DeepX Cloud (WiFi)

30x Gain in 
Energy Efficiency 
Beyond Cloud 

10x Gain in Execution Time
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Efficient Mobile Execution of Large-scale 
Deep Learning Models

Results also hold for:

Various Deep 
Architectures

IoT and Wearable 
Platforms

Broad Sensor 
Modalities

Network 
Conditions

Tegra K1; DeepEar Emotion (DNN) Tegra K1; AlexNet (CNN)

Snapdragon 800; DeepEar Emotion (DNN) Snapdragon 800; AlexNet (CNN)
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Latest DeepX Result: Complete framework running on 
Ultra-wearable Hardware
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Intel Edison
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Enabling Breakthrough: Sparsification of Layers for 
Extreme Compression Required by Ultra-Wearables

Compressed 
Model

Representative Trade-offs

Motivation: SVD-based compression can not lower resource 
needs to match ultra-wearables without destroying accuracy

Approach: Use Compressive Sensing 
Theory to Reduce Layer Representation 

Usage of K-SVD 
Algorithm



Narrowing the Sensor Inference Gap using 
Deep Learning on Wearable and IoT Devices

New Deep Modeling 
Methods for Wearable/
Mobile Sensors

Missing Support for Scarce 
Resource Deep Model Execution
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Audio Stream

Emotion Recognition DNN 

Stress Detection DNN 

SpeakerID DNN Silence Filtering

DeepX DeepEar … Accelerometer
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Thanks!
Questions? Further Reading

“Can Deep Learning Revolutionize Mobile Sensing?”, 
Nicholas D. Lane, Petko Georgiev – HotMobile 2015
“DeepEar: Robust Smartphone Audio Sensing in 
Unconstrained Acoustic Environments using Deep 
Learning”, Nicholas D. Lane, Petko Georgiev, Lorena 
Qendro – UbiComp 2015
“An Early Resource Characterization of Deep Learning on 
Wearables, Smartphones and Internet-of-Things Devices”, 
Nicholas D. Lane, Sourav Bhattacharya, Petko Georgiev, 
Claudio Forlivesi, Fahim Kawsar – IoT-App 2015
“DeepX: A Software Accelerator for Low-Power Deep 
Learning Inference on Mobile Devices”, Nicholas D. Lane, 
Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, 
Lorena Qendro, Fahim Kawsar – IPSN 2016
“From Smart to Deep: Robust Activity Recognition on 
Smartwatches using Deep Learning”, Sourav Bhattacharya, 
Nicholas D. Lane – WristSense 2016

Sourav Bhattacharya
sourav.bhattacharya@bell-labs.com 56	
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