
Scheduling Mechanisms Reducing

Contention Situations in Multimedia Systems

Jörg Werner, TU Chemnitz-Zwickau

Lars C. Wolf, IBM European Networking Center

Abstract: Multimedia applications have time dependancies and require appro-

priate resource management and scheduling mechanisms. Additionally, such

applications have typically large resource requirements, hence, methods to

reduce these requirements are desirable. Contention situations occur when the

execution of processes overlaps in time. This leads to additional management

efforts like context switches and to the increasing demand for resources like

memory space. In this paper we present alternative scheduling methods suitable

for real-time processes in multimedia systems. These methods serialize the exe-

cution of processes in order to reduce the occurence of overlaps. On the basis of

measurements the described scheduling mechanisms are evaluated concerning

their effectiveness and the required expenses.

1 Introduction

Multimedia applications are time critical and have typically large resource require-

ments. To process the data packets of a continuous-media stream, resources such as

buffer space are necessary. A simple approach for the assignment of that resource is

the fixed, non-shared assignment of buffer space to a stream. This way, the buffer

space is always available at the arrival of a data packet. However, the buffer space is

unused after the processing of a packet has been finished until the next packet arrives.

If a different assignment (which allows sharing) is applied, the total buffer space

amount needed for all streams is much smaller, hence, potentially more streams can be

served [Williamson95].

This buffer space can be shared among streams only if the processing of these streams

does not overlap, e.g., due to preemption. This is illustrated in Figure 1, the left side

shows the resource requirements if overlapping occurs and the right side presents the

case where resources can be shared since no overlapping happens.

Fig. 1. Resource Utilization.

Buffers

Time Time

Stream 1

Stream 2

Stream 3

1
2
3

1
2
3

overlapping execution non-overlapping execution

Buffers

In addition to the possibility to apply space sharing strategies, further improve-

ments can be gained if the processing of streams does not overlap. For instance, pre-

emption involves context switch costs, and the execution time for several system

mechanisms for synchronization and coordination, e.g., semaphores, is larger due to

the management effort if several processes execute them concurrently.

In this paper, scheduling mechanisms are presented and evaluated which reduce the

amount of overlapped processing and hence the number of contention situations. A

rate-monotonic scheduler is used as the basis for the given mechanisms [Liu73,

Wolf96].

The scheduling mechanisms must meet several requirements with respect to cor-

rectness and efficiency, i.e., they must:

1. guarantee that no deadlines are missed,

2. avoid overlapped processing whenever possible,

3. use as few resources (CPU time, memory) as possible for scheduling decisions,

4. allow continuous-media processing with as large as possible CPU utilization.

The correctness (1) is the most important item, efficiency aspects are only second. An

optimality criterion is given by (2). The scheduling mechanism should not consume all

the resource savings itself (3) and it should not reduce the CPU utilization for continu-

ous-media processing (4), compared with the original rate-monotonic scheduler.

2 System Model

Before the examined mechanisms can be described, it is necessary to present the

model underlying the design of the mechanisms.

Currently we restrict ourselves to the uniprocessor case. Whether the scheduling

methods can be applied successfully to multiprocessors is subject to further investiga-

tions.

Each process is periodic and its deadlines are equal to the ends of the periods.

When a new period begins, a process is, in principle, ready to run, i.e., its arrival times

are known. However, in order to avoid overlappings the scheduler can later change the

actual arrival times of a process, so that they do not necessarily coincide with the

beginning of the periods (as with the rate-monotonic scheduler). This introduces vari-

ability into the start time of the processing of the data packets (jitter), bound by the

length of the period. But also for preemptive rate-monotonic scheduling, there exists

no guarantee when a process executes within a period. It is only guaranteed that pro-

cessing is finished before the deadline, hence, the worst-case jitter does not deteriorate.

Each process is working with its distinct priority according to the rate-monotonic

scheme: the higher the rate of a process, the higher is its priority. The execution time

per period given for a process is a worst-case value and includes context-switch over-

head so this can be ignored later. All real-time processes are independent and are not

influenced by non-real-time processes.

A process never yields the processor voluntarily. This means that a process need

not suspend itself to wait for data, e.g., from the filesystem or the network. For the file

system, such waiting times, and hence the suspension, can be avoided if a specifically

designed continuous-media filesystem such as Shark is used [Drake94, Haskin93].

When reading data from a network, such blocking avoidance is not generally possible.

For the time being, only processes that send but not receive, for instance processes

inside a video server, can fulfill the requirements given above. They never need to

block and have a known behaviour with respect to arrival times. Therefore, the sched-

uling mechanisms described in the next section are restricted to that class of processes.

Section 4 briefly discusses a method which is able to avoid the blocking of pro-

cesses when receiving data from the network, but, on the other hand, introduces vari-

able arrival times. Approaches to schedule such processes are presented there, too.

3 Scheduling Methods for Processes with Known Arrival Times

3.1 Non-Preemptive Scheduling

The simplest approach to completely avoid contention situations among processes is to

use non-preemptive scheduling, where each process runs without interruptions until its

execution for that period has finished. To find out whether a specific process set is

schedulable, an appropriate schedulability test must be applied, here, the non-preemp-

tive rate-monotonic method [Nagarajan92].

This scheduling mechanism is optimal with respect to the avoidance of contention

situations since at no time more than one process is executing. There are no scheduling

efforts during run time because the rate-monotonic scheme assigns priorities in a static

manner.

The drawback of this approach is that the possible CPU utilization is potentially

lower than using the preemptive rate-monotonic scheduling algorithm. This occurs if a

process has a long execution time compared with the periods of other processes. Then

even for relatively low CPU utilizations, deadline violations might happen. Such a set

of processes would be rejected by the schedulability test since it is not schedulable.

The applicability of this approach depends therefore on the usage scenario. For

instance, if the scheduler is used for a video server (which has a processing time of a

few milliseconds per period and a much longer period), in most cases non-preemptive

execution is possible without deadline violations even for CPU utilizations achievable

with preemptive rate-monotonic scheduling.

3.2 Non-Preemptive Scheduling of Processes with Equal Rates

The previous section showed that (for specific sets of processes) non-preemptive

scheduling can lead to low CPU utilization. However, a modified method can allow for

CPU utilizations equal to those achievable with the preemptive rate-monotonic algo-

rithm. The modification is that the execution of a process is non-preemptive with

respect to processes with the same rate, however, processes with higher rates may pre-

empt its execution, i.e., processes are grouped into sets of processes with equal rates

and preemption can only occur among processes which belong to different sets.

This scheme allows the same maximum CPU utilization as the preemptive rate-mono-

tonic scheduling as explained by the following example. T1 and T2 are preemptable

processes. In the left side of Figure 2, T1 has a higher priority than T2, thus, T1 pre-

empts process T2. If the priority order is reverse, i.e., the priority of T2 is higher than

that of T1, no preemption occurs (right side of Figure 2), and the serialization is

achieved without any non-preemptability.

The rate-monotonic scheduling algorithm assigns a unique priority to each process.

For processes with equal rates the priority order among them is arbitrary [Liu73].

Therefore, it is permitted to execute T2 non-preemptively with respect to T1 indepen-

dent of the assigned priorities. Since this scheme is still within the conditions of the

preemptive rate-monotonic scheduling algorithm, the maximum CPU utilization is the

same for both schemes.

Due to the non-preemptive scheduling of processes with equal rates, the execution

of such processes never overlaps. Preemptions can now only be caused by processes

with a higher rate (and therefore a higher priority). This means that for a process set

with n distinct rates at most n–1 preemptions may occur.

The applicability of this scheme depends on the usage scenario, yet, it can be justi-

fied as follows. While the processing of continuous-media data is done in principle

with different rates, the number of that rates is usually limited. For instance, within

video-on-demand applications the data packet transmission is performed with a certain

packet rate chosen from a normally small set of rates, hence, the processing of several

streams is performed with the same rate. Scaling of streams in regard to their rates will

also be possible with a small set of rates only.

A drawback of this method is that it is not optimal with respect to contention avoid-

ance. For a process set with several distinct rates it will generate a schedule that con-

tains overlaps. However, using a different algorithm it might be possible to find a

non-overlapping schedule. Further, the algorithm works only well for process sets with

a limited number of different rates.

3.3 Modification of Arrival Times

Now a method is presented which offers the same CPU utilization as the preemptive

rate-monotonic scheme and avoids overlapped processing whenever possible, i.e., it is

optimal with regard to this criterion. The principle approach is to modify all arrival

times of the processes individually, hence, processes do not always become ready at

the begin of a new period. For instance, process T1 in Figure 3, which has a higher pri-

ority than T2, does not become ready at t1 since it would preempt T2. Instead, the

arrival time of T1 is set to t2 when T2 has finished its work, therefore, no preemption

can occur.

Fig. 2. Possible Execution Sequences of Processes with Equal Rates.

T1

T2

T2

T1

a) b)

To apply that technique it must be checked that the delay of T1 is permitted. It is only

allowed to execute a low-prioritized process Ti without preemptions if no higher prior-

ity process misses its deadline within that period. Processes with a lower priority than

Ti need not to be considered since it has no influence on them whether higher priority

processes are executed with or without preemptions. The total CPU requirement is

equal in both cases.

This scheme does not change the possible CPU utilization compared with preemp-

tive rate-monotonic scheduling. It uses the laxity of the processes, i.e., the time until

the deadline is reached, to inhibit overlapped execution.

The arrival times can be determined either by a static precalculation or dynamically

during run time. Both approaches will be discussed in the following subsections.

Modification of Arrival Times – Static Precalculation

The length of the time interval for which the precalculation must be done depends on

the periods of the processes. To avoid overlapped processing, it is necessary to exam-

ine the current phasing of the periods of all processes at each time instance. It is suffi-

cient to consider an interval with a length given by the lowest common multiple of the

period lengths of the processes since it contains all possible period phasings. After the

first interval of that length has passed, all further intervals are only replicas of the first

one. Hence, the precalculation of the schedule must be done for the length of that inter-

val only. The schedule can be applied repeatedly after each such interval has finished

(Figure 4).

To create the schedule, the processes must be arranged for that interval so that each

process finishes before its deadline and in summary as few as possible overlaps occur.

This way, for each process in each period a time is determined when the process

should become ready. These arrival times can be stored in a table. During run time,

after the execution of a process has finished for a certain period, the next ready time

can be retrieved from the table. If the table is exhausted, it can be applied again,

whereas the stored arrival times must be adapted to the current time.

T1

T2

Fig. 3. Modification of Arrival Times.

t1 t2 Time

T1

T3

T2

Fig. 4. Schedule Repetition Interval.

Lowest Common Multiple of Period Lengths

The schedule is determined by simulating the execution of the processes. It must be

decided whether the execution of process Ti can continue at time t if the period of a

process with a higher priority begins at this moment. To this end, it must be checked

whether all processes with a higher priority than Ti meet their deadlines even if Ti is

executed non-preemptively. This is done by arranging all processes in a non-preemp-

tive manner, storing the times at which the execution of a process begins in the table,

until either the schedule has been completed or a deadline violation occurs. In the latter

case, the last part of the schedule must be dropped. The deadline violation must have

its reason in the non-preemptive execution of a lower priority process because the pro-

cess set is schedulable under the preemptive rate-monotonic scheme. The process Tj

with the lowest priority among the processes responsible for the deadline violation is

determined and it is temporarily marked and handled as preemptable. The simulation

continues from the start of the process Tj in the considered period (Figure 5). After all

higher priority processes have finished their execution, Tj is marked as non-preempt-

able again and continues to work. Note that during other periods this process may exe-

cute without any preemptions. Moreover, it might be necessary to perform multiple of

the described backtracking steps until all higher priority processes can be executed

before their deadlines.

The run-time overhead of this method is low since it consists only of the retrieval of

the next ready time from the table. The complex part of the scheme is the calculation

of the scheduling table which must be performed when the process set changes, i.e.,

each time a process is created or deleted or when the parameters of a process change,

e.g., due to stream scaling. The overhead for the precalculation depends on the process

set but can be time and space consuming if the lowest common multiple is large.

T1

T2

T1

T2

Fig. 5. Backtracking During Simulation due to Deadline Violation.

Process executes non-preemptively

Process executes but is preemptable

Process has been preempted

Modification of Arrival Times – Dynamic Determination

As an alternative to the static precalculation, the arrival time for each process in each

period can be determined dynamically during run time. Again, overlappings can be

avoided by considering the execution times of other processes. This dynamic approach

promises flexibility. Changes in the process set such as created or deleted processes

and changed process parameters are taken into account immediately. Additionally, no

memory space to store arrival times is necessary because that information is generated

only when it is needed.

However, a major drawback is the run-time overhead which must be paid for each

process in each period, hence it must be as small as possible. If, for instance, the exe-

cution time of a process per period is in the order of a few milliseconds, an overhead in

a similar order is absolutely unacceptable. Therefore, the algorithm must be simple,

even if its scheduling decisions are not optimal in the sense that potentially avoidable

overlapping situations occur.

The schedule is created in the following way. At the end of its processing for a

period each process calls the scheduler to calculate the next ready time for this process.

The scheduler needs information about the behavior of the other processes during the

next period of the considered process. This information is generated and managed

inside the scheduler. It attempts to reserve a time slot in the next period of the process

which has a length corresponding to the execution time and puts the process to sleep

until that time slot begins. Reservations already made for other processes must be

taken into account by the scheduler. This reservation procedure is illustrated in Figure

6. To simplify the presentation, it is assumed that all processes become ready for the

first time.

In the upper part, at time t1 the first process T3 becomes ready. To reduce conflicts with

possibly running processes, no stream processing is performed during the first period,

but only the scheduler is called to reserve a time slot for the next period. Since no res-

ervations have been made so far, T3 is scheduled for the time slot beginning with its

next period at t3. At time t2 the second process T2 becomes ready and calls the sched-

uler. Since a reservation has been set for T3, the ready time for T2 is set to t4 so that the

Fig. 6. Time Slot Reservation.

t3 Timet1 t2 t4

a)

t5

T1

T2

T3

b)
T1

T2

T3

t3 Timet1 t2 t4 t5

execution of T3 is not preempted by T2. If the same procedure is applied to process T1,

it will not be schedulable without deadline violation.

This shows the difficulties which occur at the time slot reservation for a high-prior-

ity process. Due to longer periods (compared with high-priority processes) the pro-

cesses with low priorities such as T3 perform their reservation early and find enough

unreserved time slots. For processes with a high priority this is exactly the opposite.

For example, in the above scenario the next time slot available to process T1 begins at

t5 which is too late to finish before the deadline. Even if T1 could be processed just in

time, this would mean that priorities are not taken into consideration because T2 would

be executed before T1.

For this reason, a reservation is not fixed in time (lower part of Figure 6). Since T1

has a higher priority than T2, the scheduler reserves a time slot for T1 at t4 and moves

the reservation for T2 accordingly. In order to reduce the overhead, the arrival time of

T2 is not adapted. This is not necessary because at time t4 process T1 is dispatched due

to its higher priority. But it is required to move the reservation for T2 to indicate that T2

will be processed within that interval.

If the scheduler detects that a process cannot finish its processing in time (either a

process which tries to reserve a time slot or a process for which the reservation has just

been moved) then the process which is the reason for that violation must be executed

preemptably. To this end, its reservation is removed which results in new reservations

within this interval for other, higher priority processes. Since the process will wake up

at the originally scheduled time, overlaps may occur.

4 Scheduling Methods for Processes with Varying Arrival Times

Section 3 presented mechanisms to reduce the amount of overlapped processing which

can be used successfully for certain types of applications such as video servers. In such

a scenario a process must never wait for data to transmit and, therefore, never yields

the processor voluntarily. However, this is not true for receiver processes.

For example, a receiver process in a video conference must wait until a packet has

been received from the network before further processing can be done. The wait time

might vary between periods due to jitter introduced by the network (if the used net-

work provides no tight jitter guarantee). If the process would start at the begin of the

period and then block to wait for a data packet, overlapping would be introduced if

another process would execute meanwhile. However, prohibiting other processes from

execution during that wait time leads to unused processor cycles and reduces the CPU

utilization contradicting the goals of the algorithms. This problem can be solved if wait

times are eliminated.

Wake up Data packet arrives

Fig. 7. Wait Times During Processing Period.

Process ready Blocking read Data packet read Processing finished

Figure 7 illustrates that two events are necessary before a receiver process can run to

completion in a period: the process must wake up and the data packet to be processed

must have been received. If the process is not awoken before both events occurred as

shown in Figure 7, the process can read the packet immediately. This way, it does not

have to wait, and the execution can be performed without interruptions.

If that approach to eliminate the wait times is used, no information is available when a

receiver process will actually wake up. Receiving processes are now of a more spo-

radic nature than sending processes which are mostly strictly periodic and have known

arrival times. Therefore, the scheduling algorithms must be examined whether they are

able to schedule processes with varying arrival times.

The exact arrival time of a receiver process is not known because it depends on the

receipt of the data packet. Thus, the algorithms which modify the arrival times (static

and dynamic version) can not be used. They are based on the idea that a process indeed

starts its execution at the scheduled time. Hence, only the non-preemptive methods can

be applied successfully.

5 Evaluation

The purpose of the scheduling mechanisms examined in the previous sections is the

reduction of contention situations among real-time processes. Therefore, the following

evaluation should clarify to which extend the algorithms are able to fulfill this goal.

Since specific mechanisms are needed to avoid overlapped execution, the additional

costs, i.e., the amount of resources needed for these mechanisms, must be evaluated as

well. The additional costs for the non-preemptive algorithms consists of the functions

to inhibit preemptions. For the algorithms which modify the arrival times, the schedul-

ing itself leads to overhead: for the static version the table must be calculated resulting

in processing time and memory space requirements, in the case of the dynamic version

the next arrival time must be determined. Only the static precalculation of arrival times

needs significant memory space to store the scheduling table.

The processing time measurements have been performed on a IBM RISC System/

6000 (Model 360) workstation with AIX 3.2.4. The measurement events have been

generated using the trace mechanism provided by the operating system.

Wake up Data packet arrives

Fig. 8. Elimination of Wait Times.

Process ready Data packet read Processing finished

* rounded to keep the lowest common multiple reasonably small

Scenarios

The developed algorithms are only partially usable for scenarios with varying arrival

times, but can be used for applications with known arrival times, for instance, a video

server. Therefore, the measurement setup resembles such an application; the test pro-

cesses execute with timely characteristics found in a video server.

To perform a worst-case evaluation of the implementation of the algorithms, the

process sets have been chosen in such a way that the overall CPU utilization is large,

i.e., close to the maximum permitted by the preemptive rate-monotonic algorithm. The

process sets are given in Table 1.

In process set 1 for each of the three different rates approximately the same number

of processes exists resembling a video server supporting three different retrieval rates,

e.g., for heterogeneous clients.

The process set 2 contains only processes with the same rate. As explained before,

such a scenario can be considered as typical for video server which might support only

one standard rate. This scenario is directed to the examination of the non-preemptive

scheduling of processes with equal rates which should be able to schedule the process

set without overlaps.

The purpose of the last scenario, process set 3, is to examine the scheduling algo-

rithms if a process set is not schedulable without overlaps. Here, the non-preemptive

mechanism cannot be used. This can easily be seen looking at the process parameters

which have not been taken from a video server: the long processing time of the first

process (60 ms) inhibits the third process from meeting its deadline at the end of its

period (40 ms). In this scenario the performance of the remaining algorithms is of

major interest.

Tab. 1. Process Sets.

Number

of

Processes

Process Parameters

CPU Utilization
Rate Period

Processing

Time/Period

Process Set 1

6 5 s-1 200 ms 7 ms

67.5 %6 10 s-1 100 ms 4 ms

5 15 s-1 66.5 ms* 3 ms

Process Set 2 20 5 s-1 200 ms 7 ms 70 %

Process Set 3

1 5 s-1 200 ms 60 ms

77.2 %1 11.1 s-1 90 ms 20 ms

1 25 s-1 40 ms 10 ms

Results – Reduction of Overlapped Execution

The following figures show the ability of the algorithms to reduce the number of over-

laps occurring during the execution of the process sets. The bars symbolize the nor-

malized measurement interval. Each section of a bar specifies (in average) the portion

of the measurement interval where n processes were executing concurrently. n is given

for each section. For comparison purposes, the degree of concurrency when using the

preemptive rate-monotonic scheduling algorithm is shown, too. Note that the shaded

part corresponds to the CPU utilization of the process set in question.

Figure 9 illustrates that a large amount of concurrent execution can be observed if the

preemptive rate-monotonic scheduling algorithm is used. As expected, the non-preemp-

tive algorithm avoids overlapped execution completely. The algorithm which sched-

ules processes with equal rates without preemptions can reduce the number of overlaps

significantly.

The static precalculation is an optimal mechanism. Since the process set is schedu-

lable non-preemptively, this method should also find a schedule without any preemp-

tions, and it is indeed able to do so.

It has been expected that the results for the dynamic modification of the arrival

times are comparable to the results gained by the static precalculation (both take a sim-

ilar approach). However, the number of overlaps using the dynamic scheme is higher;

up to three processes are executing concurrently. The reason is that the implementa-

tion, in order to reduce the overhead, does not adapt the wake-up times accordingly if

time slot reservations are moved. Thus, several processes may wakeup simultaneously.

In principle, the execution of the processes should nevertheless be serialized due to

their distinct priorities. However, since the number of real-time priorities in AIX 3 is

limited, the (logical) process priorities must be mapped to the smaller number of avail-

able real-time priorities. Now several processes can have the same priority. Processes

with the same real-time priority are scheduled using the round-robin scheme with a

maximum but not guaranteed time slice of 10 ms [Britton93], so that a process might

be dispatched even if another has not yet finished its execution.

Fig. 9. Reduction of Overlapped Execution for Process Set 1.

Preemptive Rate-Monotonic

Non-Preemptive Rate-Monotonic

Non-Preemptive Rate-Monotonic
of Processes with Equal Rates

Static Precalculation

Dynamic Modification

0 0.5 1

1

1 2

1

1 2 3

41 2 30

0

0

0

0

The results for process set 2 are better for all scheduling algorithms (Figure 10). The

preemptive rate-monotonic scheduling scheme leads also for this process set to a con-

siderable number of overlaps. As expected, both non-preemptive methods are able to

schedule the process set without any preemptions and the static precalculation per-

forms equal to them. The dynamic modification scheme achieves a better result than

for process set 1, however, its result is still worse than any of the other three methods.

Process set 3 is not schedulable with the non-preemptive rate-monotonic algorithm,

hence, Figure 11 presents the results for the other schemes only.

Using the preemptive rate-monotonic scheduler, two processes are executing con-

currently for a large portion of the measurement interval. The result for the non-pre-

emptive scheduling of processes with equal rates is similar. The reason is that no two

processes have the same rate, so the method is basically identical to the preemptive

scheme. That the behavior is slightly better is simply by accident.

The static precalculation approach is able to reduce the number of overlaps signifi-

cantly. This case demonstrates clearly the difference to the non-preemptive scheduling.

While the non-preemptive scheduler rejects the process set, the static precalculation

can serialize the execution of the processes in an optimal manner. Whenever possible it

allows the non-preemptive execution otherwise preemptions are permitted.

Once again, the result gained by the dynamic modification method is not accept-

able.

Fig. 10. Reduction of Overlapped Execution for Process Set 2.

1

1

1

1 2

1 2 30

0

0

0

0

Preemptive Rate-Monotonic

Non-Preemptive Rate-Monotonic

Non-Preemptive Rate-Monotonic
of Processes with Equal Rates

Static Precalculation

Dynamic Modification

0 0.5 1

Fig. 11. Reduction of Overlapped Execution for Process Set 3.

Preemptive Rate-Monotonic

Non-Preemptive Rate-Monotonic
of Processes with Equal Rates

Static Precalculation

Dynamic Modification

2

1 2

2

1 2 30

0

0

0

0 0.5 1

1

1 3

Results – Additional Overhead

The scheduling mechanisms are directed to reduce the number of overlapped execu-

tions and, hence, to improve the system performance. This implies that the saved

resources should not be consumed by the scheduling mechanisms. Here, the overhead

introduced by the algorithms is evaluated.

* not schedulable

Table 2 shows the costs (processing time) generated by the non-preemptive scheduling

schemes. For them, coordination mechanisms are required which ensures that the pro-

cesses execute without preemptions. The overhead for the non-preemptive scheduling

mechanism is larger than that for the non-preemptive scheme among processes with

equal rates. The reason is that the number of processes to be coordinated is larger for

the first scheme since the second must consider smaller subsets only. In both cases the

overhead must be paid for each process in each period.

The static precalculation algorithm leads to processing time and storage space

overhead, i.e., to calculate and to store the scheduling table. Both depend on the pro-

cess set what can also be seen in Table 3 showing the costs for the three considered

process sets. For a process set {T1, …, Tn} the required space M (in bytes) to store the

scheduling table can easily be computed since each process entry consumes 12 bytes

and each stored arrival time needs 8 bytes in the current implementation:

For a short period, while calculating a new scheduling table, more space is needed

because the old schedule is valid and must be kept until the new table has been com-

puted.

The required time for the schedule calculation presented in Table 3 has been mea-

sured under a significant real-time processing load, i.e., while the system was execut-

ing the respective process set. The run-time overhead when retrieving the next ready

time from the scheduling table is neglectable.

Table 3 also showes the overhead for the algorithm which modifies the arrival times

dynamically. It must be noted that these computation times are necessary for each pro-

cess in each period.

Tab. 2. Overhead due to Coordination Mechanism Inhibiting Preemptions.

Non-Preemptive Scheduling
Non-Preemptive Scheduling of

Processes with Equal Rates

Minimum Maximum Average Minimum Maximum Average

Process Set 1 2 µs 26 µs 8 µs 2 µs 15 µs 8 µs

Process Set 2 2 µs 22 µs 10 µs 2 µs 15 µs 9 µs

Process Set 3 –* –* –* 2 µs 3 µs 2 µs

M 12
lowest common multiple

T i

-- 8×+ 
 

i 1=

n

∑=

6 Related Work

Real-time scheduling mechanisms which consider the usage of resources have been

studied by several research groups.

[Zhao87] presents a method with the two goals that each process meets its dead-

lines and that each process has exclusive access to resources which must be specified

accordingly. No a priori information about process arrival times are required by this

method. The scheduling is done each time when a process arrives. The algorithm cre-

ates a tree of possible schedules and performs a heuristic search on that tree to deter-

mine whether a new arriving process can be scheduled without violating the

guarantees given to already existing processes, i.e., that processing can complete

before the deadlines and that all exclusive resources required are available exclusively.

The method described in [Xu90] guarantees not only processing before deadlines

and exclusive access to resources but also considers precedence relations among parts

of different processes. Since the algorithm is aimed to be used for the pre-runtime cal-

culation of the schedule, the process set must be completely known in advance. Each

process consists of a set of segments with known arrival times, execution durations and

deadlines. Precedence and exclusion rules can be specified between pairs of segments.

The precedence rules allow to specify that the processing of one segment must be fin-

ished before the execution of the other segment may start. Exclusion rules can be used

to get exclusive access to a resource during a segment. The unit considered for sched-

uling is not a process but a segment. Again, the schedule is generated with the help of a

search tree.

Another scheduling algorithm which guarantees execution before deadlines and

exclusive access to resources was developed as part of YARTOS [Jeffay90]. Here,

resources are shared software objects which can be accessed by only one process at a

time. Processes are characterized by an execution time and a deadline, the former is

partitioned into phases. By definition, a process accesses at most one resource during

each phase. The unit considered for scheduling is a phase. A process can only be pre-

empted by a higher priority process if the higher priority process does not require a

Tab. 3. Scheduling Overhead.

Static Precalculation
Dynamic

Modification

Lowest

Common

Multiple

Storage

Space

Processing Time Processing Time

Min. Max. Ave. Min. Max. Ave.

Process Set 1 26.6 s 35356 bytes 148 µs 29840 µs 6734 µs 2 µs 22 µs 5 µs

Process Set 2 0.2 s 400 bytes 147 µs 923 µs 498 µs 2 µs 23 µs 7 µs

Process Set 3 1.8 s 628 bytes 142 µs 724 µs 365 µs 2 µs 22 µs 4 µs

resource which is accessed by the currently running process during this processing

phase; priority inheritance is used to avoid priority inversions.

In addition to guaranteeing that the processing finishes before the deadline, it is a

common characteristic of these three methods that they can ensure that a process can

exclusively access specific resources without explicit coordination mechanisms such

as semaphores. To be able to provide these guarantees, the last two methods need the

information for each process when which resources are required and for how long. The

first method assumes that exclusive resources are needed during the whole execution

time. Then a given process set, i.e., the set of processes and their resource usage speci-

fications, is only schedulable and hence accepted if all processes can finish their execu-

tion before their deadlines and if all specified resources can be accessed exclusively.

Even though these mechanisms ensure that a process can access a resource exclu-

sively, it might nevertheless be preempted by other processes which do not require

access to this resource at that time. Hence, conflicts, with respect to the definition used

in this paper, can still occur. These methods can avoid overlapping execution only for

the special case when the resource processor is specified as a resource for which exclu-

sive access is required.

Scheduling mechanisms, such as the methods described in this work, which have

been designed to reduce overlapped execution can provide for better efficiency and

universality. For instance, it cannot be assumed that resource access characteristics in

terms of when and how long resources will be used are usually known. This would

require the provision of that information by the operating system which is not the case,

e.g., in the used AIX operating system. Further, the methods examined within this

work (except the pure non-preemptive mechanism) can accept process sets even if they

cannot be executed without overlaps. This increases the processing time spent due to

operating system overhead and requires explicit coordination of the processes, how-

ever, the advantage is that a larger number of process sets can be scheduled.

7 Summary

A large amount of resources is needed for the processing of continuous-media data.

This can be reduced if the execution of processes working on such data does not over-

lap. To achieve this, several scheduling algorithms have been developed and evaluated

by measurements.

Non-preemptive scheduling avoids overlapped processing a priori. The measure-

ments show that only a small additional overhead is required for it. However, it

restricts the schedulable process sets to a relatively large extend. Thus, its usability

depends strongly on the application scenario. If it is used for process sets where it can

be guaranteed that all processes will hold their deadlines even for large CPU utiliza-

tions, then this scheme leads to good results.

The same degree of overlap avoidance has been reached by the static precalculation

algorithm. Further, this method can always schedule process sets which are schedula-

ble under the preemptive rate-monotonic scheduling scheme, i.e., it leads to equal CPU

utilizations. At least for the measurements performed, the overhead to calculate and to

store the scheduling table was acceptable. Hence, this scheme offers a good overall

performance.

The results of the other two mechanisms are less promising. The number of concur-

rently active processes is less than using the original preemptive scheduling, however,

not satisfactory, especially for the dynamic scheme. The overhead introduced by each

method is relatively low. While both schemes can schedule the same process sets as the

preemptive scheduler, only the non-preemptive scheduling of processes with equal

rates seems to be usable. If the typical process set of an application contains several

processes with equal rates, this scheme may be applied successfully.

References

[Britton93] B. Britton: AIX 3.2 Multiuser System Tuning and the New Performance

Tuning PTFs, AIXPRESS, January 1993, pp. 9-13.

[Drake94] S. Drake, IBM Almaden, private correspondence, May 1994.

[Haskin93] R. L. Haskin: The Shark Continuous-Media File Server, Proceedings of

COMPCON ’93.

[Jeffay90] K. Jeffay: Scheduling Sporadic Tasks with Shared Resources in

Hard-Real-Time Systems, TR 90-039, University of North Carolina at Chapel Hill,

Department of Computer Science, November 1990.

[Liu73] C. L. Liu, J. W. Layland: Scheduling Algorithms for Multiprogramming in a

Hard-Real-Time Environment, Journal of the ACM, Vol. 20, No. 1, January 1973,

pp. 46-61.

[Nagarajan92] R. Nagarajan, C. Vogt: Guaranteed-Performance Transport of

Multimedia Traffic over the Token Ring, TR 43.9201, IBM European Networking

Center Heidelberg, Germany, 1992.

[Williamson95] J. Williamson, L. C. Wolf: Reducing Buffer Space Requirements for

Multimedia Data Streams: Analysing the effects of staggering streams and

preemption in buffer pools, TR 43.9504, IBM European Networking Center,

Heidelberg, Germany, 1995.

[Wolf96] L. C. Wolf, W. Burke, C. Vogt: Evaluation of a CPU Scheduling Mechanism

for Multimedia Systems, to appear in Software – Practice and Experience, 1996.

[Xu90] J. Xu, D. L. Parnas: Scheduling Processes with Release Times, Deadlines,

Precedence, and Exclusion Relations, IEEE Transactions on Software Engineering,

Vol. 16, No. 3, March 1990, pp. 360-369.

[Zhao87] W. Zhao, K. Ramamritham, J. A. Stankovic: Scheduling Tasks Under Time

and Resource Constraints, IEEE Transactions on Computers, Vol. 36, No. 8, August

1987, pp. 949-960.

