Wiselib: A Generic Algorithm Library for
Heterogeneous Sensor Networks

Tobias Baumgartner!, Ioannis Chatzigiannakis®®, Sandor Fekete!,
Christos Koninis??, Alexander Kroller', and Apostolos Pyrgelis?

! Braunschweig Institute of Technology, IBR, Algorithms Group, Germany
{t.baumgartner,s.fekete,a.kroeller}@tu-bs.de
2 Research Academic Computer Technology Institute, Patras, Greece
{ichatz,koninis}@cti.gr
3 Computer Engineering and Informatics Department, University of Patras, Greece
pyrgelis@ceid.upatras.gr

Abstract. One unfortunate consequence of the success story of wireless
sensor networks (WSNs) in separate research communities is an ever-
growing gap between theory and practice. Even though there is a in-
creasing number of algorithmic methods for WSNs, the vast majority
has never been tried in practice; conversely, many practical challenges
are still awaiting efficient algorithmic solutions. The main cause for this
discrepancy is the fact that programming sensor nodes still happens at
a very technical level. We remedy the situation by introducing Wiselib,
our algorithm library that allows for simple implementations of algo-
rithms onto a large variety of hardware and software. This is achieved
by employing advanced C++ techniques such as templates and inline
functions, allowing to write generic code that is resolved and bound at
compile time, resulting in virtually no memory or computation overhead
at run time.

The Wiselib runs on different host operating systems, such as Contiki,
iSense OS, and Scatter Web. Furthermore, it runs on virtual nodes simu-
lated by Shawn. For any algorithm, the Wiselib provides data structures
that suit the specific properties of the target platform. Algorithm code
does not contain any platform-specific specializations, allowing a single
implementation to run natively on heterogeneous networks.

In this paper, we describe the building blocks of the Wiselib, and an-
alyze the overhead. We demonstrate the effectiveness of our approach by
showing how routing algorithms can be implemented. We also report on
results from experiments with real sensor-node hardware.

Keywords: Sensor Networks, Algorithms, Library, Heterogeneity.

1 Introduction

Since the initial visions proposed in the SmartDust project [I3] ten years ago,
Wireless Sensor Networks have seen a tremendous development, both in theory
and in practice. On the practical side, we see working sensor networks and appli-
cations in many areas, from academia to industrial appliances. There is a large
variety of hardware and software to choose from that is easy to set up and use.

J. Sa Silva, B. Krishnamachari, and F. Boavida (Eds.): EWSN 2010, LNCS 5970, pp. 162-{177| 2010.
© Springer-Verlag Berlin Heidelberg 2010

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 163

This success story has also led to a serious practical issue that has not been
sufficiently addressed in the past: Sensor node brands are very different in their
capabilities. Some nodes have 8-bit microprocessors and tiny amounts of RAM,
while others burst with power, being able to run desktop operating systems such
as Linux. Consequently, the software running on these systems is very different
on the various nodes. While it is easy to write code for a specific platform, it is
a very challenging task to develop platform-independent code. Even worse, the
operating systems on most sensor nodes provide barely enough functionality to
implement simple algorithms. This means that the developer is forced to spend
great attention on low-level details, making the process painfully complex and
slow.

A parallel success story can be observed on the theoretical side, where the
development of distributed algorithms for many actual or hypothetical problems
has grown into a research field of its own. This has led to a large variety of highly
sophisticated algorithms for all kinds of tasks. Unfortunately, many of them have
never been tried in practice, due to the overly difficult implementation process.
Where algorithms are implemented, they are hard to share and compare, as
implementations cannot be easily ported to new platforms. Moreover, many
important challenges are not even addressed, as they can only be identified and
resolved by close collaboration between theory and practice.

This growing gap between theory and practice forms a major impediment for
exploiting the possibilities of complex distributed systems. The Wiselib is our
proposal to remedy this unfortunate situation. We present a framework, written
in C++, for platform-independent algorithm development. Each algorithm writ-
ten for the Wiselib can be compiled for any supported system without changing
any line of code. It provides simple interfaces to the algorithm developer, with
a unified API and ready-to-use data structure implementations. The Wiselib
addresses the following issues:

Platform independence. Wiselib code can be compiled on a number of dif-
ferent hardware platforms, usually without platform-dependent configurations,
i.e., no “#ifdef” constructions. See Section 3] for details.

OS independence. Wiselib code can be compiled for different operating sys-
tems. This includes systems based on C like Contiki, as well as C++ (the iSense
firmware) and nesC (TinyOS).

Exchangeability. Algorithms and applications can be composed of different
components that interact using well-defined interfaces, called concepts. Com-
ponents can be exchanged with other implementations without affecting the
remaining code. Moreover, both generic components and highly optimized
platform-specific components can be used simultaneously.

Broad algorithm coverage. The Wiselib currently covers a large variety
of algorithms. It will contain algorithms for each of the following categories:

1. routing algorithms 4. localization algorithms,
2. clustering algorithms, 5. data dissemination, and
3. time-synchronization algorithms, 6. target tracking.

164 T. Baumgartner et al.

Cross-layer algorithms. In Wiselib an algorithm can be designed to use other
algorithm concepts, thus enabling the use of existing algorithms for the imple-
mentation of more complex ones. Moreover, we can stack protocols on top of
each other, extending their functionality. See Section [for details.

Standard compliance. The library is written in a well-defined language subset
of ISO C++. This has a number of benefits over custom languages such as nesC:
The compilers are more mature and better supported, and there is a large user
base that knows C++ from desktop development.

Scalability and efficiency. The Wiselib is capable of running on a great va-
riety of hardware platforms, with CPUs ranging from 8-bit microcontrollers to
32-bit RISC CPUs, and with memory ranging from a few kilobytes to several
megabytes. Algorithms need to be very resource-friendly on the platforms from
the lower end, and at the same time be able to use more resources if available.

To our knowledge, the Wiselib is the only successful attempt to achieve all
of these goals at once. In this paper, we present the basic building-blocks of the
Wiselib, and show that the flexibility of the design has barely any overhead—
neither in code size nor in run-time; one can simply add new algorithms only
by following the presented approach using the Wiselib interfaces. The algorithm
can then run on each supported sensor node or simulation platform. Our goal
is to achieve a state in which such an algorithm runs on heterogeneous sensor
networks, and even more, networks in which some parts consist of virtual nodes
running in a simulator.

This paper is organized as follows: The next section provides an overview of
related work, covering competing approaches as well as implementations that
inspired this work. Section Bl explores the problem space by discussing the target
platforms on which we wish to run the Wiselib. Section [presents details on
the design of the Wiselib. In Section [l we describe example implementations
of routing algorithms; in Section [6, we report on the surprisingly small code
and memory footprint on different platforms. Section [describes the current
distribution of the Wiselib. We conclude the paper in Section [8

2 Related Work

Efficient algorithm libraries have a long-standing tradition on desktops and
servers. The three libraries that motivated our work are the Standard Template
Library (STL), the Computational Geometry Algorithms Library (CGAL) [4],
and Boost [2]. They share a great programming concept that we heavily use for
the Wiselib: Using C++ templates, one can construct complex object-oriented
software architectures that can be parameterized for many different applications.
The price of generality is paid at compile time. The final binary contains highly
efficient and specialized code, so that there is no overhead at runtime.

The situation in sensor networks is not as promising. There have been ap-
proaches to overcome the issues of incompatible nodes by providing generic op-
erating systems that run on multiple platforms. Examples are Contiki [6] and

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 165

TinyOS [20]. Neither runs on all platforms we are envisioning for the Wiselib.
Even worse, both introduce new programming paradigms that are valid only for
the specific targets, such as protothreads in Contiki, and the whole program-
ming language nesC [7] of TinyOS. The C-inspired nesC attempts to allow for
the construction of component architectures with early binding, similar to the
Wiselib, but achieves this through introducing a new language that requires a
custom compiler.

A challenging issue are heterogeneous networks. It is very simple to have nodes
exchange messages if they are of the same kind, and with the same operating
systems. It becomes surprisingly hard to let nodes of different brands commu-
nicate with each other, even if both of them use standardized IEEE 802.15.4
radios. A promising approach is the Rime Stack [I0/5], a layered communication
stack for sensor networks. It runs only on Contiki. Recently, Sauter et al. [16]
demonstrated that is is possible to communicate between sensor nodes running
Contiki and TinyOS. Since TinyOS uses IEEE 802.15.4, the Rime Stack and
Chameleon Module had been modified on Contiki.

Another attempt to produce a well-defined environment that runs on differ-
ent platforms was proposed by Boulis et al. [3]: SensorWare defines a custom
scripting language; its syntax is based on Tcl. Consequently it focuses on richer
platforms with at least 1 Mbyte of ROM and 128 KBytes of RAM. A similar
approach is Maté [I4], a virtual machine running on top of TinyOS. It tar-
gets also small devices with a very limited amount of resources, using a custom
assembler-like language.

Not surprisingly, there are are also attempts to run a Java Virtual Machine
(JVM) on sensor nodes [I7]. Squawk [I8] is a JVM by Sun Microsystems that
runs on Sun Spots. Obviously such an approach is not suited for low-end sensor
nodes, and also not for time-critical algorithms.

A different approach are macroprogramming frameworks such as Kairos [9],
Marionette [22], and MacroLab [I1]]. Instead of writing code for individual nodes,
the whole network is addressed with a single program. This is generally achieved
by providing a script language that is executed automatically on all nodes, with-
out the need for reprogramming any node in the network.

3 Problem Space

3.1 Heterogeneity

When developing an algorithm library for sensor networks, one must deal with
a great variety of different hardware and software platforms. Table [I] shows an
overview of platforms that were taken into account for the development of the
Wiselib.

The operating systems vary from system-specific implementations such as
iSense and ScatterWeb to generic approaches such as Contiki, TinyOS, and
Linux. The preferred programming languages vary with the OSs. The iSense
firmware has been developed in C++, whereas the ScatterWeb firmware uses
plain C. TinyOS uses a custom language, the C extension nesC [7]. Support

166 T. Baumgartner et al.

Table 1. Evaluation of potential target platforms. The columns refer to the type of
microcontroller, the standard operating system, the programming language for it, what
kind of dynamic memory is available, the amount of ROM and RAM, and the bit width.

Hardware Firmware/OS CPU Language Dyn Mem ROM RAM Bits
iSense iSense-FW Jennic C++ Physical 128kB 92kB 32
ScatterWeb MSB SCW-FW MSP430 C None 48kB 10kB 16
ScatterWeb ESB SCW-FW MSP430 C None 60kB 2kB 16
Tmote Sky Contiki MSP430 C Physical 48kB 10kB 16
MicaZ Contiki ATMegal28L C Physical 128kB 4kB 8
TNOde TinyOS ATMegal28L nesC Physical 128kB 4kB 8
iMote2 TinyOS Intel XScale nesC Physical 32MB 32MB 32
GumStix Emb. Linux Intel XScale C Virtual 16MB 64MB 32
Desktop PC Shawn various C++ Virtual unlimited unlimited 32/64
Desktop PC TOSSIM (ATMegal28L) nesC (Physical) unlimited unlimited (8)

for dynamic memory, malloc() and free(), is only available for some systems.
Using the ScatterWeb firmware, the size of all memory blocks must be known
at compile time, whereas the iSense firmware provides a full implementation
for the C++ operators new and delete. This is done with the aid of an own
memory allocation implementation. Similar approaches are provided by TinyOS
via TinyAlloc, and Contiki via the managed memory allocator or memb block
memory allocator. Only the Linux-based node supports virtual address space
for processes. There are also significant differences in the amount of available
memory, ranging from a few kilobytes to 64 MByte in the GumStix. Finally, we
must also deal with different bit widths. The Atmel Atmegas are 8-bit micro-
controllers, the MSP430 are 16-bit microcontrollers, whereas the rest are 32-bit
microcontrollers. There are a number of challenges stemming from the nodes’
properties and capabilities. These became additional library requirements.

Limited Memory. The algorithms may run on tiny microcontrollers for which
the provided memory is very limited. On the one hand, this affects the ROM. The
generated code for an algorithm must be as small as possible to fit into memory.
On the other hand, the RAM is affected. Routing tables, for example, cannot
be arbitrarily long so as not to exhaust the limited main memory. Additionally,
the node representation that is used for storing the neighborhood must be as
small as possible, but must also meet the demands of the used algorithms. At
the same time, when running on a node with plenty of memory, performance
gains can and should be achieved by employing more advanced data structures.

Physical Dynamic Memory. The availability of dynamic memory allocation
is already a big step forward, allowing for efficient data structures. However,
most implementations only provide physical addresses, and some are even un-
able to join adjacent freed memory blocks. Shifting of pages to join free blocks
is impossible on all nodes with physical memory. Even a simple vector imple-
mentation with O(logn) amortized insertion time would leave behind a trail of
O(logn) free blocks of various sizes. Therefore, data structures must be carefully
re-analyzed to take these special considerations into account.

Limited Computation Power. Because algorithms may run on small micro-
controllers, efficiency plays an essential role. Examples are message reception in

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 167

an interrupt or iterating over a neighbor table to select the next routing node.
This also constrains the Wiselib not to enforce the use of slow operations (such
as excessive pointer indirection) through the provided framework.

Compiler Variance. Our library must run on multiple hardware platforms.
Different compiler versions must be supported, so it is important that only stan-
dard features of the selected programming language are used.

Data Access. When accessing data at arbitrary locations in memory, alignment
problems can occur. For example, a cast of a 16bit integer works for both MSP430
and Jennic, when it starts at an even address. But when it starts at an odd
address, it fails on both platforms. However, a cast of a 32bit integer works on
all even addresses on a MSP430, but for Jennic only on quad-byte boundaries.

Moreover, when exchanging data in heterogeneous systems, the byte order
must be taken into account, because some systems are big endian, whereas others
are little endian.

3.2 C++ in Embedded Systems

The Wiselib must cover all of the previously mentioned hardware and software
platforms; the latter are developed in different programming languages. Hence,
an appropriate programming language must be found. We chose C++ [19], be-
cause it combines modern programming techniques with the ability of writing
efficient and performant software. The use of C++ in embedded systems has al-
ready been evaluated [12]. Based on this report and own evaluations, we selected
a subset of the language to be used in the Wiselib.

C++ allows modern OO designs. Object-Oriented programming is standard
on the desktop for quite some time by now, and has proven to ease the devel-
opment of complex systems. Moreover, C++ is a fully typesafe language. This
speeds up the development process, as it catches type errors at compile time.
Given the tediousness of debugging on sensor nodes, this is a huge achievement.

The most important language feature for the Wiselib are templates [21U1].
Templates can be used to develop very efficient and flexible applications. The
basic functionality of templates is to allow the use of generic code that is fully
resolved by the compiler when specific types are given. Thereby, only the code
that is actually needed is generated, and methods and parameters as template
parameter can be accessed directly. We use the well-established technique of
template-based “concepts” and “models”, where the former are not specified
as actual code, but rather as formal specifications in documentation. It lists
the required and provided types, as well as member function signatures. Mod-
els are implementations of concepts, using template specializations, without any
inherent runtime overhead. Both concepts and models allow for polymorphism,
including multiple inheritance. These techniques are used successfully in stan-
dard C++ libraries, such as the STL, Boost [2], and CGAL []. The Wiselib
employs these methods in the same manner, i.e., using standard compiler fea-
tures without custom additions.

Another basic feature in C++- is virtual inheritance. When declaring a method
as virtual, the compiler has to generate a vtable consisting of function pointers

168 T. Baumgartner et al.

Table 2. Availability of C++ compilers for selected platforms

Architecture Compiler Binary Base libstde++ Basic C++4 Syntax Templates

Jennic ba-elf-g+-+ v GCC4.2.1 N Vv Vv
MSP430 mspd30-g++ - GCC 3.2.3 i
ATMegal28L avr-g++ - GCC 4.1.2

L
L

Intel XScale xscale-g++ v GCC 3.3.1 Vv

to the appropriate methods. Whenever such a method is called, it has to be
looked up in the vtable first, thereby requiring pointer indirection. This leads
to an increase of both program memory and run-time, and makes some compiler
optimizations impossible. Hence, we do not use virtual inheritance in the Wiselib.
We substitute this feature by templates.

Two more features that are not used in the Wiselib are run-time type infor-
mation (RTTI) and exceptions. Both result in significant runtime and code-size
overhead, as already shown in [12].

There are C++ compilers available for all of our target platforms. See Ta-
ble 2 for an overview. Some platforms lack support for libstd+-, which includes
the operators new and delete. The STL is also not available everywhere. All
compiler support the C++ features we build upon, i.e., template and member
specializations.

All compilers are based on GCC, and thus there are no considered drawbacks
from compiler incompatibilities. There are some minor limitations due to the
missing libstdc++ on some systems, which have no impact on the Wiselib.

4 The Wiselib

The core design pattern for the Wiselib are generic programming techniques that
are implemented using C++ templates. The basic idea is to pass the important
functionality as template parameters to an algorithm: implementations of OS
specific code, and data structures. Hence, it is possible to compile an algorithm
exactly for the current needs.

4.1 Architecture

The fundamental design principle of the Wiselib consists of concepts and models,
which have already been discussed in Section[3:2l We feature an architecture with
three main pieces: algorithms, OS facets, and data structures. The idea is shown
in Fig. M

First of all, there are concepts for algorithms. There is one concept per cate-
gory, whereby a category groups algorithms by their basic functionality, e.g. rout-
ing or localization. Any algorithm model implements one or multiple concepts,
and is basically a template expecting various parameters. These parameters can
be both OS facets and data structures.

OS facets represent the connection to the underlying operating system or
firmware—for example, concepts for a radio or timer interface. Thus, the facets

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 169

Concept
External Interface Algorithm Category Internal Interface
Concept Concept
OS Facets Data Structures
Model
H Algorithm i
: Implementation :
Model + * Model
OS Facet Data Structure
Implementation Pass at Implementation
I Compile Time I [
[

Fig. 1. Wiselib Architecture

provide a lightweight abstraction layer to the OS. Note that the facets are merely
type definitions and wrapper functions, they are supposed to contain no repli-
cation of OS functionality.

With the aid of data structures, an algorithm can scale to the platform it is
compiled for. For instance, static data structures can be passed on tiny platforms
without dynamic memory management, whereas highly dynamic and efficient
data structures are passed on powerful microcontrollers or desktop PCs.

4.2 External Interface

The “external interface”, consisting of OS facets, represents the connection to
the underlying OS. Implementations of these facets are passed to an algorithm
as template arguments. The compiler should mostly be able to directly resolve
such calls to the OS. For example, when registering a timer can be done using
one line of code, it is implemented as an inline function in the appropriate timer
model. Hence, the result would be a direct call to the OS function, and thus
there would be no overhead, neither in code size nor in execution time. In C-
based operating systems (we see TinyOS in this group), the OS facets have to
provide a translation between C++ member function calls and C function calls,
and they have to convert C++ members to C callback pointers. This is where an
actual price of generality has to be paid. Fortunately, as we report in Section [6]
this price is very low.

Several models of the same concept for an OS facet can also be made available,
each with its own advantages for special purposes. The user can pass the best
available model to an algorithm at compile time, without extra overhead.

An example for a model of the OS facet “radio” is as follows. It is for the
C+-+-based iSense firmware:

1 template<...> class iSenseRadioModel {

2 static int send(Os *os, id t id, size t len, data t xdata)
3 { os—>radio ().send(id, len, data, 0, 0); }

170 T. Baumgartner et al.

The example shows the implementation of a simple send method offered by a
radio model. Since it is only one function call, it can be directly resolved by the
compiler without generating any overhead.

Concept Inheritance. The above example of the radio’s send() method with
destination address and payload is defined in the basic radio concept. Routing
algorithms, for example, which do only need to send and receive messages with-
out any further information such as RSSI values, or requirements such as reliable
delivery can use implementations of this concept.

We also allow for concept inheritance, so that the basic radio concept can
easily be extended. If an algorithm needs access to RSSI (or LQI) values, a
derived concept can be used. It extends the basic one with a receive method
that provides additional values.

Stackability. A major design aspect for the radio concept is stackability, i.e.,
the possibility to build a layered structure of multiple radios. The topmost layer
is not aware to which and how many layers it is connected. The big advantage of
this approach is that we can build a “virtual radio” that runs on top of a radio
model, and is passed to an algorithm in its radio template parameter. Doing so,
we can easily implement an algorithm for heterogeneous sensor networks. It is
even possible to communicate between nodes that use different kinds of node
IDs—because the virtual radio hides the real node addresses and provides, e.g.,
generic 128 bit addresses.

Another possibility is to hide a complete routing algorithm behind an OS
facet. For example, when writing out debug messages, this happens generally to
the UART. But by passing another model, we can forward debug messages over
a routing algorithm to a gateway, where all these messages are collected. The
topmost algorithm does not need to be aware of the model it works on—it must
only use the appropriate concept.

Message Delivery in Heterogeneous Systems. Another problem that is ad-
dressed using our software design is message delivery in heterogeneous networks.
There are basically two problems that occur: different byte-order, and differ-
ences in alignment handling. Byte order issues are solved by sticking to network
byte order in messages. Alignment is addressed via template specialization. We
provide a serialization class that provides generic read and write methods for
all data types.

4.3 pSTL

Not all of our target systems provide dynamic memory allocation. To our knowl-
edge, no variant of the STL fulfills our requirements: not using libstdc++,
new /delete, exceptions, and RTTI.

Consequently, we provide the pSTL, an implementation of parts of the STL
that does neither use dynamic memory allocation nor exceptions nor RTTI.
We ensure that each of the provided data structures works on each supported
hardware platform. At the moment, implementations for map, vector, and 1ist
are available. Naturally, the pSTL will grow with increasing demand.

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 171

4.4 pMP

For many tasks in embedded systems, multi-precision arithmetic is needed, e.g.
for cryptographic and data aggregation purposes. Currently there exist a number
of software libraries that implement big-number operations, e.g., gnuMP [§]. Such
libraries heavily rely on dynamic memory allocation to represent big-numbers
and carry out the operations. Moreover, to achieve performance speedups, highly
optimized assembly code is used, taking advantage of specific hardware instruc-
tions. Unfortunately, the hardware types used in WSN platforms (e.g., AT-
MEGA, Jennic) support neither dynamic memory allocation nor the specific
hardware instructions used by gnuMP and other libraries. Hence it is very diffi-
cult to port such implementations to our platforms, if not impossible at all.
Therefore, we provide the pMP, an C-based implementation of big-number
operations that does not use dynamic memory allocation. Of course such a library
cannot be compared in terms of efficiency with gnuMP, but it is the only one
available currently. In particular, it implements some basic operations like xor,
shiftleft and modulo multiplication operations which are required for elliptic
curve cryptography. It is certain that the pMP will grow regarding future needs.

4.5 Algorithm Support

The central piece of the Wiselib are the algorithms. They are grouped into cate-
gories, see Section[Il Algorithm implementation can belong to several categories,
which is common for cross-layer algorithms.

Each algorithm class consists of a concept for the algorithm itself, and some
concepts for the data structures that are typically necessary for this class. This
decouples the algorithm logic, which is invariant over different platforms, from
data storage, which heavily changes when an algorithm is ported to a platform
of different characteristics.

The benefit of having a well-defined algorithm interface is that algorithms are
easily interchanged for testing purposes, ideally this is done by simply altering
a class name in the initialization code. The second—much more important—
benefit is that an algorithm developer can start coding by copy-and-paste, in-
stead of having to go through a design phase. Such a design phase can be quite
lengthy, if the goal is to achieve maximal portability. Until now, theoreticians
wishing to evaluate high-level algorithms often found it hard to develop for em-
bedded devices: this lowers the bar considerably.

Providing a diverse set of data structure implementations serves the goal of
scalability: For each data structure, e.g., routing tables, neighborhood cluster
maps, and position maps, a set of implementations matching the span of plat-
forms is provided. For low-end architectures such as the MSP430, structures
are needed that use static storage whose size is known at compile-time. Such
structures will inevitably be inefficient in terms of runtime. For high-end archi-
tectures using Xscale processors or simulation environments, highly optimized
data structures with dynamic memory management and huge memory overhead
can be employed, resulting in high efficiency. It is even feasible to utilize the

172 T. Baumgartner et al.

STL. The choice of data structures has no impact on the algorithm code, and
can simply be configured at algorithm initialization. This results in algorithms
that not only scale down to very limited devices, but also scale up to powerful
nodes, utilizing all the available resources on them.

5 Case Study: Secure Routing Algorithms

We show the benefits of C+4 and template-based design by presenting two
examples: routing and cryptography algorithms. First we present either of the
approaches as a single concept. Then we show how easily individual implemen-
tations can be combined to generate secure routing algorithms.

Routing Algorithms. When designing a concept for an algorithm class, one
wishes to cover all kinds of special case, while staying as generic as possible. This
is because each method in the concept must be implemented by each model.
Hence, our concept for a routing algorithm consists of only six methods.

First, we need a method for setting the pointer to the OsModel that is needed
when calling static member functions from the External Interface. Then we have
two methods for enabling and disabling the routing algorithm, which is useful
when the routing should only be run in certain points in time, for example for
energy-saving issues. Next, a potential user of the routing algorithm must be
able to register and unregister a callback for message reception. At last, there
is the method for sending messages to other nodes in the network. The Routing
Concepts specializes the Radio Concept, so that routing algorithms can be used
as virtual radio interfaces for other algorithms. The concept looks as follows:

1 concept Routing {

2 void set os (OsModelx os);

3 void enable(void);

4 void disable (void);

5 void send(node id t receiver, size t len, data t*x data);
6 template <class Callee, void (Callee::* Method)

7 (node id t, size t, data t*)>

8 int reg recv callback (T *obj pnt);

9 void unreg recv callback(int);

10}

Cryptography. Adapting cryptographic algorithms to embedded systems is
a difficult task due to resource limitations. Unlike the routing case, we avoid
covering all special cases of crypto algorithms. We provide a simple concept with
algorithm implementations that will be viable solutions for the tiny sensors.

Our generic concept for a crypto algorithm consists of five methods. We pro-
vide methods for key setup, encryption and decryption of data blocks. The con-
cept looks as follows:

1 concept Crypto {

2 void set os(OsModelx os);

3 void enable(void);

4 void disable (void);

5 void key setup(node id t, data t* key);

6 void encrypt(data t* in, data tx out, size t length);
7 void decrypt(data t* in, data t* out, size t length);
8

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 173

Secure Routing. In this section, we describe how the individual routing and
cryptographic implementations can be combined to result in secure routing al-
gorithms. Note that any available routing implementation can be combined with
any available crypto algorithm without a single change in their code.

We therefore implement the routing concept, and accept a routing algorithm
and a crypto algorithm as template parameters. Internally, we only use the
passed types. For example, when the secure routing is enabled, it in turn enables
the routing and crypto algorithm. When a message is sent, it first encrypts the
passed bytes, and then passes the encrypted data to the routing algorithm.
Then, when a message is received at the destination, it is first decrypted, and
then passed to the registered receivers. The secure routing looks then as follows:

1 template<typename Routing,
2 typename Crypto>
3 class SecureRouting {
4 void set os(OsModelx os);
5 [...] // all methods described in the routing concept
6 void unreg recv callback(int);
7 Routing routing ;
8 Crypto crypto ;
9 g3
Since it implements the routing concept, it can be passed and used by any
application that deal with routing algorithms. However, the process of both

encryption and decryption is completely transparent.

6 Experimental Results

In order to demonstrate the efficiency of our generic approach, we ran differ-
ent experiments on supported platforms. We evaluated two main parts of the
Wiselib: First, the overhead of the connection to the underlying OS; second,
properties of implementations of a first set of algorithms.

6.1 External Interface

We tested the performance of Wiselib system calls compared to native OS calls
on three different platforms. The results are shown in Table 3B

OS calls that are short enough to be directly inlined by the compiler, such as
sending a message on iSense platforms or reading the node ID in Contiki do not
have any overhead. However, other parts in the OS connection produce a small
overhead due to an additional layer of indirection. This is mainly because of
incompatibilities between C function pointers and C++ member function point-
ers, and a required translation between them. But as shown in the performance

Table 3. Performance costs of Wiselib calls compared to native OS calls

iSense Contiki ScatterWeb
Native Wiselib Cost Native Wiselib Cost Native Wiselib Cost
Read ID 2us 2pus 0% <lps <lps 0% <lps <lpus 0%

Send Message 282us 282ps 0% 336us 345us 3% 898us 921ps 3%
Set Timer 135pus 141ps 4% 77ps 100ps 30% 20ps 43ps 115%

174 T. Baumgartner et al.

Table 4. Code-size overhead of OS facets. Shown is ROM (.text) and RAM (.bss +
.data) in bytes.

iSense Contiki ScatterWeb
Radio 856+240 428+ 72 316+ 40
Timer 8684240 3524210 270+ 80

evaluation, this overhead is very small—if at all, then only in terms of microsec-
onds. Similar delays would also be produced by alternative approaches, but by
using C++ and templates the compiler is able to remove this overhead wherever
reasonable. This is possible due to the implicit inline declaration of methods.

Time efficiency is only one performance measure; the other is code space. We
evaluated the needed size for the two OS facets radio and timer for different
platforms. The results are shown in Table [l

Because the concepts for radio and timer were kept simple, each implemen-
tation required at most a few hundred lines of code. This led not only to a
slight structure, but also enhanced maintenance issues. In addition, even the
integration of a completely new platform can be done without too much effort.

Especially the facets for the ScatterWeb platform show a small amount of
overhead of less than 600 bytes in ROM, and 120 bytes in RAM. Even the 1.7kB
of iSense are tolerable, since it is a 32bit-platform with corresponding overhead
in machine language instructions.

An important factor when estimating the code-size overhead is that it is con-
stant, and thus do not grow with the integration of further algorithms. The
interfaces also provide a powerful abstraction of the underlying OS, facilitating
implementations of many additional algorithm categories.

6.2 Algorithms

We implemented different algorithms for the routing concept: DSDV, DSR, a
simple tree routing, and a flooding algorithm. Each algorithm has been compiled
for, and tested on each supported platform. Table[Blshows the resulting code sizes
and initial RAM usage for the several platforms.

Table 5. Evaluation of code size as ROM size (.text) and RAM size (.bss + .data) in
bytes.

16-bit OS 32-bit OS Simulators
Algorithm Contiki ScatterWeb iSense Shawn TOSSIM
DSDV 1446+ 72 1466+ 72 4776+136 4351+ 419146+ 4
DSR 1964+338 1716+238 5396+356 6918+ 420845+ 4
Tree 920+ 16 7244 14 4060+ 24 2974+ 4 9946+ 4
Flooding 11224 50 7624 34 2864+ 68 2260+ 410192+ 4

It is clearly visible that our algorithm implementation perfectly fits into the
target platforms, as the impact of the generality of the code is very low, in terms
of both code and memory. However, the given code sizes show only the pure
demand of the algorithm—without considering the external interface.

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 175

Table 6. Stack latency in Wiselib (measured on the iSense devices)

Dummy Routing Dummy Routing, DSDV Routing DSDV Routing,
Dummy Crypto Dummy Crypto
Latency 6.08 msec 6.09 msec 6.72 msec 6.75 msec

Table 7. Comparison between Wiselib and TinyECC, for encryption/decryption run-
time

TinyECC optimized TinyECC Wiselib
Hardware Encrypt Decrypt Encrypt Decrypt Encrypt Decrypt
TelosB 6.53sec 4.25sec 84.9sec 42.73sec 114.78sec 56.02sec
MicaZ 3.9sec 2.6sec 61.4sec 31.87sec 118.4sec 57.84sec
Tmote Sky 3.27sec 2.12 sec 42.55sec 21.41sec 115.98sec 56.91sec
iSense - - - - 22.9sec 11.84sec
ScatterWeb - - - - 102.93sec 50.42sec

Each of the routing models can also be combined with a crypto algorithm—as
shown in Section [5l The first point of interest is the overhead of multiple layers
of algorithms are. We estimated the average latency by the Wiselib layers. The
experiments were held on the iSense platform. The latency was measured as the
average of 200 message exchanges: a) through a dummy routing algorithm and
a dummy routing algorithm combined with a dummy crypto algorithm and b)
through a DSDV routing algorithm and a DSDV routing algorithm combined
with a dummy crypto algorithm. We conclude that stack latency overhead is
minimal, as shown in Table

As a second experiment regarding the combination of routing and crypto
algorithms, we estimated the run-time of a crypto algorithm (Elliptic Curve
Integrated Encryption Scheme) through Wiselib for various platforms, and we
compared it with that of TinyECC[I5] in Table [We did not focus on opti-
mizing the code; that is why TinyECC runtime is generally faster. However, our
algorithm can be executed on a variety of platforms.

Also, with the aid of template specializations—as also used in message
delivery—code can be optimized and adapted for certain platforms. Depend-
ing on the compilation process, the compiler can select exactly the code that fits
best for the current platform. For example, when an algorithm is compiled for
iSense, the AES hardware could be used for the crypto routines.

7 Accessing the Wiselib

There are different demands for the users of the Wiselib. Application developers
are interested in stable algorithms that were thoroughly tested for all supported
platforms. They do not contribute own implementations to the Wiselib; instead,
they only integrate existing algorithms in their applications. Algorithm develop-
ers on the other hand contribute code to the Wiselib. Algorithms may be under
development and can not be ensured to run on each platform.

We therefore provide two distributions: Stable and Testing. The former con-
tains only algorithms that were run through different tests, particularly for each
supported platform. Concepts that are implemented for the stable distribution

176 T. Baumgartner et al.

are also expected not to be changed anymore, if not strongly needed. In contrast,
the testing distribution contains newly implemented algorithms. They may not
be tested on each platform—in particular since not each algorithm developer
has each platform available. This can also lead to changes in concepts, when it
is noticed that not all platforms can be covered satisfactorily. In general, the
objective here is to release early, and release often.

The Wiselib can be accessed under http://wisebed.eu/wiselib. There is
a Wiki available that contains documentation. In addition, there is also a Trac
running to report software bugs and collect suggestions for improvement.

8 Conclusion and Future Work

In this paper, we have introduced our generic algorithm library for wireless sen-
sor nodes, the Wiselib. It is aimed at allowing algorithm researchers to quickly
implement distributed algorithms on actual sensor nodes. The implementation
process requires no deep understanding of the target platform, as the library
provides a unified API that abstracts the technical details. Unlike all other
approaches with the same goal, or at least the ones we are aware of, Wiselib
algorithms suffer next to no runtime or memory overhead from the generality.

The Wiselib is written in standard ISO C++4, using advanced OO techniques
to encapsulate the operating system and to allow complex OO architectures that
can be fully resolved by an optimizing compiler. Specifically, the Wiselib makes
heavy use of templates, as they are resolved at compile time, leaving no binding
efforts to runtime. Certainly, generality does not allow to provide highly opti-
mized code. Fortunately, our open design allows to provide such hardware specific
optimizations without hindering the generality of the algorithm implementation.
This is extremely important since algorithm development can be decoupled from
application development where platform specific optimizations are performed.

We demonstrate the effectiveness of the Wiselib by implementing a number
of routing algorithms and cryptography algorithms. We show that the produced
code is very lean and it works on a large variety of sensor platforms. The library
allows us to easily stack different types algorithms with almost zero overhead. We
build upon this feature and demonstrate the ability to interchange algorithms
without affecting the operation of other algorithms at different stack level. These
features essentially provide endless possibilities to application developers as more
algorithms and algorithmic concepts are introduced in Wiselib.

We expect the Wiselib to grow much beyond the current state, and to become
a standard tool for WSNs in the near future. We also wish to look into other
categories of algorithms such as MAC layer protocols, energy saving schemes
and topology control protocols.

Acknowledgement. This work has been partially supported by the FEuropean
Union under contract number ICT-2008-224460 (WISEBED).

References

1. Alexandrescu, A.: Modern C++ Design. Addison-Wesley, Reading (2001)
2. Boost, http://www.boost.org

http://wisebed.eu/wiselib
http://www.boost.org

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks 177

. Boulis, A., Han, C.-C., Srivastava, M.B.: Design and implementation of a frame-

work for efficient and programmable sensor networks. In: Proceedings of MobiSys
2003, pp. 187-200. ACM, New York (2003)

. CGAL: Computational Geometry Algorithms Library, http://www.cgal.org
. Dunkels, A.: Poster abstract: Rime — a lightweight layered communication stack

for sensor networks. In: Proceedings of EWSN 2007, Poster/Demo session (2007)

. Dunkels, A., Gronvall, B., Voigt, T.: Contiki - a lightweight and flexible operating

system for tiny networked sensors. In: LCN 2004: Proceedings of the 29th Annual
IEEE International Conference on Local Computer Networks (2004)

. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesc

language: A holistic approach to networked embedded systems. In: Proceedings of
Programming Language Design and Implementation, PLDI (2003)

. GNUMP: GNU Multiple Precision Arithmetic Library, http://gmplib.org/
. Gummadi, R., Gnawali, O., Govindan, R.: Macro-programming wireless sensor

networks using kairos. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M.
(eds.) DCOSS 2005. LNCS, vol. 3560, pp. 126-140. Springer, Heidelberg (2005)
He, 7., Osterlind, F., Dunkels, A.: An adaptive communication architecture for
wireless sensor networks. In: Proceedings of ACM SenSys (2007)

Hnat, T.W., Sookoor, T.I., Hooimeijer, P., Weimer, W., Whitehouse, K.: Macro-
lab: a vector-based macroprogramming framework for cyber-physical systems. In:
Processings of the ACM SenSys 2008, New York, NY, USA, pp. 225-238 (2008)
ISO/IEC JTC1 SC22 WG21. ISO/IEC TR 18015: Technical Report on C++ Per-
formance. Technical report (February 2006)

Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: mobile networking
for “smart dust”. In: MobiCom 1999: Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, pp. 271-278. ACM,
New York (1999)

Levis, P., Culler, D.: Mate: A tiny virtual machine for sensor networks. In: In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems, San Jose, CA, USA (October 2002)

Liu, A., Ning, P.: TinyECC: A Configurable Library for Elliptic Curve Cryptogra-
phy in Wireless Sensor Networks. In: IPSN 2008: Proceedings of the 7th interna-
tional conference on Information processing in sensor networks (2008)

Sauter, R., Marrén, P.J., Dunkels, A., Voigt, T., Tsiftes, N., Finne, N., Osterlind,
F., Eriksson, J.: Demo abstract: Towards interoperability testing for wireless sensor
networks with cooja/mspsim. In: Roedig, U., Sreenan, C.J. (eds.) EWSN 20009.
LNCS, vol. 5432. Springer, Heidelberg (2009)

Shaylor, N., Simon, D.N., Bush, W.R.: A java virtual machine architecture for
very small devices. In: LCTES 2003: Proceedings of the 2003 ACM SIGPLAN
conference on Language, compiler, and tool for embedded systems (2003)

Simon, D., Cifuentes, C.: The squawk virtual machine: Java on the bare metal. In:
OOPSLA 2005, pp. 150-151. ACM, New York (2005)

Stroustrup, B.: The C++ Programming Language. Addison-Wesley, Reading
(2000)

TinyOS, http://www.tinyos.net

Vandevoorde, D., Josuttis, N.M.: C++ Templates: The Complete Guide. Addison-
Wesley, Reading (2003)

Whitehouse, K., Tolle, G., Taneja, J., Sharp, C., Kim, S., Jeong, J., Hui, J., Dutta,
P., Culler, D.: Marionette: using rpc for interactive development and debugging of
wireless embedded networks. In: IPSN 2006, New York, USA, pp. 416-423 (2006)

http://www.cgal.org
http://gmplib.org/
http://www.tinyos.net

	Wiselib: A Generic Algorithm Library for Heterogeneous Sensor Networks
	Introduction
	Related Work
	Problem Space
	Heterogeneity
	C++ in Embedded Systems

	The Wiselib
	Architecture
	External Interface
	pSTL
	pMP
	Algorithm Support

	Case Study: Secure Routing Algorithms
	Experimental Results
	External Interface
	Algorithms

	Accessing the Wiselib
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

