
Presented at 12th International Conference On Computer Communication, August 21-24, 1995, Seoul, Korea

Abstract: Multicast real-time streams assume in general the shape
of a tree where the source is the root and the receivers are the
leaves. Many common networked multimedia applications need to
create a large number of such streams to connect the end-peers one
to each other. Often, relationships among the streams created by
the same or related applications exist. Being able to express these
relationships makes it possible to optimize the global utilization of
the network resources. This paper suggests the concept of groups
of streams to express such relationships and defines a set of basic
relationships that are felt of immediate importance for emerging
networked multimedia applications. The way global network
resources can be optimally exploited is also presented. The results
can be easily applied to existing setup protocols.

Keywords: real-time stream, quality of service, group, relation-
ship, resource sharing, setup protocol.

1 Introduction

Distributed multimedia applications exploit continu-
ous media data streams to deliver digital audio and
video information over the network. In this communi-
cation scenario, the transport system has to provide
certain real-time guarantees to such streams in order to
serve the applications with the required quality of ser-
vice. There is also a requirement for multicast capabil-
ities, i.e. the streams have to be able to convey the data
simultaneously to multiple destinations. In general,
the applications need to create and make use of a fairly
large number of these multicast real-time streams: in a
video conferencing application, for instance, each
speaker has to be connected to all the participants.

Often, there exist inherent relationships among real-
time streams. For instance, it is in most cases useless
to receive a video stream unless the correspondent
audio stream is also present: think of a movie without
its soundtrack or of a tele-learning application where it
is possible to see the teacher but not to hear his lecture.
Further kinds of relationship exist other than this basic
one: a common example is inter-stream synchroniza-
tion or, again, a set of streams sharing certain
resources, e.g., bandwidth over a network link or mul-
ticast groups addresses.

Applications are usually aware of these relationships
among streams but they do not have the means to
exploit this knowledge. Often, the issues have to be
solved by the transport provider, i.e. at the transport or
network layer. Consider a router that performs band-
width management of the outgoing links and is tra-
versed by two real-time streams. If the router knew
that only one of the two streams can be active at a
time, it could optimize bandwidth usage by allocating

only the sufficient bandwidth for a single stream and
having the two streams use it in turn.

To allow applications to express inter-stream relation-
ships, this paper introduces the concept of groups of
real-time streams. It defines an abstraction for groups
and subgroups and it analyses relationships among
streams belonging to the same group and the ways
these relationships can be expressed. Finally, it consid-
ers how the information about groups can be effi-
ciently distributed in the network and it discusses the
impact on current setup protocols and resource man-
agement subsystems.

Being able to express the relationships among inter-
dependent real-time streams and to communicate this
information to the transport system is felt to be impor-
tant because:

• it facilitates structuring large applications, e.g, a
conference or a seminar, into several logical mod-
ules: in a conference, for instance, different groups
may correspond to the diverse roles of the partici-
pants – listeners, speakers, and interpreters.

• it helps identifying related streams: this can be
used in many different ways, e.g., to apply the
same charging to the group members or as a hint on
which streams to delete when stream preemption
becomes necessary.

• resources can be allocated on a per group basis
instead of on a per stream basis: since not all mem-
bers of a group are simultaneously active, this leads
to a significant reduction of the global resource res-
ervation.

• it improves the service provided by the network: for
instance, methods are required to mark streams that
should be synchronized on playout at the receiver.

This paper is organized as follows. Section 2 briefly
summarizes related work in the literature. The group
and relationship abstraction is presented in Section 3.
Issues related to group management and the distribu-
tion of group information in the network are presented
in Section 4. A description of an implementation
design for the group abstraction is provided in Section
5. Finally, the last section concludes the paper by sum-
marizing the results.

2 Related Work

So far, the concept of groups of streams has not been
fully exploited. Although some work has been done

Relationships among Inter-Dependent Real-Time Streams

Luca Delgrossi, Sibylle Schaller, Lars Wolf

IBM European Networking Center, Vangerowstraße 18 • 69115 Heidelberg • Germany

Phone: +49-6221-59-3000 • Fax: +49-6221-59-3400

{luca, schaller, lars}@heidelbg.ibm.com

Presented at 12th International Conference On Computer Communication, August 21-24, 1995, Seoul, Korea

with the main objectives of reaching a higher degree
of resource sharing, today it is still at a preliminary
stage. No definitions of the relevant inter-stream rela-
tionships have been agreed on nor implementation
experience is available. Each application handles its
streams independently and yet there are no means to
exploit common characteristics of a set of streams.

Gupta and Moran present their abstractions for groups
of channels in [GuMo93] as part of their design of the
Tenet Protocols Suite. They introduce three basic rela-
tionships and discuss how they can be used by differ-
ent conferencing applications. Their work has been
taken as the basis for this discussion.

The original specification of the ST2 protocol
[Topo90] includes the definition of groups of streams,
but in an incomplete form. The RSVP protocol
[ZDES93] uses reservation filters to minimize band-
width usage in multicast groups. The filter concept
allows heterogeneous receivers to share resource res-
ervations on a per sender basis. Reservation filters also
allow switching among several incoming channels.
This approach addresses the optimal bandwidth usage
problem, but it does not contain a general mechanism
for groups of streams/channels, i.e. the ability to
exploit other relationships.

In [MaCG94], concepts of group communication for
the management of multipeer communications in the
transport layer are introduced. Groups are defined as
objects by type (set of rules) and by an instance (set of

members) with one or more associations between
group members. [Bult93] introduces a formalism to
coordinate such activities of multimedia applications
as managing resources, synchronization and interac-
tion.

The approach presented in this paper deepens the dis-
cussion on groups of real-time streams. Groups, sub-
groups, and relationships are formally defined and a
richer set of relationships is presented. Also, the intui-
tive concept of relationship orthogonality is intro-
duced. Finally, we analyse how support for the most
relevant relationships can be embedded in a real multi-
media transport system. Ideas included in this paper
served as the basis for the design of the group mecha-
nism of the most recent version of the ST2 protocol,
ST2Plus, recently defined by the IETF ST Working
Group [Delg94].

3 Groups

This section defines groups and subgroups of real-time
streams and a number of inter-stream relationships.

3.1 Definition of Groups

A group G consists of a set of streams S and a relation-
ship R. For each couple of different streams belonging
to S, the relationship R is valid, i.e. every member is in
relationship with each of the others. This can be for-
mally expressed in the following way:

By definition, it is allowed for the set S to be empty: G
= (Ø, R). This is of course a special case: working with
groups makes real sense only if the set S has at least
two members. Empty groups may exist, e.g., during
the establishment phase of an application if the stream
members in the group are not yet established. The
relationship R holds between members of the group as
soon as they are added to the set S.

3.2 Subgroups

It is also possible to define the sum operation among
groups. Consider group G1 = (S1, R1) and G2 = (S2,
R2). Given a new relationship R, we define G = (S, R)
as the sum of G1 and G2 when:

(a) R holds for S, where S includes all members of
S1 and S2.

(b) R1 (R2) holds for members of S1 (S2).

(c) R is orthogonal with respect to R1 (R2).

In other words, G1 and G2 are subgroups of G. Their
members are subject to the R1 (R2) relationship and to
the relationship R holding for group G.

The concept of orthogonality is presented in an intui-
tive way: a relationship is orthogonal with respect to
another when there are no conflicts between the two,
so that it is possible that they both hold at the same
time for the same streams. Relationships as “Rx: all
streams follow the same routes” and “Ry: all streams
go over disjoint paths” are clearly not orthogonal and
it is not possible to apply the sum operation.

3.3 Inter-Stream Relationships

Defining appropriate inter-stream relationships is the
key to the full exploitation of the group of streams
abstraction. Relationships express the common prop-

Let R be a relationship defined on streams.

If a stream α is in relationship R with a stream β,
we write:

(α R β)

Let now S be a set of streams:

S = {s1, ... , sN}

so that,

∀ i, j (si R sj) with 1 ≤ i, j ≤ N; si, sj ∈ S

Then, we define a group G as:

G = (S, R)

Presented at 12th International Conference On Computer Communication, August 21-24, 1995, Seoul, Korea

erties among streams: they may indicate that the
streams share some communication objects or that
they are somehow related. In the following, the rela-
tionships that are felt of immediate importance for
emerging distributed multimedia applications are pre-
sented.

Bandwidth Sharing

Several inter-stream relationships are based on a sin-
gle concept: resource sharing. This is useful because it
allows to associate independent streams with a single
resource reservation. The bandwidth sharing relation-
ship is certainly the most common, and with the devel-
opment of setup protocols, this relationship will be of
fundamental importance. For instance, RSVP already
has some built-in features for bandwidth sharing.

A video conferencing application may exploit the
bandwidth sharing relationship by allocating sufficient
bandwidth for just one speaker and let in turn the cur-
rent speaker use it. The alternative to allocate band-
width on a per-speaker basis results in overbooking of
resources. In Figure 1, 1.5 Mbits/s are reserved
between R1 and C instead of 2.5 Mbits/s. We discuss
group bandwidth management in Section 5.2.

Fate Sharing

In a group of streams, it is possible that the streams
depend on the existence of one or more “master”
streams. The fate sharing relationship indicates that all
streams in the group should be deleted if one of the
masters is deleted. It mainly applies to situations
where the streams are inter-dependent and it does not
make sense to run them if the “master” stream is not
present. For instance, the fate sharing relationship
could be exploited by a remote training application in
which an instructor shows how to fix a failed hardware
component. Just as it is not useful to watch the instruc-
tor without hearing his comments, it is not sufficient to
listen to him without being able to observe how the
fixes have to be done. In this case, the audio and video
streams originated by the instructor are in a fate shar-
ing relationship. A further example is provided in Sec-
tion 3.4.

Fair Preemption

If a stream with high precedence has to be run and the
available capacity is insufficient, a possibility is to pre-
empt one or more low precedence streams so that the
associated resources are freed. The choice of which
low precedence streams to preempt is critical: infor-
mation is required to minimize the number of applica-
tions affected by the interruption. By specifying that
the fair preemption relationship exists among the

streams, an application indicates that its streams are
related together and, if one of them gets preempted,
then it would be a fair choice to preempt the others as
well. This helps freeing resources for usage by high
precedence streams without disrupting other applica-
tions.

Path Sharing

Path sharing can be used to increase the efficiency of
other relationships. For instance, the most benefits
from bandwidth sharing are obtained when the
streams follow the same network paths. Path sharing
can also be used to convey the streams through conve-
nient high-speed links or to avoid that the data flows
through a given node, e.g. for security reasons. This
can be implemented by first building a stream with a
route specified by the source and then having the other
streams share the same paths with it. The left side of
Figure 2 serves as an example for path sharing.

Disjoint Paths

The disjoint paths relationship is exactly the opposite
as path sharing (Figure 2, top). It serves the purpose of
conveying related streams over different network
paths. One reason for doing this could be for instance
the desire to provide reliable communications: in this
case the data is duplicated and sent over different
paths so that if the first path fails, the data will still
reach its destinations through the second path.

Related QoS

It may be convenient to specify that some streams
have related needs in terms of Quality of Service
(QoS). Usually, this applies to streams originating
from the same source and directed to the same targets.
For instance, it could be specified that the data belong-
ing to stream S2 reaches the destinations within 25

C

Figure 1: Bandwidth Sharing

A

B

R2

1.5 Mbits/s

R1

1 Mbits/s

1.5 Mbits/s

shared bandwidth

1.5 Mbit/s

Presented at 12th International Conference On Computer Communication, August 21-24, 1995, Seoul, Korea

msecs after stream S1 data. This imposes a limit on
inter-stream delay jitter and implies being able to
express a relationship between two separate QoS. The
related QoS relationship can be used when informa-
tion belonging to a single logical stream is carried over
separate streams at the network layer. For instance, it
may be necessary to send hierarchically encoded
video as MPEG-2 video over different streams and re-
synchronize the data at the receivers.

3.4 An Example

In a distributed game application, the master controls
3 players, cf. Figure 3. The master delivers in real-
time information related to the game contents to all
players. Each player in turn updates the master on its
actions and moves in the game scenario. The game
fails if the master is not present and active.

The following groups and relationships may be
defined to model this application:

G1 = (S1, R1)

Figure 2: Path Sharing (above);
Disjoint Paths (below)

C

C

B

A

D

A

B

D

Figure 3: Sample Application Scenario

sA

sC

sB

sM

PC

PB

Master

PA

Presented at 12th International Conference On Computer Communication, August 21-24, 1995, Seoul, Korea

S1 = {sB, sC} R1 = bandwidth sharing

G2 = (S2, R2)

S2 = {sM, sA, sB, sC}R2 = share fate of sM

Note that R1 and R2 are orthogonal.

4 Groups Management

The group and relationship abstractions have been so
far presented from a general point of view. However,
our interest is to analyse groups of multicast real-time
streams. When the networking aspects are considered,
several specific issues are raised on the most conve-
nient way of managing groups. They are dealt with in
this section.

4.1 Naming

Globally unique group names are required to univo-
cally identify groups in the network. A group name
space has to be defined. The way names are defined
depends on the domain and on the implementation. In
the Internet domain, a possible way to define a valid
name space is to use a triple including a local identi-
fier, the IP address of the local host, and a timestamp.
This way, each host may generate group names univo-
cally. An alternative is to let a central host act as
“group name generator”. Once a group has been
assigned a name, the name can be used to add streams
to it.

4.2 Membership

Several issues are related to group membership.
Access to a group may be open or restricted. If the
access is open any stream may become a member of
the group; if the access is restricted, only a pre-defined
set of streams is allowed to be member in the group.
The latter can be achieved, for instance, if the com-
plete list of permitted streams is made available: when
a new stream requests to join the group, the list is
checked for its stream identifier. Open groups can be
used for public discussions or lectures at the univer-
sity, while restricted groups could be used for manag-
ers meetings to discuss the company’s future strategy.

Group membership can be static or dynamic. A static
member is assigned to the group at creation time and it
belongs to the group for its whole lifetime. A dynamic
member may leave the group at any time and possibly
join other groups. While static membership is easier to
implement, dynamic membership allows for more
sophisticated exploitation of the group abstraction.

Allowing for a single stream to belong to multiple
groups is convenient, provided that the rule of rela-
tionships orthogonality is observed.

4.3 Maintaining Group Information

The amount of group information to be distributed
over the network can be quite large. To perform global
functions, it is required that all nodes traversed by at
least one of the streams belonging to the group store

information on all the group’s streams. For instance,
consider the relationship “R means: group member-
ship is limited to 10 streams”: each node needs to
know how many streams currently belong to the group
and, in particular, knowledge is requested on the
streams that do not traverse the node itself.

Maintaining global knowledge to allow this kind of
operations is probably too expensive. A reasonable
solution seems to be maintaining at every node group
information on the streams that traverse the node.
Since stream information is collected during the
stream setup phase, group information can be also dis-
tributed at the same time. The idea is to include group
information into stream setup information, so that
every node traversed by the stream receives it.
Although this has the effect of limiting the amount of
feasible group functions, it simplifies the design.

4.4 Security

Some security issues have to be discussed in the con-
text of group management. This does not comprise
data security: being member in a group does not auto-
matically provide access to the data carried by other
member streams, i.e. data security remains in the
responsibility of the single peers. Rather, some mea-
sures have to be taken to protect group members from
non-members streams that attempt to exploit the group
relationship.

If a malicious stream has knowledge of the group
name and which resources are used, it could try to
become a member in the group and then to use up the
shared resources without obeying the groups commu-
nication rules, e.g. one speaker at a time. Open groups
and dynamic groups are clearly more vulnerable.
Note, however, that not all relationship are subject to
parasitism: a non-member stream joining a disjoint-
path group hardly causes any harm to the group mem-
bers.

4.5 Relationship Issues

The combination of basic relationships often allows to
increase the efficiency: for instance, the overall mini-
mum bandwidth usage is obtained by coupling the
bandwidth sharing and path sharing relationships.

Some relationships require only local knowledge,
while others need global knowledge. Local knowledge
is sufficient to implement, e.g., the disjoint paths rela-
tionship: given a stream in the group, the routing algo-
rithm tries to convey the next stream over a different
path out of the node. Global knowledge is required to
implement, e.g., fate sharing: if a stream in the group
gets deleted the others are also dropped (global knowl-
edge is required because the stream may be unknown
by some nodes).

Some relationships play a role during the stream
establishment phase only, some others affect data
transfer: in a real-time communication environment,
routes are often “pinned”, i.e. they are selected at

Presented at 12th International Conference On Computer Communication, August 21-24, 1995, Seoul, Korea

stream establishment and do not change over time
unless failures are detected; on the contrary, special
actions may have to be taken during the data transfer
to ensure that the packet arrival delay between two
related streams is inferior to a given time unit.

It is often easier to express relationships among
streams emitted by the same origin: for instance,
when a source emits audio and video as two separate
streams or, when a source emits a hierarchically
encoded multimedia stream comprising a bunch of
logical substreams.

5 Implementation Design

To experiment with the group abstraction, it has been
decided to extend the IBM ENC ST-II implementa-
tion. The following choices have been taken in the
design:

The group name is a structure including:

struct groupname {
short local_id; /* locally unique identifier */
long IP_address; /* used as globally unique id */
long timestamp; /* group creation timestamp */

};

This way, any ST agents may independently generate
globally unique identifiers; local ids are assigned by
an internal function that keeps track of the ids
already in use. The groupname structure is included
into the Group parameter and added to the CON-
NECT message used to establish a new ST-II stream.
The Group parameter also contains information on
the relationship. This way, group information gets
distributed to all the nodes traversed by the stream.

To keep the design simple, only static membership
has been foreseen. This means, the initial CON-
NECT message must contain information on all the
groups of which the stream is a member. The stream
leaves the groups only at DISCONNECT time.

An ST agent receiving the CONNECT message
extracts the Group parameter when present and cre-
ates the correspondent entry into its local group data-
base. The group database is maintained parallel to the
normal ST-II database that contains stream informa-
tion. The entry in the group database contains a
pointer to the stream descriptor of the first stream
member in the group. The other members are
accessed via a regular pointers list. The group data-
base entry also includes pointers to a special area.
The contents of this special area depend on the group
relationship.

It was decided to focus on the following relation-
ships:

a) path sharing: the Group parameter contains a
constant to indicate path sharing.

b) bandwidth sharing: the Group parameter contains
a constant to indicate bandwidth sharing. A
parameter specifies how much bandwidth needs to

be allocated for the group.

The implementation of these two functions has an
impact on the routing algorithm and local resource
manager. This is discussed in the next two sections.

5.1 QoS Routing

To satisfy group management requirements, the rout-
ing algorithm has to be aware of inter-stream relation-
ships. Our QoS-based routing algorithm, which is
described in [VWHK95], uses metrics based on band-
width, delay, and reliability. It choses the link which
matches the specified requirements best.

Considering the inter-stream relations discussed in
Section 3.3, bandwidth sharing, path sharing, disjoint
paths, and related QoS have an impact on the QoS-
based routing algorithm. The modifications required to
implement group support include:

• a group identifier is passed to the routing algorithm,
• a flag indicates whether joint or disjoint paths

should be selected,
• a flag indicates whether bandwidth is shared

Assume shared paths have been requested. The algo-
rithm attempts to direct the flow along already estab-
lished routes for the group whenever possible. It
checks whether the QoS requirements can be satisfied,
e.g., sufficient bandwidth is available or shared band-
width for the group has already been allocated. Fail-
ures results in a different route being selected, but
never affect stream creation.

5.2 Resource Management

With respect to groups of streams the following two
questions about resource reservation are relevant: 1)
when is the reservation done, and 2) which amount of
bandwidth must be reserved. Both have an impact on
resource utilization and whether more streams/groups
get a chance to get established.

There are two ways of reserving:

• At Once: make all necessary reservation at once.
Here, the first stream to cause reservations must
know in advance the required amount for the group
and how many streams will participate in the group.
This approach may lead to over-reservation if not
all expected streams join the group.

• Stepwise: at group creation time, only the actual
needed resources are reserved. Additional neces-
sary resources are reserved when new streams join
the group. In contrast to the previous approach, this
reservation mechanism is based on up-to-date
information available at the reserving sites.

The amount of bandwidth to be reserved depends on
the stream and application nature. Consider an appli-
cation with N peers. Assume only k peers (with 1 ≤ k
≤ N) may transmit data at the same time. If all streams
are homogeneous, i.e. they require the same amount of
bandwidth B, the maximum required bandwidth for
the group is:

Presented at 12th International Conference On Computer Communication, August 21-24, 1995, Seoul, Korea

BGmax = k*B 1 ≤ k ≤ N

The maximum required amount is reserved k times
(with k the number of streams sharing this resource).
This causes waste if less than k streams run through
the same path. The advantage of this method lies in its
simple calculation.

Heterogeneous streams require each a different
amount of bandwidth:

b1, b2, ... , bN

Assuming streams are ordered by bandwidth needs,
i.e. assuming:

b1 > b2 > ... > bN

the maximum amount of bandwidth required for the
group is:

BGmax = b1 + b2 + ... + bk

Also, for nodes not traversed by s1 (the stream requir-
ing b1):

BGmax = b2 + b3 + ... + bk + bk+1

In this case, only the k highest requirements are
reserved. This allows better adaptation to less than k
streams per path, because reservations are done only
for the existing streams, but at most for those k
streams. This calculation is more complex than the
above, but it scales better to the real needs.

Additional parameters to be passed to the local
resource manager include the group identifier, the
value for “k”, and a flag to indicate homogeneous
streams. Which of the four approaches will be applied
depends on the flow specification and on the reserva-
tion mechanism.

6 Conclusion

Expressing inter-stream relationships allows the net-
work to improve the services it provides and to make
an optimal use of the available resources. We intro-
duced the group abstraction to express these relation-
ships. We identified a set of fundamental relations and
showed how to embed group information in the routers
during stream setup. As the next step, we feel that it is
necessary to design the appropriate mechanisms to
support streams with related QoS including inter-
stream delay jitter.

References

[Bult93]
D.C.A. Bultermann: Specification and support of adaptable
networked multimedia, ACM Multimedia Systems, Vol 1,
pp:68-76, 1993.

[Delg94]
L. Delgrossi (Ed.): Internet Stream Protocol, Version
ST2Plus, IETF ST Working Group Internet-Draft, work in
progress, October 1994.

[GuMo93]
A. Gupta, M. Moran: Channel Groups - A Unifying Abstrac-
tion for Specifying Inter-stream Relationships, Tenet Group,
UCB and ICSI Berkeley, TR-93-015, March 1993.

[MaCG94]

H. Maisonniaux, P. Cocquet, M. Gagnaire: New Concepts for
Multipeer Communications, Proceedings of 4th Open Work-
shop on High Speed Networks, Brest, 1994.

[Topo90]
C. Topolcic: Experimental Internet STream Protocol, Version
2 (ST-II), RFC 1190, October 1990.

[VWHK95]
R. Vogel, H. Wittig, R. G. Herrtwich, W. Kalfa, L. C. Wolf:
QoSFinder: A Method for the Routing of Multimedia Streams
in Computer Networks (in german), KiVS 1995.

[ZDES93]
L. Zhang, S. Deering, D. Estrin, S. Shenker, D. Zappala:
RSVP: A New Resource ReSerVation Protocol, IEEE Net-
work, 1993.

