
This is the author’s version of the work. For personal use only, not for redistribution.
The definitive version will be published in the proceedings of the 2018 19th Annual Middleware Conference (MIDDLEWARE).

sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves
Nico Weichbrodt

IBR, TU Braunschweig
Germany

weichbr@ibr.cs.tu-bs.de

Pierre-Louis Aublin
LSDS, Imperial College London

United Kingdom
p.aublin@imperial.ac.uk

Rüdiger Kapitza
IBR, TU Braunschweig

Germany
kapitza@ibr.cs.tu-bs.de

ABSTRACT
Novel trusted execution technologies such as Intel’s Software Guard
Extensions (SGX) are considered a cure to many security risks in
clouds. This is achieved by offering trusted execution contexts, so
called enclaves, that enable confidentiality and integrity protection
of code and data even from privileged software and physical attacks.
To utilise this new abstraction, Intel offers a dedicated Software
Development Kit (SDK). While it is already used to build numerous
applications, understanding the performance implications of SGX
and the offered programming support is still in its infancy. This
inevitably leads to time-consuming trial-and-error testing and poses
the risk of poor performance.

To enable the development of well-performing SGX-based applic-
ations, this paper makes the following three contributions: First, it
summarises identified performance critical factors of SGX. Second,
it presents sgx-perf , a collection of tools for high-level dynamic per-
formance analysis of SGX-based applications. In particular, sgx-perf
performs not only fined-grained profiling of performance critical
events in enclaves but also offers recommendations on how to im-
prove enclave performance. Third, it demonstrates how we used
sgx-perf in four non-trivial SGX workloads to increase their per-
formance by up to 2.16x.

CCS CONCEPTS
• Software and its engineering→ Softwaremaintenance tools;
• Security and privacy→ Software security engineering;

KEYWORDS
Intel Software Guard Extensions, Trusted Execution, Performance
Profiling
ACM Reference Format:
NicoWeichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza. 2018. sgx-perf: A
Performance Analysis Tool for Intel SGX Enclaves. In 19th International Mid-
dleware Conference (Middleware ’18), December 10–14, 2018, Rennes, France.
ACM,NewYork, NY, USA, 13 pages. https://doi.org/10.1145/3274808.3274824

1 INTRODUCTION
Although cloud computing has become an everyday commodity,
customers still face the dilemma that they either have to trust

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Middleware ’18, December 10–14, 2018, Rennes, France
© 2018 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-5702-9/18/12. . . $15.00
https://doi.org/10.1145/3274808.3274824

the provider or need to refrain from offloading their workloads
to the cloud. With the advent of Intel’s Software Guard Exten-
sions (SGX) [14, 28], the situation is about to change as this novel
trusted execution technology enables confidentiality and integrity
protection of code and data – even from privileged software and
physical attacks. Accordingly, researchers from academia and in-
dustry alike recently published research works in rapid succession
to secure applications in clouds [2, 5, 33], enable secure network-
ing [9, 11, 34, 39] and fortify local applications [22, 23, 35].

Core to all these works is the use of SGX provided enclaves,
which build small, isolated application compartments designed to
handle sensitive data. Enclave memory is encrypted at all times
and integrity checks by the CPU detect unauthorised modifications.
Internally, enclaves are a special CPU mode and are enabled via
new instructions. To ease development of enclaves, Intel released a
Software Development Kit (SDK) [16]. It hides the SGX hardware
details from the developer and introduces the concept of ecalls and
ocalls for calls into and out of the enclave, respectively, that look
like normal functions calls. While enclaves offer confidentiality of
data and integrity of code and data, these properties come with a
performance cost [1, 31, 44]. However, despite the rapid research
progress over the last years, the understanding of the provided
hardware abstractions and the offered programming support – es-
pecially its performance implications – is still limited. This leads
to time consuming trial-and-error development and debugging as
well as incurring the risk of bad performance.

Early works such as SCONE [1], SecureKeeper [5], and Eleos [31]
have shown that enclaves have multiple potential performance is-
sues that can be addressed through different techniques such as
asynchronous calls [1, 44] and extended memory management sup-
port [31]. However, all these systems provide isolated solutions
and only slightly address the development of commodity applica-
tions using the Intel SGX SDK. To support the SDK, Intel updated
their low-level performance profiler VTune Amplifier [18] to allow
profiling of SGX enclaves. However, VTune is built for perform-
ance profiling on an instruction level, providing information about
hot spots in functions. While this is helpful, it does not provide
information and insights about the specific characteristics of SGX.
In summary, while SGX is rapidly adopted to secure applications,
there is limited knowledge and a severe lack of tooling support
empowering users to implement well-performing applications.

In this paper we aim to address this demand by a tripartite ap-
proach. First, §3 provides a summary of the performance critical
factors of SGX. Second, §4 presents sgx-perf , a collection of tools
to dynamically analyse enclaves, without having to recompile the
application. sgx-perf allows developers to trace enclave execution
and record performance critical events such as enclave transitions
and paging. It does so by shadowing specific functions of the SGX

https://doi.org/10.1145/3274808.3274824
https://doi.org/10.1145/3274808.3274824

Middleware ’18, December 10–14, 2018, Rennes, France Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza

SDK and thereby redirecting the control flow. Analysing the recor-
ded data then gives insights on potential bottlenecks. Furthermore,
sgx-perf offers SGX-tailored recommendations on how to improve
the enclave code and interface to increase performance. Third, in §5
we analyse enclaves of multiple projects using sgx-perf , implement
recommendations when applicable to improve performance and
present our findings. In particular, we looked at four classes of
applications that are relevant for cloud enviroments and SGX: a
cryptography library [2], a key-value store [5], an application parti-
tioned using the Glamdring tool [25] and a database [37]. We found
that the enclave interface design is an integral part of enclave per-
formance and that applying the recommendations from sgx-perf
increases performance by at most 2.66×.

In addition, §2 gives background information on Intel SGX, the
SGX SDK, existing tooling support, and why enclave performance
matters, §6 shows related work and §7 concludes.

2 BACKGROUND
This section gives an overview about SGX and the available pro-
gramming support for enclaves as provided by the SGX SDK. Fur-
thermore, we present enclave performance considerations and cur-
rent SGX-aware profiling tools.

2.1 Intel Software Guard Extensions
Intel’s Software Guard Extensions (SGX) [28] is an extension to the
x86 architecture, which allows the creation of secure compartments
called enclaves. Enclaves can host security critical code and data
for applications running on untrusted machines. Authenticity and
integrity of the enclave is guaranteed by SGX through both local
and remote attestation mechanisms.

The memory used for enclaves is a special region of system
memory, called the Enclave Page Cache (EPC). In current SGX
capable systems it has amaximum size of 128MiB, of which≈93MiB
are usable. While enclaves can be bigger than this limit, this incurs
costly swapping of pages to and from the EPC. All enclave memory
is fully and transparently encrypted as well as integrity protected.

Inside the EPC, each enclave has its own page holding metadata
about the enclave such as its size and signature to check for its
integrity, called measurement. Furthermore, each enclave has at
least one Thread Control Structure (TCS) page describing an entry-
point into the enclave. TCSs are used by threads to enter the enclave.
The number of TCS determines the maximum number of threads
that can execute inside the enclave concurrently. Each TCS also
points to its own stack inside the enclave. Lastly, enclave heap, code,
and data sections are also located inside the EPC.

Enclave creation must be handled in kernel-space, e.g., through
a kernel module, whereas enclave interaction is restricted to user-
space applications. Privileged code cannot enter enclaves and un-
privileged code cannot create enclaves. Entering an enclave is done
through the EENTER instruction which changes the execution con-
text to inside the enclave. It can be left again with EEXIT.

Entering and leaving the enclave are synchronous operations, i.e.,
they are done explicitly. Furthermore, there exists a way to asyn-
chronously leave the enclave. Whenever an interrupt, exception,
fault or similar happens while the processor is executing inside the
enclave, then the current context, i.e., the state of the registers, is

ecall_do_work()

enclave.c

main()

app.c

sgx_ecall_do_work()

enclave_t.c

ecall_do_work()

enclave_u.c

enclave_entry()

libsgx_trts.a

sgx_ecall()

libsgx_urts.so

Developer sgx_edger8r SDK Libraries

Untrusted application Trusted enclave

Figure 1: Architecture of an ecall. The developer provides
the application and ecall implementations whereas the SDK
generates code which uses the URTS and TRTS libraries.

saved into the thread-specific State Save Area (SSA). The current
instruction is then finished and the enclave is left to handle the situ-
ation, e.g., call the interrupt handler. This is called an Asynchronous
Enclave Exit (AEX). After the handler finishes, the processor ex-
ecutes the user-defined handler located at the Asynchronous Exit
Pointer (AEP) instead of resuming the enclave. Typically, the hand-
ler uses the ERESUME instruction to continue enclave execution,
which restores the saved context and continues at the point of
interruption but re-entering with EENTER is also possible.

2.2 Intel SGX Software Development Kit
To ease enclave development, Intel released a Software Develop-
ment Kit (SDK) [16] in 2016. The SDK abstracts the enclave trans-
itions into a concept they call enclave calls and outside calls. Enclave
calls, or ecalls, are calls from the untrusted application into the
enclave. Outside calls, or ocalls, are calls in the opposite direc-
tion. Enclave developers specify the enclave interface in form of
ecalls and ocalls using the Enclave Description Language (EDL).
The SDK source-to-source code generator sgx_edger8r then gen-
erates wrapper code from this EDL file to be compiled and linked
into the developed application and enclave. Furthermore, the SDK
provides a trusted, but stripped down standard C/C++ library, a
trusted cryptography library and Trusted Runtime System (TRTS)
for the enclave as well as an Untrusted Runtime System (URTS)
for the untrusted application. The cryptography library provides
basic encryption and decryption functions whereas the TRTS and
URTS handle the enclave transitions and call dispatching. Missing
features from the standard C/C++ library that require system calls
have to be reimplemented, e.g., as ocalls.

As can be seen in Figure 1, the actual enclave transitions are
located in the URTS (EENTER and ERESUME) and TRTS (EEXIT). The
SDK uses the same generic entry point for all ecalls with a trampo-
line dispatching the call to the right function. Similarly, ocalls are
handled the other way round.

2.3 Enclave Performance Considerations
Enclave performance has been the subject of research since the
availability of SGX-capable hardware in 2015. The consensus is
that both enclave transitions and enclave paging are expensive

sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves Middleware ’18, December 10–14, 2018, Rennes, France

and should be avoided. Several research projects propose different
techniques to eliminate transitions and make better use of the
memory consumption [1, 31, 44]. Unfortunately these require a
change in programming paradigms and are not openly available
like the SGX SDK.

2.3.1 Enclave Transitions. Enclave transitions are the base mech-
anism to be able to execute code inside the trusted execution en-
vironment. Furthermore, enclaves are restricted to a subset of the
instructions available on the processor. In particular they cannot
use int or syscall [14] and therefore cannot issue system calls,
for I/O operations or threads synchronisation. These features thus
require the implementation of additional ocalls.

Weisse et al. [44] measured enclave transitions of SDK ecalls and
ocalls in the order of 8,600 to 14,000 cycles, depending on cache hit
or miss. Instead, we directly measured the time elapsed between the
EENTER and EEXIT instructions, excluding the overhead of the URTS
looking for a free TCS and the TRTS actually dispatching the call,
in three different settings: (i) on an unmodified Intel SGX-capable
processor; (ii) after applying the SDK and microcode updates to
fix the Spectre [20] speculative execution vulnerability, which also
affects SGX [6, 29]; and (iii) after applying the microcode update to
fix the Foreshadow (L1 Terminal Fault) [42] attack.

In the first case, we measured transition times of ≈ 5, 850 cycles
(≈ 2, 130 ns) with a warm cache for one round-trip (see §5 for the
experimental settings). In the second case, we measured a transition
time of ≈ 10, 170 cycles (≈ 3, 850 ns), ≈ 1.74× more than without
patches. Finally, with all the updates and microcodes to address the
Spectre and Foreshadow vulnerabilities enclave transitions became
even slower, resulting in a round-trip time of ≈ 13, 100 cycles (≈
4, 890 ns), ≈ 2.24× more. This further underlines the need to save
on enclave transitions.

2.3.2 In-Enclave Synchronisation. Enclaves can be multi-threaded
and therefore need synchronisation primitives. Unfortunately, as
sleeping is not possible inside enclaves, the in-enclave synchron-
isation primitives provided by the SGX SDK implement additional
ocalls to sleep outside of the enclave.

The SDK offers mutexes that work as follows: if a thread tries
to lock an unlocked mutex, then this operation succeeds without
needing to leave the enclave. Whenever a thread tries to lock an
already locked mutex, it will put itself into a queue and exit the
enclave via an ocall to sleep. The thread holding the mutex will then
need to wake up the sleeping thread by looking into the queue and
leaving the enclave via an ocall. A mutex lock can therefore result
in two ocalls. This is especially a problem as the wake-up ocall is
typically very short (<10µs) and therefore the enclave transition is
taking the majority of the time.

2.3.3 Enclave Paging. Another important factor for enclave per-
formance is enclave size, especially the size of the working set. SGX
stores all enclaves inside the EPCwhich on current implementations
has a size of 128 MiB. Of those, 93 MiB are usable; the difference is
used to store metadata used for integrity protection [10].

In the EPC, enclaves basically consist of four parts: one metadata
page, its code, the heap and a thread-data page (TCS), stack and
SSA pages for each configured enclave thread. The heap and stack
sizes are set at enclave build time via a configuration file and should

be large enough to accommodate all needed dynamic memory alloc-
ations. Contrary to normal application development, the heap and
stack are not virtually infinite, but actually have a limit that can be
hit if developers are not cautious. Therefore, one might be tempted
to increase their sizes, or even the number of maximum concurrent
threads, to some high number. With SGX v2, this becomes less of a
problem, as the enclave can be extended after creation. Therefore,
the enclave can be created small and as soon as stack or heap are
exhausted, new pages may be added on-demand. Clearly, this still
incurs paging if the enclave exceeds the EPC size.

SGX supports paging from EPC to main memory to accommod-
ate enclaves that do not fit into EPC. However, these operations are
costly and have a big impact on enclave performance [1, 5]. This is
due to the cost of added enclave transitions to handle page faults
as well as extra computation needed for cryptographic operations.
Therefore, carelessly increasing and using enclave memory might
incur paging and therefore performance hits.

2.4 Existing Tooling Support
Since SGX essentially adds a new processing mode, most existing
tools inspecting processes do not expect enclaves and, therefore,
are not able to interact with them. To our knowledge, only the
following two tools support SGX in some way.

The SDK ships with a plugin for the GNU Debugger (gdb), allow-
ing it to inspect enclaves1, set breakpoints and more. The separate
application and enclave stacks are virtually stitched together to
display a single call-stack for calls inside the enclave to ease debug-
ging. This plugin only works for applications developed with the
SDK, other projects like SGX-LKL [27] also support gdb with their
own plugin.

Intel updated their profiling software VTune Amplifier [18] to
work with SGX. VTune is able to do a so-called sgx-hotspots analysis
on applications utilizing enclaves which gives developers insight
into their enclave functions regarding execution hotspots. A hotspot
is a piece of code that is executed frequently, e.g., the body of a loop,
defined by metrics such as overall cycles per instruction or cache
misses. Knowing where hotspots are can help developers to decide
which code parts to optimise further. VTune focuses on low-level
analysis of code fragments only.

Unfortunately, these tools are not sufficient to help the developer
write efficient enclave code as they do not take into account SGX
specific features.

3 SGX PROBLEMS AND SOLUTIONS
As outlined in §2.4, the metrics collected by current tools are not
sufficient to tackle the performance problems of enclaves. Accord-
ing to previous research projects [1, 31, 44], the overhead of using
enclaves primarily boils down to (i) the number of enclave trans-
itions during execution and their duration; and (ii) the number of
paging events.

Paging events perform SGX-specific computations while also
causing enclave transitions due to fault handling. Therefore, redu-
cing the number of enclave transitions should be prioritised. This
can be achieved through a well-designed enclave interface that both
maximises the execution time spent either inside or outside the
1This only works on enclaves that have the debug flag set.

Middleware ’18, December 10–14, 2018, Rennes, France Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza

Problem Solution

Short Identical Successive Calls Batch calls
Move caller in/out encl.

Short Different Successive Calls Merge calls
Move caller in/out encl.

Short Nested Calls Reorder calls
Duplicate ocalls

Short Synchronisation Calls Lock-free data structures
Hybrid sync. primitives

Paging
Reduce memory usage
Load pages before ecall
Do not use SGX paging

Permissive Enclave Interface
Limit public ecalls
Limit ecalls from ocalls
Check data and pointers

Table 1: Identified performance and security problems and
their possible solutions.

enclave and minimises the number of transitions during execution.
This leads us to our premise that calls whose raw execution time is
shorter than the enclave transition time should be avoided if at all
possible. In addition, we argue that the robustness of the enclave
interface is of prime importance and that it is necessary to analyse
it to look for potential security problems.

The rest of this section details SGX-specific problems that can
arise in practice regarding the performance and security of enclaves
as well as recommendations to improve the code. A summary can
be found in Table 1.

3.1 Short Identical Successive Calls
The Short Identical Successive Calls (SISC) problem occurs when
multiple short executions of the same call are made in succession.
As transitions have a fixed cost, computations that are shorter than
it are wasteful. Therefore, multiple calls of the same ecall entering
or multiple calls of the same ocall leaving the enclave in succession
should be batched.

Another solution can be tomove the caller function inside/out-
side of the enclave. As a result, only one transition will occur for
the successive calls. See §5.2.3 for an example. Note that moving a
function from inside the enclave to outside, to remove successive
ecalls, might pose a security risk as the ecall probably handles sens-
itive data. A security evaluation is therefore recommended when
moving functions outside of the enclave.

3.2 Short Different Successive Calls
Contrarily to SISC, a Short Different Successive Calls (SDSC) prob-
lem occurs when multiple short executions of different calls are
made in succession. Same as with SISC, this causes a waste of re-
sources as actual computation time might be less than transition
time. Possible solutions aremerging these calls into a single call
or moving the caller function inside/outside the enclave. See
§5.2.2 for an example.

3.3 Short Nested Calls
The Short Nested Calls (SNC) problem occurs when short calls are
made at start or end of another call. These short calls are candidates
for possible elimination as their execution should either be done
before or after the call instead of during the call. However, thismight
not always be possible due to the application’s architecture. An
example for this is an ecall that issues an ocall to allocate memory
for a result. Instead of allocating this memory during the ecall,
the allocation should be moved to before the ecall. The solution is
therefore to reorder the ocall to execute before the ecall.

This might be problematic if the needed space is not known
before the ecall’s execution. However, in this case a sensible default
can be chosen and an ocall can be issued only if more memory is
needed. Both SecureKeeper [5] and LibSEAL [3] use similar tech-
niques to circumvent issuing ocalls for untrusted memory alloca-
tions during ecalls.

The solution is not exclusive to ocalls during ecalls, it can also be
applied to short ecalls during ocalls. Depending on the call, short
ocalls can also be duplicated inside the enclave. This increases
the Trusted Code Base (TCB) of the enclave but also improves
performance.

3.4 Short Synchronisation Calls
A special case of SNC are Short Synchronisation Calls (SSC). As
stated in §2.3.2, the SDK provides in-enclave synchronisation primit-
ives that potentially issue ocalls for sleeping and waking up threads.
The wake-up ocalls are typically very short (<10µs on average in all
cases we observed) whereas the sleep calls can vary in execution
time, depending on how long the thread is sleeping. Short sleep
calls suggest that the time the lock is taken is very short and going
outside of the enclave for sleeping should be avoided.

In these cases, it would be beneficial to have a hybrid locking
mechanism that first tries to take the lock inside the enclave mul-
tiple times in a spinlock fashion before going to sleep or, if possible,
to use non-blocking data structures.

3.5 Paging
As stated in §2.3.3, paging events during enclave execution are very
costly due to additional transitions and cryptographic operations.
Enclaves too large for the EPC can be the result of having a too large
dataset inside the enclave or of poor data handling inside the en-
clave. Developers need to be aware that the need for space-efficient
data structures is higher for enclaves than other applications.

Paging can be mitigated by multiple techniques: (i) keep the
enclave small to always fit into EPC, (ii) prevent page faults during
enclave execution by pre-loading pages into the EPC or (iii) use an
alternative memory management mechanism inside the enclave
instead of the SGX paging mechanism. (i) can be achieved by using
space-efficient data structures or by loading smaller chunks of data
into the enclave, if possible. However, this might not be enough as
the EPC is shared between all running enclaves. It is not possible to
assume which enclave size is suitable as the EPC might already be
blocked by other enclaves and paging is unavoidable, especially in
a multi-tenant cloud scenario. (ii) is possible by loading the needed
pages before issuing the ecall. This prevents the costly page faults
and AEXs inside the enclave during execution. Examples of (iii)

sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves Middleware ’18, December 10–14, 2018, Rennes, France

have been implemented by the Eleos [31] and STANlite [33] systems.
In a nutshell, these systems store sensitive data in an encrypted and
integrity-protected manner outside of the enclave, in the untrusted
environment. Then, when the data is needed, it is copied inside the
enclave and decrypted.

In general, enclaves should be designed to encounter paging as
seldom as possible as it incurs too high performance costs through
additional transitions.

3.6 Security Enhancements
Given that enclaves deal with sensitive data inside an untrusted
environment, it is necessary to reduce the attack surface of their
interface [17]. We have observed three possible security problems
that can easily be mitigated.

First, the SGX SDK allows ecalls to be defined as public or private [15].
Public ecalls can always be called whereas private ecalls can only
be called during an ocall. Defining an ecall as private can enhance
the enclave security by limiting the possible paths leading to an
ecall. It is then easier for developers to make assumptions about
the state the enclave is in when executing a given ecall.

Second, the developer has to precisely specify which ecalls are
allowed within each ocall. If a particular ecall has been forgotten,
an error will be triggered during execution. Developers might be
tempted to simply allow every ecall from all the ocalls. In the worst
case, if a specific ecall/ocall combination is not considered by the
developer, this could be exploited by an attacker to change the
control path of the execution of the program and gain access to
enclave secrets. Consequently, it is important to limit the ecalls that
can be called from any ocall.

Third, the EDL file defines the behaviour of pointers passed as
arguments of the ecalls and ocalls: in, if data has to be copied inside
(resp. outside) the enclave before an ecall (resp. ocall); out, if data
has to be copied outside (resp. inside) the enclave after an ecall (resp.
ocall); and user_check, if handling the pointer is left to the developer.
While user_check is the simplest behaviour, it might also lead to
security vulnerabilities, e.g., due to buffer overflows, time-of-check-
to-time-of-use attacks [43] or passing an in-enclave address [19]. It
is thus important to check and limit how the pointers are passed
and used across the enclave interface.

4 THE SGX-PERF TOOLS
In this section we present sgx-perf , a toolset to analyse perfor-
mance-impacting behaviour of enclaves. It pinpoints the problems
mentioned in §3 and gives developers hints on how to restructure
their enclaves to avoid these issues.

sgx-perf consists of multiple tools that work together: an event
logger, the working set estimator and an analyser. Event recording
is done by the event logger which traces ecalls, ocalls, AEXs and
EPC paging. Working set estimation is done by a separate tool, as
it heavily interferes with enclave execution. Lastly, analysis and
visualization of the data is done by the analyser.

The sgx-perf event logger is implemented as a shared library.
This library is preloaded into the untrusted application using the
LD_PRELOAD environment variable so the dynamic linker loads it
before all others including the URTS. This makes it possible to use
the event loggerwithout having tomodify the untrusted application,

ecall_do_work()

enclave.c

main()

app.c

sgx_ecall_do_work()

enclave_t.c

ecall_do_work()

enclave_u.c

enclave_entry()

libsgx_trts.a

sgx_ecall()

libsgx_urts.so

Untrusted application Trusted enclave sgx-perf Logger

sgx_ecall()

liblogger.so

Figure 2: sgx-perf tracks ecalls by shadowing the call to
sgx_ecall so it is called instead of the URTS.

the enclave or the SDK. Function calls are traced by providing the
traced symbols anew. For example, the logger provides its own
implementation of pthread_create which is then called by the
application instead of the real function inside the standard library.
It can trace the call and record an event before dispatching the call
to the real implementation.

Additionally, the logger registers its own signal handlers for some
signals. The handler registering functions signal and sigaction
are also overloaded, so that other registered handlers can be saved
and called after the logger has processed the signal itself. This is
important for tracing some applications, e.g., Java applications with
enclaves attached via Java Native Interface (JNI), as the OpenJDK
uses signals for communication between threads.

All events are serialised to a SQLite database. This makes it
possible to analyse the data with other tools without having to
implement parsing of the data. Migrating the data to a real SQL
server can also be envisioned.

4.1 Tracing ecalls and ocalls
The main method of interaction with enclaves are ecalls and ocalls
which cause enclave transitions. As described in §2.3.1, we know
that enclave transitions are costly and if high performance is desired,
their count needs to be minimised. Furthermore, short calls into
or out of the enclave are also not desirable as the overhead of
transitioning can overshadow the actual computation time.

To show the ecall and ocall behaviour of an application, the
logger traces these transitions as described in the following.

4.1.1 Tracing of ecalls. To use ecalls, the application developer has
to describe the enclave interface and generate wrapper code. This
wrapper code allows the developer to call the ecall functions by
their given name (e.g., ecall_encrypt) like a normal function. In
practice, the symbols exists twice, once inside the enclave and once
outside. The outside wrapper calls the sgx_ecall function of the
URTS with a generated numeric identifier which causes an enclave
transition into a trampoline that resolves the identifier to the actual
ecall and calls it.

This design of issuing all ecalls through a common function
inside the URTS allows the logger to shadow the implementation of
sgx_ecallwith its own to trace calls into the enclave (see Figure 2).
When the sgx_ecall function of the logger is called, it first records

Middleware ’18, December 10–14, 2018, Rennes, France Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza

ecall_do_work()

enclave.c

main()

ocall_print()

app.c

sgx_ecall_do_work()

ocall_print()

enclave_t.c

ecall_do_work()

sgx_ocall_print()

enclave_u.c

enclave_entry()

sgx_ocall()

libsgx_trts.a

sgx_ecall()

ocall()

libsgx_urts.so

Untrusted application Trusted enclave sgx-perf Logger

sgx_ecall() oTloддer

liblogger.so

ocall_stub()

oTor iд

Figure 3: sgx-perf rewrites the ocall table oTor iд to its own
table oTloддer during ecalls to track ocalls.

the current time as well as the identifier of the issuing thread and
the ecall identifier. It then calls the sgx_ecall function of the URTS.
Finally, it again records the current time in order to measure the
duration of the ecall. Note that the logger is executing outside of
the enclave and is therefore able to measure time.

4.1.2 Tracing of ocalls. To trace ocalls we tried to employ the same
mechanism as for ecalls as the design for calling ocalls is basically
the same: a common sgx_ocall function dispatches the call based
on an identifier. Unfortunately, this function is part of the TRTS and
therefore inside the enclave. The logger cannot shadow an enclave
function as this would violate the enclave’s integrity.

The sgx_ocall function uses the EEXIT instruction to leave
the enclave which needs the address of the ocall function to jump
to. These addresses are not fixed, as the ocalls could be inside
shared libraries or because the binary is relocated by the Operating
System (OS). This makes it impossible for the SDK to include the
addresses into the enclave during compilation, therefore they have
to be injected at runtime.

The SDK chooses the following approach: It constructs a table
mapping numeric identifiers to function pointers called ocall_table
which is given as an argument to sgx_ecall. The pointer to the
table is then saved inside the URTS for later use. Should an enclave
issue an ocall, it will exit the enclave to a function that will look
up the function pointer from the saved ocall table. This makes
it possible for the logger to change the table and inject our own.
However, the function pointers included in the original table are
already pointing to the correct ocall functions and not to a common
function, e.g., a trampoline, that we could intercept.

Therefore, as seen in Figure 3, a call stub is generated by the
logger on the fly for each function in the table. The call stub is given
information about the ocall like its identifier, the enclave identifier
and the original function pointer. Then, when an ocall happens,
the generated call stub is called instead, which logs the appropriate
events and then calls the original ocall. All stubs are combined as a
new table (oTloддer) which is propagated in place of the original
one during the ecall tracing. This means, that we always replace

the table, even if the ecall does not perform any ocalls, as we cannot
know this beforehand.

Call stub and table creation is only needed once per ocall table.
In practice, this means exactly once per enclave as SDK applications
have one ocall table per enclave. Note that timestamps recorded
do not include transition times as they are recorded outside of
the enclave. This results in ocalls being seemingly shorter than
ecalls when doing the same work as ecall timestamps include the
transition time. For the analysis phase this means that for ocalls
the execution time can be compared directly to the transition time
whereas for ecalls, the transition time has to be subtracted from the
measured execution time first.

4.1.3 Tracing In-Enclave Synchronisation. As stated in §2.3.2, the
SDK supports special in-enclave synchronisation primitives that
use ocalls to put threads to sleep. Through its ocall tracking facility,
the logger can track these ocalls in a general way. In addition, the
logger overloads the four specific synchronisation ocalls of the SDK:
(i) sleep, (ii) wake up one, (iii) wake upmultiple and (iv) wake up one
and sleep. These four ocalls can be reduced to two event types: sleep
and wake-up. The events allow the logger to also track which thread
wakes up which other threads to track dependencies between them.
This information can be used to detect high-contention scenarios
that cause a high frequency of ocalls.

4.1.4 AEX Counting and Tracing. While executing inside an en-
clave, interrupts and faults can still occur. These need to be handled
by the untrusted operating system and therefore the enclave has
to be exited. For this, the concept of an AEX exists which saves
the enclave state and then leaves the enclave to execute, e.g., the
interrupt handler. Afterwards, a jump to the address pointed to
by the AEP is made, which then decides whether to resume the
enclave or do something else (see §2.1).

In the SDK, the AEP points to exactly one instruction, namely
ERESUME which resumes the enclave. The logger can optionally
patch this location with a jump to its own AEP. This allows it to
either only count the number of AEXs per ecall or to record also
the time at which each AEX occurred. This information is useful in
conjunction with ecall duration, as longer ecalls are subject to more
AEXs. Similarly, AEXs increase ecall duration as they interrupt
them. Tracing AEXs allows the analyser to correlate ecall duration
with AEX times as multiple AEX in short succession will delay
an ecall significantly while not being an issue with the ecall itself.
Such bursts of interruption can be caused by high system load or
other external factors. For example, a high amount of interrupts
on the core currently processing the enclave will result in an high
amount of AEXs. Knowledge of this is helpful to separate high-
interrupt execution, e.g., a network thread, from enclave execution
by pinning the threads to different cores.

Due to a limitation in the first version of SGX, it is not possible to
infer the reason for the AEX. While we can distinguish interrupts
from some type of faults (e.g., segmentation faults, as those will
engage a signal handler), we cannot differentiate interrupts from
simple page faults. SGX v2 will enable this, as the SGX subsystem
can be instructed to record the exit type into the enclave state.
This type could then be read by the logger as long as the enclave
is a debug enclave to further give the reason for the enclave exit.

sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves Middleware ’18, December 10–14, 2018, Rennes, France

However, even though the AEX cause is not recorded, the logger
can still determine paging events, as shown in § 4.1.5.

4.1.5 EPC Page Tracing. Another problem with SGX enclaves is
the limited space for the EPC. The EPC holds all enclave pages
and is limited to 93 MiB. If the EPC is full, the SGX driver swaps
pages to untrusted memory. This requires re-encryption of the page
and incurs a heavy performance overhead as previous research has
shown [1]. Ideally, enclave pages should never leave the EPC when
the enclave is in use.

As paging happens inside the kernel, it is only possible to track
it using kernel tracing approaches. The logger uses kprobe [21]
to trace the respective functions inside the kernel driver that page
in and page out enclave pages. This allows recording not only the
time at which the swap happened, but also the virtual address of
the page. Referencing those with the known enclaves of the process
allows the logger to find out when and which part of an enclave
has left the EPC. This information can be used to, e.g., determine
enclave parts that were never actually used.

4.2 Enclave Working Set Estimation
In §3.5, we claimed that enclaves should be designed to seldom
encounter paging. As this is potentially hard to achieve, sgx-perf
comes with a tool that enables developers to get information about
the working set of their enclaves on a page granularity, which is
useful for right-sizing enclaves.

The working set is a metric that cannot directly be inferred
from the size of the enclave binary. Enclaves do contain pages that
can be safely paged out, as they are normally never used. These
pages are either guard pages, e.g., for the enclave stack, or padding
pages which are normally not accessed, but are needed as they are
contained in the enclave measurement and the enclave size needs
to be a power of two bytes.

The working set of pages is therefore much smaller than the
actual enclave. To figure out the working set, sgx-perf provides a
tool that tracks all accessed pages: the working set estimator. It
reports the amount of pages accessed between two configurable
points in time and operates by stripping all page permissions from
enclave pages, catching access faults and restoring permissions
on access. This works due to the fact that page permissions are
saved and checked twice, once by the Memory Management Unit
(MMU) and once by SGX. While the SGX permissions are fixed
after enclave creation time2, it is possible to modify the MMU
page permissions during runtime, which are checked first. Missing
permissions therefore lead to access faults when pages are accessed.
Catching the faults and restoring permissions allows the working
set estimator to track page accesses and determine the working set.
This method is similar to the page tracing done by some SGX attack
papers [43, 45]. In these cases, the page tracing is used to determine
control flow of the enclave whereas in our case we just count the
accesses. A page-table based approach, i.e. looking and clearing the
access bits, would also work but requires kernel involvement which
we wanted to avoid.

However, this approach has the disadvantage that we only see
pages that are accessed during execution. We can’t infer all possible
2Changing these is possible from inside the enclave with SGX version two. Software
support is already available in the SGX SDK since v2.0.

branches taken during execution and therefore have to rely on
different enclave inputs to give us an exhaustive list of page accesses.
Figuring out which pages are accessed or not can only be done via
exhaustive execution.

4.3 Data Analysis and Developer Hints
The main objective of sgx-perf is to give developers information
about their application’s performance as well as hints on how to
improve it. This is achieved using the analyser. In the following
sections, we describe what information is provided by the analyser,
which criteria are used to detect problems and what hints are given
in these cases.

4.3.1 General Statistics. To give a first overview of the application,
the analyser will calculate general statistics for all ecalls and ocalls.
These statistics comprise number of calls, average and median dur-
ation, standard deviation as well as 90th, 95th and 99th percentile
values. Furthermore, the analyser can generate histograms for the
call execution times as well as scatter plots showing the call’s exe-
cution times over the course of the application’s execution. This
information gives a quick overview over the calls and can be used to
detect outliers. The analyser can also generate call graphs detailing
dependencies between ecalls and ocalls to get an overview of the
application’s call patterns (see Figure 5 in §5.2.1).

4.3.2 Problem Detection. The main goal of the analyser is to give
hints to developers regarding changes that can impact performance
positively. In §3 we already detailed which performance problems
can exist and how to mitigate them: Short Identical Successive Calls
(SISC), Short Different Successive Calls (SDSC), Short Nested Calls
(SNC), Short Synchronisation Calls (SSC) and paging. The analyser
finds these issues and offers possible mitigation strategies such
as batching or reordering,merging,moving or duplicating, as
shown in §3. For all five mitigation strategies the analyser tries to
find opportunities to use them by analysing the calls made by the
application. The overall intuition is, that a call experiencing many
short executions needs to be optimised more than one experiencing
only few. Therefore, the analyser mainly works by weighting ratios
of call execution times. As a transition into the enclave and back
out again takes ≈ 5µs on a fully patched system, we chose to look
at calls with execution times below 10µs. Furthermore, the analyser
tries to narrow the enclave interface, e.g., by finding ecalls that can
be made private. It is the responsibility of the developer to check
the applicability of the given recommendations. sgx-perf does not
know about the internals of the applications and therefore cannot
know if some recommendations cannot be applied due to design or
application logic constraints.

Direct and Indirect Parents. For all analyses it is necessary to
know which call has been issued before the call that is currently
looked at. For ocalls during ecalls and ecalls during ocalls we have
a simple relationship that is logged by default and called direct
parents: An ecall E is a direct parent of an ocall O if and only if
O was called during execution of E. The same is true for ecalls
during ocalls. Contrary to direct parents, indirect parents are calls
of the same type that were executed before the current call while
belonging to the same direct parent.

Middleware ’18, December 10–14, 2018, Rennes, France Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza

E1 E2 E3(1) E1 OE1
2 OE1

3(2)

E1 OE1
2 EO2

3(3) E1 OE1
2 E3(4)

Figure 4: Some example for calls (C) with their direct (CP)
and indirect (P ← C) parents (P).

Figure 4 shows some calls and their indirect parents. Each E and
O is an ecall and ocall respectively with their subscript numbers
denoting their orderwith regards to time. Direct parents are denoted
in superscript and indirect parents are referenced as a dotted arrow.
As seen in (1), each ecall on the same level has the previous call as
its indirect parent except for the very first ecall. This is the case
when ecalls are called one after another. In (2) we see that only the
ocall O3 has O2 as its indirect parent as they are both issued by E1
and in (3) no calls have indirect parents. (4) shows a case in which
the indirect parent of E3 is not the previous call but rather the call
before that one as O2 is not of the same type as E3.

Enclave Interface Security. The analyser is able of providing de-
velopers with hints regarding the security of the enclave interface.
First, direct parents can be used to detect whether an ecall can
be made private. If all instances of an ecall have direct parents,
i.e., were issued during ocalls, then the analyser can recommend
to make this ecall private and give a list of ocalls that need to be
allowed to call it. Note that this recommendation is dependent on
the workload.

Optionally, the analyser can be supplied the EDL file of the
enclave. If so, it compares the current allowed ecalls for each ocall
with those actually called. If they don’t match, the analyser will
show which ecalls should be removed from the set of allowed ecalls.
The analyser will state the smallest set of allowed ecalls if no EDL
is provided.

Furthermore, the analyser highlights calls which have pointer
arguments annotated with user_check so that developers are re-
minded to look at these calls in particular whether all checks re-
garding the pointers are made.

Duplication and Moving Opportunities. Moving calls into or out
of the enclave is a solution to the SISC and SDSC problems. Duplica-
tion of ocall functionality inside the enclave is a solution to the SNC
problem. Detecting opportunities to apply the solutions is done by
looking at the mean call execution times. Shorter execution times
imply a stronger need for optimisation because more transitions
can be saved. However, the ratio of short calls vs the total number
of calls is also important: Only if the majority of executions are
short, then the optimisation should be recommended. Thus, we
arrive at Equation 1 with Cn stating how many calls were shorter
than n µs and CΣ being the total call count.(

C1
CΣ
≥ α

)
∨

(
C5
CΣ
≥ β

)
∨

(
C10
CΣ
≥ γ

)
(1)

α , β andγ are configurable weights and default toα = 0.35, β = 0.50
and γ = 0.65. These and the following weight values have been
obtained through experimentation. In essence, the analyser checks
if (i) 35% of calls (α) are shorter than 1 µs, (ii) 50% of calls (β) are
shorter than 5 µs or (iii) 65% of calls (γ) are shorter than 10 µs. If

the expression is true, a hint that this call should be moved across
the enclave boundary to save transitions is displayed.

Reordering Opportunities. Call reordering is a solution to the SNC
problem that is applicable to ecalls and ocalls. To detect reordering
opportunities we check if calls are made after the start or before the
end of another call. The analyser sets this in relation to the overall
call count (CΣ) as well as distance from the start/end by counting
how many calls were made in the first (Cs) and last (Ce) 10 µs
(C10) and 20 µs (C20) of a call. Equation 2 shows this for reordering
opportunities at the start of calls. It is the same for reordering
opportunities at the end of calls with Cs switched to Ce .(

Cs10
CΣ
× α +

Cs20
CΣ
× β

)
≥ γ (2)

Again, α , β and γ are configurable weights and default to α = 1.00,
β = 0.75 and γ = 0.50. In essence, the analyser checks if the
weighted calls (calls nearer to the start/end weigh more) are above
the threshold γ . The call is flagged for possible reordering if the
condition is true.

Merging and Batching Opportunities. For the SISC and SDSC
problems batching and merging calls are the respective solutions.
To merge or batch calls, the analyser cannot simply look at call
frequency and execution time. Instead, it finds the indirect parents
of each call and looks at the time difference between each indirect
parent’s end and the current call’s start. Batching is a special case
of merging and is applicable when the call is being its own indirect
parent. Whether multiple different calls are flagged as mergeable
into one is depicted by the expressions in Equation 3.

PΣ
CΣ
≥ λ ∧

(
P1
PΣ
× α +

P5
PΣ
× β +

P10
PΣ
× γ +

P20
PΣ
× δ

)
≥ ϵ (3)

As before, α , β , γ , δ , ϵ and λ are configurable weights and default
to α = 1.00, β = 0.75, γ = 0.50 and δ = ϵ = λ = 0.35. First, the
analyser only considers calls for merging, that are indirect parents
at least 35% of the time (λ). PΣ is the total call count of the indirect
parent whereas CΣ is the total call count of the current call. Then,
the analyser checks how many indirect parents were 1, 5, 10 µs and
20 µs away, weights them accordingly (α , β , γ , δ , faster calls weigh
more) and checks if the results is higher then the threshold ϵ . The
call and indirect parent are flagged for possible merging/batching
if the condition is true.

Recommendation Priorities and Security Implications. While all
recommendations achieve the same results, i.e., less transitions, they
do so in different ways. The analyser can recommendmore than one
optimisation per call. It is then up to the developer to decide which
route to take with the following in mind: moving and duplication
can increase the TCB of an application while reordering does not.
Therefore reordering should be evaluated first before moving on
to other recommendations. Furthermore, moving code out of the
enclave should not be made without a security evaluation to avoid
leaking enclave secrets. Contrarily, moving code into the enclave
does not pose any additional security risk.

5 EVALUATION
Our evaluation answers the following questions: (i) what is the over-
head of running an application with sgx-perf ? And (ii) can sgx-perf

sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves Middleware ’18, December 10–14, 2018, Rennes, France

(1) Single ecall (2) ecall + ocall
Native 4,205 ns 8,013 ns
with Logging 5,572 ns 10,699 ns
Overhead ≈1,366 ns ≈2,686 ns
ocall only – ≈1,320 ns

(3) Long ecall Execution time AEX count
with Logging 45,377 µs –
AEX counting 45,390 µs 11.51
AEX tracing 45,390 µs 11.56
Overhead per call per AEX
AEX couting ≈14,612 ns ≈1,076 ns
AEX tracing ≈15,151 ns ≈1,118 ns

Table 2: Mean execution times per call and overhead of the
logger overhead experiments. Variance is omitted as it is not
significant.

detect optimisation opportunities in systems that use Intel SGX?
To this end we evaluate sgx-perf with several microbenchmarks
as well as four different applications: (i) TaLoS [2], a cryptography
library, (ii) SecureKeeper [5], a key-value store, (iii) SQLite [37], a
database and (iv) LibreSSL [30] partitioned with Glamdring [25].
Our evaluation first shows that the overhead of the event trace
logging of sgx-perf is a fixed 1366 ns per call (see 5.1). Then, it
shows that sgx-perf recommendations are useful to the developer
as we were able to improve the performance by 1.33× to 2.66× after
following them (see 5.2.3).

Experimental Settings. All the experiments were conducted on a
system consisting of a Intel Xeon E3-1230 v5 @ 3.40 GHz processor,
32 GB (2×16 GB @ 1600 MHz) of memory and a 256 GB SATA-III
SSD. We used Ubuntu 16.04.4 with Linux 4.4.0-116 with Kernel Page
Table Isolation which mitigates the Meltdown [26] attack. If an
application needs clients processes, they are executed on identical
machines connected via a 10 Gbit/s ethernet link.

5.1 Performance Overhead of Logging
To measure the overhead of the event logger, we conducted three
experiments: (1) a single ecall is executed n times; (2) a single ecall
is executed n times. This ecall also performs a single ocall; and (3)
a single ecall is executed n times. This ecall itself is executing a
loop for k iterations doing nothing. For this experiment we also (i)
counted or (ii) traced AEXs.

Each experiment has been executed 1000 times. For the experi-
ments (1) and (2) we choose n = 1, 000, 000, for experiment (3) we
choose n = 1000 and k = 1, 000, 000. For each run a warmup of
1,000,000 calls for (1) and (2), and 1000 calls for (3) respectively, has
been used.

The results can be found in Table 2. As seen, the event logger
adds an overhead of≈1,366 ns per ecall. A similar result of≈1,320 ns
can be seen for ocalls. To find out the overhead of AEX counting
and tracing, we performed experiment (3). In this experiment, a
long running ecall is issued that will experience AEXs due to the

[0] sgx_ecall_SSL_read

1000

[55] sgx_ecall_SSL_get_error

2000

[37] enclave_ocall_execute_ssl_ctx_info_callback

1000

[26] enclave_ocall_read

3000

[26] sgx_ecall_ERR_clear_error
2000

[54] sgx_ecall_SSL_do_handshake

1138

[64] sgx_ecall_SSL_write

1000

[69] sgx_ecall_SSL_shutdown

1000

[23] sgx_ecall_ERR_peek_error

5138

[53] sgx_ecall_SSL_set_accept_state

1000

1000
138

17276

[38] enclave_ocall_alpn_select_cb

1000

3276

[27] enclave_ocall_write

2000

1138

[66] sgx_ecall_SSL_set_quiet_shutdown
1000

1000

1000

1000

[51] sgx_ecall_SSL_new

[52] sgx_ecall_SSL_set_fd

1000

[68] sgx_ecall_SSL_free

999

1000

[56] sgx_ecall_SSL_get_rbio

[58] sgx_ecall_BIO_int_ctrl

1000

2000

12000

1000

2138

2000

1000

1000

2276

1000

1000

2000

Figure 5: nginx + TaLoSmain enclave calls. Square nodes are
ecalls, round nodes are ocalls. Solid arrows indicate direct
parents, dashed arrows indirect parents. Numbers on edges
indicate call count, numbers in brackets indicate call id.

timer interrupt. In this case, we made three measurements: attached
logger without AEX counting or tracing, attached logger with AEX
counting and attached logger with AEX tracing. As seen, when
AEX counting is enabled, the logger adds an overhead of ≈1,076 ns
per counted AEX. Tracing AEXs instead of just counting increases
the overhead again by 1.04× per AEX.

5.2 Optimisation of Enclaves
To evaluate the data analysis part of sgx-perf , we took a look at
different enclaves to see if they have problems that can be detected
by sgx-perf . We took a look at enclaves from the following projects:
(i) TaLoS [2] with nginx [13]; (ii) SecureKeeper [5]; (iii) SQLite [37]
and Glamdring [25] partitioned (iv) LibreSSL.

5.2.1 TaLoS with nginx. TaLoS [2] is an enclavised LibreSSL [30]
designed to be a drop-in replacement. It can be used by applications
that use OpenSSL or LibreSSL to enhance their security by relocat-
ing all cryptographic operations into an enclave. TaLoS exposes
the OpenSSL interface as its enclave ecall interface. We therefore
tried to find out if the OpenSSL interface is suitable as an enclave
interface or if performance issues can arise. As TaLoS is meant
to replace OpenSSL in other applications, we used nginx [13] as
a host application that calls into TaLoS. Our evaluation consists
of performing 1000 HTTP GET requests with curl[38] against our
TaLoS nginx server.

The enclave interface consists of 207 ecalls and 61 ocalls of which
61 and 10 were called 27,631 and 28,969 times, respectively. Overall,
60.78% of ecalls and 73.69% of ocalls were shorter than 10µs.We took
a look at the main part of functions – that is accepting connections,
reading, writing and shutdown. In nginx, this comprises the func-
tion calls seen in Figure 5. We can directly see many relationships

Middleware ’18, December 10–14, 2018, Rennes, France Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza

that occur 1000 times (or a factor thereof) which corresponds to our
1000 requests. However, we can also see the first shortcoming of the
OpenSSL interface, namely its error handling. OpenSSL does not
directly return meaningful error codes in its functions but rather
pushes errors into an error queue. Access to that queue is available
through the ERR_* family of functions. This incurs additional en-
clave transitions compared to errors being directly returned by the
function (ecalls 23, 26 in Figure 5).

Reading from and writing to the underlying socket is also not
optimal. In TaLoS, the read and write system calls are implemented
as ocalls which incurs a transition (ocalls 26 and 27 in Figure 5).
While this is required as OpenSSL needs to communicate via the
network to implement the TLS protocol, this has a non-negligible
impact on the performance. A better design would be to batch
the ocalls to read and write or give the application control of
the socket and use OpenSSL’s BIO abstraction layer to access it
from inside the enclave. Unfortunately this requires changes to the
implementation of the TLS protocol and to the calling application.

In summary, the OpenSSL interface is not suitable as an enclave
interface due to its high number of transitions for simple operations.
We analysed the code and found that while the authors of TaLoS
already did a number of optimisations, the main blocker for more
performance is the goal of being a drop-in replacement.

5.2.2 SQLite. Several research works have considered running an
SQL database inside an enclave [3, 33]. We wrote a microbench-
mark that performs a series of insert operations into a database
persistently stored on disk, implementing system calls naïvely as
ocalls. We ran experiments similar to those of the LibSEAL paper,
replaying commits from popular git repositories, and achieved a
performance of ≈23087 requests/s. The enclavised version achieved
≈13160 requests/s (0.57×). sgx-perf reported 41 ocalls, three of
which are each responsible for 33% of the execution time: lseek,
write and fsync.

On Linux, SQLite v3.23.1 makes separate calls to lseek and
write in order to persistently store the database on disk. The lseek
ocalls were quite short with an average duration of 4µs whereas the
write ocalls took 17µs on average. The sgx-perf analyser showed
a potential optimisation opportunity for the SDSC problem in the
form of call merging. Merging the lseek and write calls lead to an
increase to ≈17483 requests/s, 33% more, by eliminating one ocall.
Figure 6 compares the results.

5.2.3 Glamdring. Glamdring [25] is a partitioning frameworkwhich
aims to automatically partition applications into an untrusted and
trusted part with the trusted part living inside an SGX enclave.
The workflow of Glamdring looks as follows: First, the developer
marks certain data as sensitive. Second, Glamdring employs static
dataflow analysis and static backwards slicing to find all functions
accessing and modifying the sensitive data. Lastly the application
is partitioned and code is generated. Glamdring achieves 0.23× -
0.8× the performance of the native application.

We analysed a Glamdring-partitioned LibreSSL v2.4.2 and re-
peated the signing benchmark of the paper (signing certificates)
with our logger attached. The benchmark runs for 30 seconds and
tries to sign as many certificates as possible. The results show a
performance of 33.88 signs/sec. Working set analysis showed a

0.2
0.4
0.6
0.8
1.0

SQLite LibreSSL + Spectre + L1TFN
or

m
al

is
ed

pe
rf

or
m

an
ce native enclave optimised

0.
57
× 0.
76
×

0.
23
× 0.

50
×

0.
17
× 0.

45
×

0.
15
× 0.

43
×

Figure 6: Normalised performance for SQLite and LibreSSL
for native, enclavised and optimised execution.

small enclave with 61 pages used after start-up and 32 pages used
during benchmark execution.

The enclave interface consists of 171 ecalls and 3357 ocalls. In
total, sgx-perf logged 18 ecalls being called 6.6 million times and
35 ocalls being called 110,511 times. Analysis showed that the
bn_sub_part_words ecall is the main performance hog by account-
ing for 99.5% of all ecalls and a mean execution time of just 3µs
which is basically the transition time. Therefore, this call’s actual
computation is too short compared to the transition time needed.
This also applies to some other ecalls but these are called <1% of
the time. The ocalls also show short execution times with 78.65%
of all ocalls being shorter than 1µs (95.34% shorter than 10µs).

The sgx-perf analyser found multiple SNC and SISC problems,
mainly short ocalls of the BN_ family of calls for big number pro-
cessing. Also, the bn_sub_part_words ecall was identified as an
SISC problem. This ecall was marked for potential batching. Look-
ing at the code, we could see that this call was always called in
pairs inside bn_mul_recursive:

1 void bn_mul_recursive(...) {
2 // ...
3 switch (c1 * 3 + c2) {
4 case -4:
5 ecall_bn_sub_part_words(t, a+n, a, tna, tna-n);
6 ecall_bn_sub_part_words(t+n, b, b+n, tnb, n-tnb);
7 break;
8 // ... Repeated three more times
9 }
10 // ...
11 }

As the name suggests, the function is calling itself recursively at
the end. By moving this entire function inside the enclave we were
able to remove the successive ecalls to bn_sub_part_words and
improve the performance by 2.16×.

We compared native LibreSSL against the original Glamdring
version and our optimised version with less ecalls and ocalls. We
also compared against applying the Spectre and Foreshadow (L1TF)
microcode updates to see its impact on a real application. The
normalised results can be seen in Figure 6. On our machine we see
a higher native speed compared to the results from the paper (145
vs. 63 signs/s) but similar enclave performance (33 vs 36 signs/s). We
attribute that to the difference in hardware, operating systems and
compiler versions. As seen, optimising the automated partitioned
code lead to a 2.16× speed-up and even an 2.66× (Spectre [6, 29])
and 2.87× (L1TF [42]) speed up on the patched system. This further
underlines the need to reduce excessive enclave transitions and to
have a good enclave interface.

sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves Middleware ’18, December 10–14, 2018, Rennes, France

 0

 2
00

 4
00

 6
00

 8
00

 1
00

0
 1

20
0

1
5

µ
s

2
0

µ
s

2
5

µ
s

3
0

µ
s

3
5

µ
s

4
0

µ
s

#
 o

f
E
xe

cu
ti

o
n
s

Execution time

sgx_ecall_handle_input_from_client

Figure 7: Generated histogram of call execution times for
one of SecureKeeper’s ecalls grouped into 100 bins.

5.2.4 SecureKeeper. SecureKeeper [5] is a secure version of the
Apache ZooKeeper [12] coordination service. It uses SGX to imple-
ment a proxy that sits between clients and ZooKeeper to store data
transparently encrypted. Client-proxy communication is transport
encrypted whereas the proxy en-/decrypts the payload an path of
the packet going to/coming from ZooKeeper. This allows running
the service in untrusted environments like cloud platforms. Secure-
Keeper’s architecture only incurs an overhead of 11% compared to
an unsecured ZooKeeper.

We analysed a single SecureKeeper instance running under full
load for 31 seconds with our logger attached, similarly to the bench-
marks shown in the paper. The logger recorded 1.1 million ecall and
111 ocall events. The enclave interface consists of just two ecalls
and six ocalls of which two and three were called, respectively.
Analysis showed that both ecalls have a mean execution time of
≈14µs and ≈18µs, ≈4-6× the transition cost.

SecureKeeper uses the SGX SDK’s synchronisation primitives to
coordinate access to queues and to a map. The map is only written
when a client connects whereas a queue exists per client and is syn-
chronised per client. During our testing we saw 18 synchronisation
related ocalls which were issued during the connection phase of the
benchmark in which all clients simultaneously connect, therefore
creating high contention on the map. We observed low contention
on the queue, as no ocalls were issued during actual benchmark
execution. The remaining ocalls were debugging print ocalls during
connection establishment.

In Figure 7 we can see the generated histogram for the ecall
sgx_ecall_handle_input_from_client. It can be seen, that al-
most all calls are longer than 10µs with most calls taking about
15µs. In Figure 8 we can also see the call execution times plotted
over the time of the application.

We were not able to spot any performance optimisation possibil-
ities. The enclave interface is very narrow and no calls are short
lived. Furthermore, SecureKeeper already uses some optimisations,
e.g., saving ocalls for memory allocation by estimating the needed
amount and allocating the memory before the ecall. As Secure-
Keeper is meant to run in a cloud environment, we looked at the
enclave working set to determine how affected SecureKeeper might
be by paging. Working set analysis showed 322 pages (1.26 MiB) are

 1
00

00
 1

50
00

 2
00

00
 2

50
00

 3
00

00
 3

50
00

 4
00

00
 4

50
00

 8
.2

x
1

0
1

0

 8
.4

x
1

0
1

0

 8
.6

x
1

0
1

0

 8
.8

x
1

0
1

0

 9
x
1

0
1

0

 9
.2

x
1

0
1

0

 9
.4

x
1

0
1

0

 9
.6

x
1

0
1

0

E
xe

cu
ti

o
n
 t

im
e
 (

n
s)

Time since application start (ns)

sgx_ecall_handle_input_from_client

Figure 8: Generated scatter plot of call execution times for
one of SecureKeeper’s ecalls.

needed at start-up but during execution only 94 (0.36 MiB) are used.
SecureKeeper spawns one enclave per client which explains the low
usage as every client needs that many pages. The enclaves are suf-
ficiently small, if SecureKeeper were able to fill up the whole EPC
on its own, it could operate 249 enclaves in parallel without exper-
iencing paging. We consider SecureKeeper sufficiently optimised
with regards to the enclave interface and enclave size.

6 RELATEDWORK
To our knowledge no comparable high-level analysis tool for SGX
exists so far. As stated in §2.4, VTune Amplifier, a commercial low-
level analysis tool from Intel, can inspect and profile SGX enclaves
to find performance bottlenecks on an instruction level. The Linux
tool perf [4] provides similar insights but does not offer support
for SGX enclaves. That is to say, these tools report to the developer
which instruction, line of code or function is costly and should
be optimised to improve the performance of the system. However,
contrarily to sgx-perf , they do not address the performance issues
specific to Intel SGX: costly enclave transitions and paging.

SGX performance has been a topic of interest for various work.
SCONE [1] and SecureKeeper [5] both measured the impact of SGX
paging on an application exceeding the EPC size. They concluded
that enclaves should never exceed the EPC size, as paging is simply
too costly. Weisse et al. [44] and Zhao et al. [46] both looked at en-
clave transition performance and showed that those transitions are
very costly. The number of transitions should therefore be reduced
as much as possible. While they proposed solutions to minimise
the impact of these problems, such as executing enclave transitions
asynchronously [1] or using a custom memory allocator [31], they
do not provide a tool to measure the impact of SGX-specific prob-
lems in an arbitrary application.

Gjerdrum et al. [8] were the first to present a list of SGX per-
formance principles and recommendations for enclave developers
in a cloud scenario. The authors do not directly recommend min-
imising enclave transitions but instead state that during an ecall
the supplied data should be as small as possible to reduce the time
it takes to copy it inside the enclave. While we agree, we think
that minimising the actual number of transitions is more important.
However, we disagree with their second recommendation stating

Middleware ’18, December 10–14, 2018, Rennes, France Nico Weichbrodt, Pierre-Louis Aublin, and Rüdiger Kapitza

that enclaves should not exceed 64kB in size to increase start-up
times and prevent paging. While EPC memory is scarce, we argue
that having an efficient strategy to minimise enclave paging is more
important than limiting the size of the enclave, especially in a cloud
environment where the EPC might already be oversubscribed.

While we are the first to propose a profiling tool specific for
Intel SGX, the idea of profiling tools specific to a particular system
is not novel. For example, LIKWID [40, 41] or MemProf [24] both
use the low-level performance counters of modern processors (e.g.,
number of cache misses) to extract high-level metrics (e.g., memory
bandwidth or remote accesses of memory objects on a NUMA
machine) that help the developer to improve the performance of
their application with new, more useful insights.

Performance anti-pattern detection is a research area that focuses
on documenting common performance problems as well as their
solutions. Smith and Williams [36] were the first ones to explore
anti-patterns that have consequences on the performance of the
system. They presented four anti-patterns: (i) excessive dynamic
memory allocation; (ii) successive (database) operations; (iii) critical
section of code where most of the processes cannot execute concur-
rently and have to wait; and (iv) wide variability in response time.
Subsequently, Parsons et al. [32] and Cheng et al. [7] proposed new
tools to automatically detect these performance anti-patterns in
enterprise systems. The reader could view the problem we address
as performance anti-pattern detection specific to Intel SGX.

7 CONCLUSION
Trusted computing with Intel SGX has become an important topic
in the software development world. Several works [1, 5, 44, 46] have
shown that paging and enclave transitions have a strong impact on
the performance of the system. However, there is, to the best of our
knowledge, no tooling support that gives an high-level overview
of enclave behaviour to uncover potential performance problems.

In this paper we presented sgx-perf , a collection of tools that can
trace enclave execution during runtime to generate a trace file. This
file can then be analysed regarding different criteria to identify SGX-
specific performance anti-patterns and to give developers hints to
increase enclave performance.

We evaluated sgx-perf by analysing four SGX applications. Ap-
plying the recommendations given by sgx-perf , we were able to
increase performance by 1.33× - 2.16×. The source code is available
on GitHub3.

ACKNOWLEDGMENTS
We thank our anonymous reviewers and our shepherd, Laurent
Réveillère, for their helpful comments. This work was supported
by the German Research Foundation (DFG) under priority program
SPP2037 grant no. KA 3171/6-1 and the European Union’s Horizon
2020 programme under grant agreement 690111 (SecureCloud).

REFERENCES
[1] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Dan O’Keeffe, Mark L.
Stillwell, David Goltzsche, David Eyers, Rüdiger Kapitza, Peter Pietzuch, and
Christof Fetzer. 2016. SCONE: Secure Linux Containers with Intel SGX. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI).

3https://github.com/ibr-ds/sgx-perf

[2] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Chris-
tian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter
Pietzuch. 2017. TaLoS: Secure and Transparent TLS Termination inside SGX En-
claves. Technical Report. Imperial College London.

[3] Pierre-Louis Aublin, Florian Kelbert, Dan O’Keeffe, Divya Muthukumaran, Chris-
tian Priebe, Joshua Lind, Robert Krahn, Christof Fetzer, David Eyers, and Peter
Pietzuch. 2018. LibSEAL: Revealing Service Integrity Violations Using Trusted
Execution. In Proceedings of the Thirteenth European Conference on Computer
Systems (EuroSys).

[4] Multiple Authors. 2018. perf: Linux profiling with performance counters. https:
//perf.wiki.kernel.org/index.php/Main_Page. Accessed on 2018-05-18.

[5] Stefan Brenner, Colin Wulf, Matthias Lorenz, Nico Weichbrodt, David Goltz-
sche, Christof Fetzer, Peter Pietzuch, and Rüdiger Kapitza. 2016. SecureKeeper:
Confidential ZooKeeper using Intel SGX. In Proceedings of the 15th International
Middleware Conference (MIDDLEWARE).

[6] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and
Ten H Lai. 2018. SgxPectre Attacks: Leaking Enclave Secrets via Speculative
Execution. arXiv:1802.09085 (2018).

[7] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E Hassan, Mohamed
Nasser, and Parminder Flora. 2014. Detecting Performance Anti-patterns for
Applications Developed using Object-Relational Mapping. In Proceedings of the
36th International Conference on Software Engineering (ICSE).

[8] Anders T Gjerdrum, Robert Pettersen, Håvard D Johansen, and Dag Johansen.
2017. Performance of Trusted Computing in Cloud Infrastructures with Intel
SGX. In Proceedings of the 7th International Conference on Cloud Computing and
Services Science (CLOSER).

[9] David Goltzsche, Signe Rüsch, Manuel Nieke, Sébastien Vaucher, Nico Weich-
brodt, Valerio Schiavoni, Pierre-Louis Aublin, Paolo Costa, Christof Fetzer, Pascal
Felber, et al. 2018. EndBox: Scalable Middlebox Functions Using Client-Side Trus-
ted Execution. In Proceedings of the 48th International Conference on Dependable
Systems and Networks (DSN).

[10] Shay Gueron. 2016. A Memory Encryption Engine Suitable for General Purpose
Processors. IACR Cryptology ePrint Archive (2016).

[11] Juhyeng Han, Seongmin Kim, Jaehyeong Ha, and Dongsu Han. 2017. SGX-Box:
Enabling Visibility on Encrypted Traffic using a Secure Middlebox Module. In
Proceedings of the First Asia-Pacific Workshop on Networking (APNet).

[12] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. 2010.
ZooKeeper: Wait-free coordination for Internet-scale systems.. In USENIX Annual
Technical Conference (USENIX ATC).

[13] Nginx Inc. 2018. Nginx. http://nginx.org/. Accessed on 2018-05-18.
[14] Intel. 2014. Intel Software Guard Extensions Programming Reference, Revision 2.

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf.
[15] Intel. 2018. Intel Software Guard Extensions Developer Reference for Linux

OS. https://download.01.org/intel-sgx/linux-2.1/docs/Intel_SGX_Developer_
Reference_Linux_2.1_Open_Source.pdf. Accessed on 2018-05-18.

[16] Intel. 2018. Intel Software Guard Extensions SDK for Linux. https://01.org/
intel-softwareguard-extensions. Accessed on 2018-05-18.

[17] Intel. 2018. Intel Software Guard Extensions (SGX) SW Development
Guidance for Potential Bounds Check Bypass (CVE-2017-5753) Side Chan-
nel Exploits. https://software.intel.com/sites/default/files/180204_SGX_SDK_
Developer_Guidance_v1.0.pdf.

[18] Intel. 2018. Intel VTune Amplifier. https://software.intel.com/en-us/
intel-vtune-amplifier-xe. Accessed on 2018-05-18.

[19] Xiaojin Jiao. 2018. potential security issue: ecall SSL write using user check.
https://github.com/lsds/TaLoS/issues/13.

[20] Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike Hamburg, Moritz
Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval Yarom.
2018. Spectre Attacks: Exploiting Speculative Execution. arXiv:1801.01203 (2018).

[21] R. Krishnakumar. 2005. Kernel korner: kprobes-a kernel debugger. Linux Journal
(2005).

[22] Arseny Kurnikov, Klaudia Krawiecka, Andrew Paverd, Mohammad Mannan, and
N. Asokan. 2018. Using SafeKeeper to Protect Web Passwords. In Companion
Proceedings of the The Web Conference 2018 (WWW).

[23] Dmitrii Kuvaiskii, Oleksii Oleksenko, Sergei Arnautov, Bohdan Trach, Pramod
Bhatotia, Pascal Felber, and Christof Fetzer. 2017. SGXBOUNDS: Memory Safety
for Shielded Execution. In Proceedings of the Twelfth European Conference on
Computer Systems (EuroSys).

[24] Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. 2012. MemProf: a Memory
Profiler for NUMA Multicore Systems. In USENIX Annual Technical Conference
(USENIX ATC).

[25] Joshua Lind, Christian Priebe, Divya Muthukumaran, Dan O’Keeffe, Pierre-Louis
Aublin, Florian Kelbert, Tobias Reiher, David Goltzsche, David Eyers, Rüdiger
Kapitza, et al. 2017. Glamdring: Automatic Application Partitioning for Intel SGX.
In USENIX Annual Technical Conference (USENIX ATC).

[26] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas,
Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
2018. Meltdown. arXiv:1801.01207 (2018).

https://github.com/ibr-ds/sgx-perf
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
http://nginx.org/
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://download.01.org/intel-sgx/linux-2.1/docs/Intel_SGX_Developer_Reference_Linux_2.1_Open_Source.pdf
https://download.01.org/intel-sgx/linux-2.1/docs/Intel_SGX_Developer_Reference_Linux_2.1_Open_Source.pdf
https://01.org/intel-softwareguard-extensions
https://01.org/intel-softwareguard-extensions
https://software.intel.com/sites/default/files/180204_SGX_SDK_Developer_Guidance_v1.0.pdf
https://software.intel.com/sites/default/files/180204_SGX_SDK_Developer_Guidance_v1.0.pdf
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://software.intel.com/en-us/intel-vtune-amplifier-xe
https://github.com/lsds/TaLoS/issues/13

sgx-perf: A Performance Analysis Tool for Intel SGX Enclaves Middleware ’18, December 10–14, 2018, Rennes, France

[27] LSDS Team, Imperial College London. 2018. github: sgx-lkl. https://github.com/
lsds/sgx-lkl.

[28] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi,
Vedvyas Shanbhogue, and Uday R Savagaonkar. 2013. Innovative Instructions
and Software Model for Isolated Execution. In Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and Privacy (HASP).

[29] Dan O’Keeffe, Divya Muthukumaran, Pierre-Louis Aublin, Florian Kelbert, Chris-
tian Priebe, Josh Lind, Huanzhou Zhu, and Peter Pietzuch. 2018. github: spectre-
attack-sgx. https://github.com/lsds/spectre-attack-sgx.

[30] OpenBSD Project. 2018. LibreSSL. https://www.libressl.org/. Accessed on
2018-05-18.

[31] Meni Orenbach, Pavel Lifshits, Marina Minkin, and Mark Silberstein. 2017. Eleos:
ExitLess OS Services for SGX Enclaves. In Proceedings of the Twelfth European
Conference on Computer Systems (EuroSys).

[32] Trevor Parsons and John Murphy. 2008. Detecting Performance Antipatterns in
Com-ponent Based Enterprise Systems. Journal of Object Technology (2008).

[33] Vasily A Sartakov, NicoWeichbrodt, Sebastian Krieter, Thomas Leich, and Rüdiger
Kapitza. 2018. STANlite–a database engine for secure data processing at rack-scale
level. In Proceedings of the Sixth International Conference on Cloud Engineering
(IC2E).

[34] Ming-Wei Shih, Mohan Kumar, Taesoo Kim, and Ada Gavrilovska. 2016. S-NFV:
Securing NFV States by Using SGX. In Proceedings of the 2016 ACM Interna-
tional Workshop on Security in Software Defined Networks & Network Function
Virtualization (SDN-NFV Security 2016).

[35] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. 2017. T-SGX: Erad-
icating Controlled-Channel Attacks Against Enclave Programs. In Proceedings of
the 2017 Annual Network and Distributed System Security Symposium (NDSS).

[36] Connie U Smith and Lloyd GWilliams. 2001. Software Performance AntiPatterns;
Common Performance Problems and Their Solutions. In Int. CMG Conference.

[37] SQLite Project. 2018. SQLite. https://www.sqlite.org/. Accessed on 2018-05-18.
[38] The curl project. 2018. curl. https://curl.haxx.se/. Accessed on 2018-05-18.
[39] Bohdan Trach, Alfred Krohmer, Franz Gregor, Sergei Arnautov, Pramod Bhat-

otia, and Christof Fetzer. 2018. ShieldBox: Secure Middleboxes using Shielded
Execution. In Proceedings of the Symposium on SDN Research (SOSR).

[40] Jan Treibig, Georg Hager, and Gerhard Wellein. 2010. LIKWID: A Lightweight
Performance-Oriented Tool Suite for x86 Multicore Environments. In 2010 39th
International Conference on Parallel Processing Workshops (ICPPW).

[41] Jan Treibig, Georg Hager, and Gerhard Wellein. 2012. Best practices for
HPM-assisted performance engineering on modern multicore processors.
arXiv:1206.3738 (2012).

[42] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank
Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.
2018. FORESHADOW: Extracting the Keys to the Intel SGX Kingdom with
Transient Out-of-Order Execution. In Proceedings of the 27th USENIX Security
Symposium. (USENIX Security).

[43] NicoWeichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. 2016. Async-
Shock: Exploiting Synchronisation Bugs in Intel SGX Enclaves. In European
Symposium on Research in Computer Security (ESORICS).

[44] Ofir Weisse, Valeria Bertacco, and Todd Austin. 2017. Regaining Lost Cycles with
HotCalls: A Fast Interface for SGX Secure Enclaves. In Proceedings of the 44th
Annual International Symposium on Computer Architecture (ISCA).

[45] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel
Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE
Symposium on Security and Privacy (IEEE S&P).

[46] C. Zhao, D. Saifuding, H. Tian, Y. Zhang, and C. Xing. 2016. On the Performance
of Intel SGX. In 3th Web Information Systems and Applications Conference (WISA).

https://github.com/lsds/sgx-lkl
https://github.com/lsds/sgx-lkl
https://github.com/lsds/spectre-attack-sgx
https://www.libressl.org/
https://www.sqlite.org/
https://curl.haxx.se/

	Abstract
	1 Introduction
	2 Background
	2.1 Intel Software Guard Extensions
	2.2 Intel SGX Software Development Kit
	2.3 Enclave Performance Considerations
	2.4 Existing Tooling Support

	3 SGX Problems and Solutions
	3.1 Short Identical Successive Calls
	3.2 Short Different Successive Calls
	3.3 Short Nested Calls
	3.4 Short Synchronisation Calls
	3.5 Paging
	3.6 Security Enhancements

	4 The sgx-perf tools
	4.1 Tracing ecalls and ocalls
	4.2 Enclave Working Set Estimation
	4.3 Data Analysis and Developer Hints

	5 Evaluation
	5.1 Performance Overhead of Logging
	5.2 Optimisation of Enclaves

	6 Related Work
	7 Conclusion
	References

