
1

Evaluation of a CPU Scheduling Mechanism
 for Multimedia Systems

Lars C. Wolf

IBM European Networking Center, Vangerowstraße 18, D-69115 Heidelberg, Germany

lwolf@vnet.ibm.com

Wolfgang Burke

Universität Karlsruhe, Am Fasanengarten 5, D-76128 Karlsruhe, Germany

burke@ira.uka.de

Carsten Vogt

Fachhochschule Köln, Betzdorfer Str. 2, D-50679 Köln, Germany

vogt@fh-koeln.de

Abstract: Multimedia applications handling audio and video data have to obey time characteristics of

these media types. Besides a basic functionality to express time relations, correctness with respect to

time constraints requires mechanisms which lead to favored processing of multimedia operations. CPU

scheduling techniques based on the experience from real-time operating systems offer a solution and

provide multimedia applications with the ability to meet time-related quality of service requirements.

This paper discusses mechanisms to express time in multimedia systems and describes an implementa-

tion of a CPU scheduler designed to run under IBM’s UNIX derivate AIX. The evaluation of the imple-

mentation based on measurements shows that the scheduler is able to support the time requirements of

multimedia applications and that such mechanisms are indeed necessary since otherwise deadline viola-

tions occur.

Keywords: multimedia, real time, scheduling, operating system support

Introduction

Due to the periodicity of continuous-media data, the processing of audio and video data must

occur also in this fashion. Moreover, the execution of these operations has to be finished within

certain deadlines to serve the real-time characteristics of these media. Due to these real-time

characteristics of audio and video data, multimedia systems have to provide mechanisms to

support time-related quality-of-service (QoS) guarantees.

Sometimes, multimedia systems for single-user, and especially for single-task, machines

provide only simple mechanisms to provide time-based operations, e.g., for delaying program

execution, but no real-time support. It is often argued that this approach is sufficient for these

systems since the CPU is used mostly for the multimedia application during its run time. In

those situations where the user has another time-consuming application running, it is easy for

him to abandon that application. For multi-user and server systems such as video-on-demand

servers, this assumption is not valid. Other user applications can disturb multimedia applica-

tions in such a way that the perceived QoS is not acceptable. Real-time CPU scheduling tech-

niques which serve multimedia application processing with respect to their time-criticality

provide a solution to these problems.

This paper discusses first various methods to express time in multimedia systems. Then a

real-time scheduling algorithm and its implementation for IBM’s AIX Version 3 operating sys-

tem is described. Work for OS/2 has been discussed in Reference 1. This is part of our work on

2

the transport system HeiTS (Heidelberg Transport System)2 which offers real-time communi-

cation support for distributed multimedia applications.

Our goal is to show how a general-purpose operating system that is widely available on the

market can be used for the processing of multimedia applications without a modification of its

kernel structures. We did not intend to develop a new real-time system that is specifically tai-

lored to multimedia requirements.

Expressing Time in Multimedia Systems

Various ways to express time in multimedia systems exist which place different amounts of

burden on the application programmer and provide different kinds of real-time support. For

simple programs, the mechanisms described in the next two sections are sufficient. In those

cases, the timely operation is either hidden in high-level functions or is based on I/O adapter

characteristics.

Programs which perform more complex tasks than just moving data from an input device to

an output device often have to execute certain operations after some specified time. Hence, an

operating system driven control of timing is needed. Consider, for instance, a server which

reads data from a disk and sends it over a network periodically. In this scenario, neither the

input device, the disk, nor the output device, the network, operate periodically. Therefore, the

operating system must provide appropriate control mechanisms. Such mechanisms are

explained after the next two sections.

Hidden Timing

Often, multimedia environments for stand-alone computer systems offer library functions

which allow a programmer to play audio or video data in a simple way, e.g., consider a func-

tion such as play_audio_file. These functions perform the steps necessary to present the

information to the user and hide the actual handling of time in their program code. Their use is

simple for the application programmer, however, they serve only a closed set of applications.

The functions cannot be adapted to specific application needs, e.g., to retrieve continuous-

media data from the system, perform some application dependent processing and present the

result directly to a human user. Internally, these functions are based on some of the methods

described in the following sections.

Adapter-Based Timing

For some simple programs, e.g., programs playing audio data stored on disk via an audio

adapter, it may not be necessary to use explicit programming techniques to provide timely

operation. Such programs can rather be based on the characteristics of the output device, e.g.,

the audio adapter. This adapter provides some buffer space in form of a FIFO queue into which

the program writes data to be played. The adapter’s processor reads data from the buffer and

converts it into sound waves. If the buffer is full, the program is blocked from further process-

ing. If the adapter’s processor has removed data from the buffer space the process can be

unblocked and continue processing as detailed in Figure 1.

Loop / Delay

The methods described in the last two sections are only sufficient for simple applications. Now,

mechanisms for more complex programs are discussed.

3

An approach often taken by application programmers for writing periodic programs is the

use of loop/delay constructs. These constructs rely on mechanisms provided by most oper-

ating systems to delay the execution of a program for a certain amount of time like UNIX’s

sleep function. They are used in the following way where f denotes some function for pro-

cessing the data:

get_time(t);

while (read(data) != eof) {

f(data);

write(data);

t = t + period;

get_time(t1);

delay(t-t1);

}

While such constructs avoid the influence of the actual execution time of the operations, in a

preemptive multi-tasking environment – or due to interrupt processing – this approach is not

correct since the statements are not executed atomically. Any preemption between the calcula-

tion of the length of the delay period and its use in the delay operation leads to time drifts since

in that case the computed value is too large and the delay too long. Using a function which

delays the execution until a specified point in time instead of delaying a specified amount of

time can solve this problem:

get_time(t);

while (read(data) != eof) {

f(data);

write(data);

t = t + period;

delay_until(t);

}

The same problem has been recognized in Ada83, and the Ada9X revision took this into

account by the introduction of the above mentioned delay until primitive.3 A functionally sim-

ilar primitive can also be found in Chimera II 4.

While this approach leads to correct timing, it places the burden of time handling and tem-

poral state information management on the application programmer. It is better, and safer, to

have the underlying operating system do this work.

Asynchronous Events

Notifications by asynchronous events may be used by programs dealing with devices where the

event indicates that some change in the device state has occurred. Similarly, this may be used

to indicate timer expirations. Processing these events leads to the execution of specific pro-

gram sequences, often called signals handlers or callback functions, to reflect the changed sys-

tem state.

This method separates time handling and functional specification. However, often only sub-

sets of functions may be executed in an event handler, which means that only state changing

operations like setting flags may be performed but no regular application processing. Further-

more, mutual exclusion between the application program and the event handler during access

to shared data structures has to be enforced to avoid state inconsistency. Due to the non-deter-

minism of asynchronous events it is a general fact that those programs are hard to analyse and

to debug because in subsequent executions the order of events can be different.

4

Periodic Threads

Periodic threads are threads which perform their operations at fixed periodic points in time

without explicitly specified intervention by the application programmer. Periodic threads are

described for example in References 5, 6 and 7. Using periodic threads, the programmer speci-

fies some characteristics of the thread such as estimated processing time, period

and entry_point. In each period, a thread is created which calls the specified entry point,

executes the given functions, which take about the estimated time and exits:

create_periodic_thread(entry_point, processing_time, period);

…

entry_point()

{

/* the actual computation */

f();

}

This approach separates functional and temporal specification in a similar fashion as the asyn-

chronous event handling approach does. However, the functionality provided by the periodic

thread and the asynchronous event handling method are different, i.e., in the periodic approach

the tasks are inherently periodic in nature and the limitations of the event handling approach do

not apply to the periodic thread model. Additionally, the periodic thread model provides the

underlying system components with information about resource usage.

Periodic Processes

Periodic processes are similar to periodic threads. Since process creation is much more expen-

sive than thread creation, the process does not exit after the execution of each period’s opera-

tions but calls a function schedule_me to wait for the beginning of the next period.i Thus, the

execution scheme differs slightly:

p = create_new_process();

inform_scheduler(p, processing_time, period);

…

while (TRUE) {

schedule_me();

/* the actual computation */

f();

}

The principal characteristics of this approach are the same as of the periodic thread model and

differences are mostly related to operating system abstractions.

Note that the function schedule_me can be easily implemented using the delay_until

primitive. However, with schedule_me the programmer need not care about the calculation

of times; this is done by the operating system.

i. It is, of course, possible to use this approach with threads as well and may, therefore, be viewed more as

an implementation than a modelling detail. Also, thread implementation techniques exist which reduce

the cost for thread creation such as ‘reclaiming threads’8.

5

Evaluation

As the summary in Table 1 illustrates, the first three methods do not support a separation of

temporal and functional specification and place burden on the application programmer. Asyn-

chronous events provide this separation, but the programming model is complicated. The

weakest point of these models is that they do not provide any information about timing and

requested resource usage to the system scheduler. This means, no real-time scheduling mecha-

nisms can be applied. For instance, no schedulability tests can be performed to check whether

the system is able to support all requests, and, thus, overload situations may occur leading to

unacceptable QoS. Therefore, these models can be seen as simple ad hoc methods but are not

applicable in general multimedia systems where mechanisms for reliable QoS provision have

to be available.

As a result, only the last two methods, i.e., periodic threads and tasks, are general enough to

be used in multimedia systems supporting reliable QoS. In particular, they provide timing

information about the tasks to the system scheduler by their initialization calls. This informa-

tion enables the scheduler to check the schedulability of the tasks and schedule them accord-

ingly so that their QoS can be guaranteed. Methods for scheduling periodic tasks have been

devised and implemented within the realm of real-time systems as discussed in the subsequent

chapter.

The second advantage of periodic threads and processes is that their functionality is not lim-

ited as it is the case with asynchronous event handlers. Hence, they can execute all the func-

tions required to process a multimedia stream.

Aside from research operating systems, most commercially available systems do not offer

the needed periodic thread or process model, but only provide basic real-time mechanisms to

implement these models. The Posix threads extension9, for example, provides the possibility to

associate scheduling attributes with each thread defining the scheduling policy and the thread’s

fixed priority, e.g. priorities assigned based on rate monotonic scheduling. The timing of the

thread’s operations, e.g. suspending a ready thread till its next period, has to be implemented

by the programmer. The timer operations offered by the Posix real time extension10 can be

used for that purpose, in a similar way as is done in the rest of this paper. SunOS 5.011 offers

the ability to preempt a thread after its time quantum has expired, but the preempted thread is

put back on the dispatch queue. Therefore this approach implements some kind of round-robin

scheduling but no real-time scheduling. Since the preempted thread has missed its deadline,

rather some exceptional operations should be performed.

Scheduling Algorithm

As the discussion in the previous section illustrated, mechanisms to express periodicity in mul-

timedia systems require real-time CPU scheduling mechanisms in form of periodic threads or

processes. These have to be provided by the operating system. This section discusses the

model used in HeiTS to specify the system workload of periodic data streams, shows how the

various processes are prioritized and describes the scheduling algorithm used.

QoS and Workload Model

QoS management in multimedia systems is based on two models. The workload model is used

to describe the load an application will place onto the system. The QoS model is used by an

application to define its performance requirements and by the system to return corresponding

performance guarantees. Of course, the workload model can be regarded as being a part of the

6

QoS model since one important QoS requirement of applications is that the system is able to

process their workloads.

The QoS model used in HeiTS has three parts:

• The throughput part describes the bandwidth required for or granted to a multimedia con-

nection. It consists of the three parameters of the workload model described below.

• The delay part defines the maximum delay a multimedia packet can experience on its way

from the source to the sink of the connection.

• The reliability part describes how packet losses and bit errors within packets are handled.

They can be ignored, indicated or corrected.

The workload for multimedia systems is periodic by nature – consider for instance an applica-

tion presenting audio or video data where data packets must be transmitted at certain instants.

To describe the load induced into the system, HeiTS uses the Linear Bounded Arrival Process

(LBAP)12 as its workload model. The LBAP model assumes data to be processed as a stream

of discrete units (packets) characterized by three parameters:

• S = maximum packet size,

• R = maximum packet rate, i.e., maximum number of packets per time unit, and

• W = maximum workahead.

The workahead parameter W allows for short-term violations of the rate R: According to the

LBAP definition in any time interval of duration t at most W + t∗R packets may arrive. This is

necessary to model input devices that generate short bursts of packets, e.g., disk blocks that

contain several continuous-media data frames. Furthermore, the notion of workahead is needed

to account for any clustering of packets during the various processing stages before they are

finally presented to the user. A useful concept of the LBAP is that of the logical arrival time

l(mi), which is defined as:

l(m0) = a0 = actual arrival time of the first packet

l(mi+1) = max {ai+1, l(mi) + 1/R}

The concept of logical arrival time essentially acts as a smoothing filter for the traffic streams.

It ensures that no particular stream hogs a resource at the expense of other streams given their

declared workload characteristics. A packet whose logical arrival time has passed is called

critical, otherwise it is referred to as workahead.

The output stream of a resource or the processing stage serving an input LBAP, e.g., CPU or

intermediate network, is itself an LBAP. Its parameters depend on the parameters of the input

LBAP and the maximum and minimum delay within the resource. Their computation has been

described in Reference 13. For an end-to-end connection passing a periodic stream through

various processing stages, e.g., input device → CPU on sending host → intermediate network

→ …, this enables one to “push” the LBAP workload model from the origin to the destination

through all stages.

In addition to the three LBAP parameters defined above, the user must also specify for each

resource the maximum processing time per packet to ensure that resource capacities can be

correspondingly reserved.

The QoS and workload models described above were chosen because they are conceptually

simple, though they describe the requirements of a multimedia stream in sufficient detail, and

can be directly used as a basis for QoS management. However, research has brought up a num-

ber of other QoS models that can be used in multimedia and real-time processing and commu-

nication systems. Examples for alternative models can be found in References 14, 15, 16, or

17. Some of them define the workload by stochastic processes rather than by processes with

fixed periods. This is done to reflect the requirements of streams with a variable bit-rate;

although also these can be handled in a periodic framework, as shown in Reference 18. Some

7

models account for the packet loss rate and others quantify the jitter of a stream, i.e. the vari-

ance of the interarrival times of the stream packets.

Ordering of Priorities

Not all users need the same degree of QoS. For some users it is important to get the specified

quality all of the time without any degradation, others may accept some temporary quality deg-

radation, especially if the cost for using this service decreases accordingly. The first degree of

QoS (“guaranteed” QoS) is necessary for production-level applications, e.g., in a movie studio.

The second degree of QoS (“statistical” QoS) is especially useful for playback consumer appli-

cations or video conferences, provided that degradations do not occur too often. Based on these

QoS classes, different methods for resource reservation can be used.

For guaranteed QoS pessimistic resource reservation has to be done. The resource capacities

reserved are those needed in the worst possible case, and the QoS requirements will be satis-

fied under all circumstances. Reserving such large amounts of resources, however, can be

rather costly. A cheaper alternative is statistical QoS using an optimistic approach. Here, less

resources are reserved, for example, those needed in the average case. This implies that the

QoS requirements will be met in general, but temporary QoS violations may occur. Figure 2

illustrates these different approaches.

In addition to the differentiation between processes serving applications with guaranteed

and statistical QoS, Reference 19 suggests a method of deadline-workahead scheduling which

dynamically classifies messages with respect to whether they are currently critical or worka-

head. Within the workahead class guaranteed and statistical streams may be separated, how-

ever, for simplicity they are combined into one class. This yields the following multi-level

priority scheduling scheme:

(1) Critical guaranteed processes

(2) Critical statistical processes

(3) Processes not performing multimedia operations (e.g., application processes)

(4) Workahead processes (both guaranteed and statistical)

The scheduling within these priority classes is (preemptive) deadline based (except for class 3

where any strategy can be used). The logical arrival time of a packet plus the guaranteed (or

statistical) delay bound calculated for this connection serves as its deadline. A process moves

from priority class 4 to 1 or 2, respectively, as soon as it becomes critical, which possibly

entails the preemption of the currently executing process.

Because guaranteed processes are in priority class 1 and statistical processes in class 2, this

scheme has the drawback that it prefers a guaranteed connection over a statistical connection

even if the statistical connection has a closer deadline than the guaranteed connection. Hence,

even a statistical connection that does not exceed the specified workload bounds might experi-

ence delays larger than those calculated by the QoS optimization function 20. Although the

notion of statistical connections allows such a behavior – because they may temporarily suffer

from QoS violations – it is questionable whether this distinction is fair. To avoid this problem,

a variant of the algorithm could be considered where priority classes 1 and 2 are combined and

a new priority class for statistical processes, which have consumed their specified processing

time, is introduced. This leads to the following priority scheme:

(1) Critical processes (guaranteed and statistical)

(2) Critical processes that have used up their processing times as specified by their workload

descriptions, but require further processing

(3) Processes not performing multimedia-operations

(4) Workahead processes

8

Within this scheme, a statistical process executes in priority class 1 until it has consumed its

specified processing time. Then it is moved to priority class 2, which may lead to a preemption

in favor of a different process from class 1. The detection that a process has consumed its pro-

cessing time requires the supervision of execution times, which is not possible in the chosen

operating system (AIX). An efficient implementation of such a mechanism would require a

kernel modification which is not possible by the kernel modification facilities in AIX. Addi-

tionally, assume the case of communication processing where packets of one connection may

be served by different processes. In this case, the above scheme would require special attention

on proper sequencing of packets, i.e., a newly arriving packet is not allowed to be processed in

priority class 1 while an older packet of the same stream is waiting in class 2. Due to these rea-

sons the first priority scheme is used, despite its described drawback.

Another item is the trade-off between the gain of processing workahead packets prior to

their logical arrival times and the overhead of changing the priorities between critical and

workahead status. Since this overhead can be significant, the ‘standard’ version of the sched-

uler used in HeiTS does not perform processing of workahead packets but leaves workahead

packets unprocessed till their logical arrival time; yet, it is possible to compile a version

including workahead processing.

Note that the scheduling approach described here is rather simple: The partitioning of prior-

ities into a four-level scheme could be regarded as somewhat rigid. Also, more sophisticated

approaches to support the scheduling of aperiodic requests, e.g., data stream management and

non-multimedia computations, are possible. There exist solutions to reserve a specified capac-

ity of the bandwith to those aperiodic tasks, e.g., the sporadic server21 or the slack stealing

algorithm22.

However, an efficient implementation of such schemes requires a modification of kernel

data structures and the ability to supervise and stop a process’ execution. See, e.g. the imple-

mentation of the sporadic server in Reference 23. As our intention was to build a scheduler on

top of a general-purpose operating system, we had to refrain from using those elaborate

approaches.

Schedulability Test and Priority Assignment Scheme

The target operating system for the implementation is AIX, IBM’s UNIX derivate. In addition

to the well-known multi-level-feedback24 (MLFB) scheduling it provides a set of fixed priori-

ties at the highest priority levels (priorities 0-15), which are even higher than the AIX schedul-

er’s priority. Unlike the other (MLFB) priorities these priorities are not modified by the AIX

scheduler and can be used for real-time processing.

Assigning priorities to processes produces a considerable overhead that cannot be

neglected. Therefore, we do not utilize a dynamic scheme such as earliest deadline first (EDF)

but use a static priority assignment scheme according to the rate monotonic (RM) algorithm25

where a process with a short period (i.e., a high rate) receives a high priority. Priorities are

computed at application establishment time and are not changed dynamically during applica-

tion lifetime. Only when a newly established application needs a priority level that is already in

use the existing priorities are shifted to make room for the new application handling process.

With the priority scheme described in the previous section, the priorities are ordered in a way

that guaranteed processes possess the highest priorities and statistical processes use the lower

part of the real-time priorities. All processes not subject to real-time constraints are handled by

the AIX system scheduler and use priorities below the real-time priorities.

 RM scheduling has also the advantage that a simple schedulability test exists. A set of real-

time applications can be accepted with respect to the CPU load, i.e., no overload condition

occurs, if the following inequality holds25:

9

The parameters of this inequality and their meanings are:

• Index i runs through all n real-time application handling processes [T1, …, Tn],

• Ri denotes the maximum rate of Ti, and

• Pi specifies the processing time per packet of Ti.

• Un is a non-negative real number of at most ln(2) (≈ 0.69) for RM scheduling of processes

with arbitrary rates.

The limit of Un (for n approaching infinity) is U = ln(2) (≈ 0.69).

If the sum on the left hand side, i.e., the load generated by all real-time processes, does not

exceed U, the processing of all packets is guaranteed to terminate within their respective dead-

lines 1/Ri. If the sum is greater, this may still be the case, but no guarantees can be given with

this test.

The processing times Pi include the scheduling overhead, i.e., the overhead for inserting,

choosing and removing a process from the run queue, and the overhead for blocking and awak-

ening a workahead packet. A tool26 has been developed to measure these times. The total of

the overheads can be incorporated into the processing time Pi in a similar way as is described

in Reference 27.

Of the described time handling methods, only the last two, periodic threads or processes,

can provide the necessary information to the scheduler. Thus, the other methods are not usable

if timing guarantees have to be given.

It should be noticed here that the schedulability boundary U can be relaxed in certain cases.

If the periods of the processes have a certain ratio, U can be larger than ln(2): E.g., if the peri-

ods are (integer) multiples of the smallest period in the process set, then U = 1 can be chosen.

Also, Reference 28 showed that the maximum CPU load which can be accepted for RM sched-

uling is in the average case notably larger than ln(2).

However, the restriction of the maximum CPU utilization U for multimedia processing to a

value smaller than 1 is not such a strong limitation as it might seem. In any case, some CPU

capacity has to be reserved to processes other than multimedia related processes. Due to this

reason and the simplicity and efficiency of the Liu/Layland schedulability test we do not use

the more advanced analysis from Reference 28. Although the latter would enable the system to

accept a greater number of real-time applications simultaneously, the Liu/Layland scheduling

bound usually suffices for our purposes.

The Liu/Layland schedulability test can be applied not only to a static task set but also to

dynamically arriving tasks as was shown by Reference 29. More advanced tests, e.g., as

described in Reference 30, are not used due to the above reasons.

Buffer Space

One issue that has to be considered in multimedia QoS management is the reservation of buffer

space for the packets waiting to be processed. The longer packets must wait for a resource, the

more memory space must be available to avoid losses. A detailed discussion of this problem is

beyond the scope of this paper. For a stream defined by the LBAP model, the amount of buffer

space to be reserved on a node can be calculated from the LBAP parameters and the maximum

delay of packets on the node, for details see Reference 31. Reference 18 shows that even the

requirements of VBR streams can be satisfied with a moderate amount of storage space,

because the maximum delay bound to be enforced for multimedia streams is rather small.

Ri Pi⋅
i 1=

n

∑ Un≤ n 21 n⁄ 1−()=

10

Implementation

The functionality of the real-time CPU scheduler in HeiTS consists mainly of two parts, the

management of the information needed for proper scheduling and the actual scheduling of pro-

cesses.

Management of Scheduling Information

A “scheduling cache” is used to store all information needed for scheduling the processing of

the individual streams.ii Several functions for management of cache entries are provided. Dur-

ing the creation of an application the information which characterizes the stream is inserted in

the scheduling cache by means of the function rms_cpu_create_entry and can be freed

during connection release by the function rms_cpu_release_entry. Since QoS parameters

may be changed during the lifetime of an application, e.g., the rate is lowered, there must be a

possibility to report this change to the scheduler. This can be achieved by calling the function

rms_cpu_change_entry.

Scheduling of Processes

The actual scheduling is performed through a set of kernel functions (AIX provides mecha-

nisms for adding such system calls) that must be called by the process that wants to be sched-

uled. This is more efficient than implementing the scheduler as a separate process (like the

AIX system scheduler) because it saves the context switch between the process to be scheduled

and the scheduler process itself.

Requiring that the process calls the scheduler function explicitly leads to “voluntary sched-

uling” and may seem dangerous. However, all code allowed to run in an environment where it

is possible to use real-time priorities has to be established by an authorized user. Thus, only

approved code will be subject to real-time scheduling and, therefore, especially with reflection

on the performance gain, this approach can be regarded as secure.

Process Structure

To achieve proper scheduling of real-time processes some assumptions about the structure of

the processes have to be made. As shown in Figure 3, it is assumed that after creating an appli-

cation the process responsible for handling the data of this application is performing a program

loop and processes one data packet (e.g., a video frame) in every iteration. This continues until

the application is finished and the process is not subject to real-time scheduling any more.

Enforcing LBAP Property

Before processing a newly arrived data packet the scheduler must check whether accepting this

packet would violate the LBAP characteristic (i.e. the workload specification) of the data

stream. This check can be done in a blocking or a non-blocking way. The blocking test is per-

formed by the function LBAP_enforce and enforces the observance of the LBAP property of

the data stream: The process is left in a wait state until the logical arrival time of the packet is

reached.iii

ii. Each entry in this cache is associated with one process and can be compared to the attributes object

associated with a thread in the Posix threads extension9.

11

In the non-blocking test implemented in the function LBAP_poll the scheduler simply

returns the calculated logical arrival time of the data packet and the information whether

accepting this packet violates the LBAP properties of the data stream or not.iv For all non-

blocking tests of the LBAP property, it is the process’ responsibility to take proper action if the

packet violates the LBAP properties of the application (one possibility would be to call

LBAP_enforce).

Non-blocking functions are provided to support the usage of monotonic computations

where the quality of intermediate results does not decrease as it executes longer, e.g., compres-

sion algorithms as JPEG32 or MPEG-II33. Such algorithms produce a preliminary result after a

certain time which can be improved through further computations. Therefore, after an interme-

diate result has been reached, it has to be checked in a non-blocking way whether there is

enough time left for further operations. If there is time available, the result will be improved

otherwise the current result will be used, e.g., transferred to the consumer.

This is comparable to the milestone method mentioned in Reference 34. It should be noted

that the used schedulability test further supports this type of algorithms since it leaves a portion

of the processor capacity that can be used for the improvement of intermediate results.

The watchdog mechanism of the scheduler is especially useful for program development. It

provides a method to get the system under control if some real-time process hangs in an end-

less loop. The watchdog also checks whether a process does not call the scheduling functions.

Calling with a higher rate than specified is not possible since the scheduler code blocks the

process until the logical arrival time. Calling never or with a much lower rate than specified is

an indication that either the specification was substantially wrong (and should be changed, e.g.,

via rms_cpu_change_entry) or the process does not behave correctly and some manage-

ment action has to be taken.

Evaluation

To show the effect of using the scheduler for different multimedia applications a series of mea-

surements were performed. They should answer the following question: In which way does the

use of the scheduler influence the behavior of the application and the system as a whole, i.e.,

are deadline violations indeed avoided and to what extend. Qualitative aspects such as express-

ing time characteristics are not considered in this section since they have been discussed

already before.

Measurement Setup

The CPU scheduler function LBAP_enforce was instrumented in such a way that it generates

events describing the laxity of the calling process, i.e., the time until the process reaches its

deadline. Positive values indicate that the process still has time before the deadline is reached,

therefore, it is operating correctly; negative values indicate that the process violated its dead-

line, it is not able to perform its function in time.

iii. This is true for the standard version where the scheduler does not process workahead packets. If worka-

head is allowed the process is blocked till it can accept another workahead packet, i.e., the time till the

logical arrival time is equal or less than the time needed to process the maximum allowed workahead

minus one period (needed to process this newly arrived data packet).

iv. If workahead packets are not processed the priority is left unchanged because it is the goal to avoid the

overhead of priority changes. If workahead processing is performed the priority of the process is set to

the workahead priority until the logical arrival time of the packet is reached.

12

In those cases where several real-time processes were running concurrently the events are

given in generation-time order, i.e., they are not ordered by processes unless otherwise stated.

The charts shown below are extracts from much longer measurements series to increase read-

ability. Each of them shows 200 values which have been taken from the middle of the sequence

of values, the generation of measurement values started later than the processes under consid-

eration to reduce start-up effects. Each point in a graph represents a single event. The measure-

ment values are given in seconds.

All measurements were performed on a mostly idle workstation, an IBM RISC System /

6000, Model 360 with AIX 3.2.4, which was not modified during the measurements, e.g., sim-

ple applications such as mail, etc. were running as usual. However, none of these programs

used much CPU processing time. These types of applications are running during normal work-

station operation periods as well, thus, disabling them during the measurements might lead to

slightly more regular measurement results but not to results which are better applicable to real

world scenarios.

The measurements were performed with a varying system load. The system load was gener-

ated artificially by synthetic, non real-time, computation processes performing simple integer

calculations. Hence, in principle these processes were always ready to run which also lead to

low priority due to UNIX scheduler characteristics24. Therefore, normal, user created system

load might be even harder than this synthetic load. 0, 1, 2, 3, 4, or 16 of these load processes

have been used during the measurements. Running 16 processes leads to a heavily loaded sys-

tem, the other loads resemble loads easily created during normal workstation operation.

The measurements were performed with programs using the CPU scheduler’s real-time

characteristics followed by measurements with the same programs without performing real-

time scheduling using the time provision mechanisms of the scheduler, i.e., executing with the

specified rate. The load generated by the programs is the same in both cases – since the static

RM scheduling algorithm without workahead scheduling is used, no additional costs for the

real-time processes during run time occur.

Considered Scenarios

Two basic application scenarios with different setups were investigated:

(1) an endsystem application,

(2) a video-on-demand server application.

In the first scenario, usually relatively few processes are running, performing operations such

as software compression and decompression. For instance, in a video conference, one partici-

pant has to compress its own image before this is transmitted to the peers and it has to decom-

press the images received from the other peers. Hence, for a conference with n participants n

processes for software compression and decompression exist on each workstation. Since com-

pression algorithms for video conferencing such as H.26135 usually possess symmetric pro-

cessing requirements, in the following it is not distinguished between compression and

decompression processes. Another example of the endsystem scenario is a playback applica-

tion presenting a video decompressed in software to the user, there only one process is exists.

Within the second scenario, a video-on-demand server, several processes are active in the

system, one for each data stream served. However, the processing requirement of such a pro-

cess is lower than for a software decompression process.

In the following the results for the endsystem scenario are described first, then the measure-

ments for the video-on-demand server scenario are discussed.

13

End-System Scenario

For the end-system scenario, a video playback program and a synthetic program have been

examined. The video playback program reads compressed video data, decompresses the data in

software, and presents the video frames via the X server to the user. The synthetic program per-

forms simple calculations and data movements on arrays to resemble a playback program. The

reason for using the synthetic program is that this has a more repeatable characteristic and

allows for arbitrary modifications of processing time requirements. Hence, it provides a more

stable environment and a broader range to study the behavior of the scheduler.

Video Playback

The video playback program uses one process for its operations, i.e., n = 1. The chosen video

consists of 15 frames/s, i.e., 66.6 ms/frame which was also set as the processing rate of the pro-

gram. The processing time needed per period is in the average approximately 28 ms which

results in a total CPU usage of about 42%.

The compressed data read by the program was stored in a local file which was cached into

main memory by running the program first without measuring it. The file was small enough to

fit into the cache.

Figure 4 shows the results for measurements with varying loads. If no load except the mea-

sured process exists in the system, no deadline violations occur even without using real-time

scheduling.

If a load of medium size, i.e., three or more processes, is introduced into the system, the

considered application is not able to provide acceptable service to the user. The last graph in

the figure illustrates that by using real-time scheduling, the application does not suffer from

any deadline violations, even if a high load – up to 16 processes – has been introduced into the

system.

Synthetic End-System Program – One Process

The synthetic program operates with the same rate of 15 1/s as the video playback program, its

processing time requirement of about 21 ms per iteration is lower than that of the video play-

back program. The reason is that the generated load of 21 ms * 15 1/s = 31.5% is lower and

allows more concurrent processes to be measured, thus, creating a heavier load.

The different CPU requirements have no major impact on the results since the CPU utiliza-

tion of the video playback program could be lowered to that of the synthetic program, e.g., by

reducing the frame size or using a different compression algorithm. To reduce the influence of

other programs and system components the program performs no I/O. The synthetic program

has been used since it has a more regular CPU utilization per iteration which increases the

comparability of the values.

The achieved results are similar to the results for the video playback measurements as can

be seen in Figure 5. The workstation can cope with the non-real-time program if the system is

otherwise idle. Introducing an artificial load of three or more processes leads to deadline viola-

tions. The real-time program runs without any problem for all system loads, the laxity varies

within tight bounds, all values except one are contained in an interval with a width of about

1 ms, the single value is outside of this interval by about 1 ms.

Reasons for the variations include interrupts and functions inside the operating system ker-

nel which block timer interrupts leading to a delayed switch to the real-time process. Sampling

complete system traces including kernel functions introduces too much overhead for the mea-

surements and modifies the behavior. Thus, we cannot give a complete explanation for the

14

measured deviation. Many aspects in a general purpose computer system are difficult to pre-

dict; for instance, context switches influence cache performance36. However, we consider the

reached accuracy as fully sufficient, for instance, synchronization requirements for audio and

video, e.g., lipsynch, has been found to be 80 ms37.

Synthetic End-System Program – Two and Three Processes

Multimedia applications may use more than one decompression process, e.g., in a video con-

ference between two persons one compression and one decompression process is running per

system, for a conference with three participants on each system already a total of three

(de)compression processes are running. Therefore, measurements for a system running two

respectively three concurrent processes have been performed, each executing the synthetic

program described above running with a rate of 15 1/s and a CPU utilization of about 31.5%.

The results are shown in Figure 6 and Figure 7; since the processes are running at the same

rate, the maximum acceptable CPU load under RM scheduling is 1.

As Figure 6 shows, the workstation can handle two non-real-time (de)compression pro-

cesses as long as either no load is introduced or only one other process is running. With only

two load generating processes, the non-real-time decompression processes are not longer able

to keep within their deadlines. As can be seen in Figure 6 the real-time processes perform their

operations in time even for medium and high loads.

The reason for the regular patterns is that the plots show the laxity of all processes ordered

by generation time. This way, events of processes with large laxity and with small laxity are

mixed and since the execution of the processes is ordered, the lines connecting single points

lead to the patterns, see also below the discussion for Figure 7 of the measurement of three pro-

cesses.

If three non-real-time (de)compression processes are executed, already one load generating

process is sufficient that the system cannot provide its service in time as can be seen in

Figure 7. Since starting a process is a common operation in UNIX workstations it cannot be

assumed to be avoidable, hence, it can be expected that users would not accept the offered pre-

sentation because deadline violations occur which lower the overall quality. Again, using real-

time processes, the workstation provides correct service even for high loads.

The plot of the measurements for the three real-time processes running during medium and

high additional workstation load without lines connecting the points in Figure 7 on the left

side, bottom row, shows that the laxity of the processes is either 45.6 ms, 24.5 ms or 3.5 ms.

The reason is that the real-time processes execute alternately and without interruption by each

other. This is illustrated by Figure 7 on the right side, bottom row where the measurement for

high load is plotted using a different pattern for each process.

From this graph it can be seen that in each iteration, the laxity of the first process is about

45.5 ms and that of the second and third process is 24.5 ms and 3.5 ms respectively. The last

‘segment’ of 3.5 ms is not used by any real-time process, which means that

3.5 ms * 15 1/s = 0.0525 = 5.25% CPU time has been left.

This is in accordance with a per process CPU utilization of 31.5% which yields a total CPU

utilization of 94.5%. If the laxity of a process would alternate, the plot lines would cross the

graph and yield a pattern as, e.g., in the first graph seen on the left side, upper row.

Server Scenario

In a video-on-demand scenario two different interest areas exist. The client, typically using the

system for playback, wants a reliable service from the server just as in the end-system scenario

15

described above. The service provider, i.e., the owner of the server, wants to be able to serve as

many streams as possible from one system without degradation of QoS since otherwise cus-

tomers will be dissatisfied.

The measurements presented in the following show that using real-time processes instead of

non-real-time processes enables a guaranteed service and a larger number of concurrent

streams, hence, lowers the costs per stream.

Slow Server

First, a scenario where a single stream used up about 5% of the total CPU time has been exam-

ined. Each stream was served by a process operating with a rate of 30 1/s. Hence, at most 19

streams can be running, which means that the CPU utilization is 19 * 5% = 95%. With 20

streams the system is overloaded and cannot provide any timely service. For the measurements

a synthetic program similar to the one described above has been used.

As the graphs in Figure 8 demonstrate, with non-real-time processes the system cannot

serve 17 streams. Using real-time processes, all 19 streams can be served even if high addi-

tional load is introduced into the system.v

Fast Server

Finally, the behavior of a server which is able to serve more streams, i.e., with a lower CPU

utilization per stream has been studied. The same workstation has been used for the measure-

ments but the test program was changed to use fewer CPU time.

One stream was served by a process which executed with a rate of 30 1/s and required about

2.7% CPU time. The results are shown in Figure 9. During the tests, 30 streams were the max-

imum executable without deadline violations if real-time scheduling was not used. For 31

streams and more an increasing number of missed deadlines have been found even if the sys-

tem was idle and no load was introduced. As the right side of Figure 9 demonstrates, using the

real-time scheduler it was possible to execute 36 streams, yielding a total CPU utilization

introduced through these real-time processes of 97.2%, even if high load were introduced.

Related Work

Real-time mechanisms for multimedia systems are provided by several research systems. In

most cases, these are based on a newly developed operating system kernel, and hence the prob-

lems of integrating the mechanisms into an existing kernel and the corresponding restrictions

do not occur.

DASH19 uses a deadline driven scheduling algorithm. As described before, due to the

period-based process dispatching and the considerable overhead for priority changes, this

approach is not useful for our scenario.

Sun’s High Resolution Video (HRV) workstation project assumes that no deterministic

bounds can be provided, thus, no guaranteed processing is available38; for several ‘production-

level’ applications, we consider guaranteed processing as so important that neglecting them is

not acceptable.

In YARTOS (Yet Another Real-Time Operating System)39, 40 a new operating system ker-

nel is designed. The task model is based on sporadic (instead of periodic) tasks. The schedula-

bility test considers all accesses to shared resources, which are only available via kernel

v. The execution sequence of the processes is not ordered since the 19 processes must be mapped to fewer

priorities, leading to switches between processes.

16

mechanisms, and avoids contention situations. Hence, the mechanisms are not usable in con-

junction with standard kernels.

Reference 41 describes a system similar to ours which yields comparable results. Their

work is based on Real-Time Mach42, hence, due to the micro-kernel their approach is not

usable in our operating system environment.

Other work from the field of real-time systems has already been quoted in the sections

describing the scheduling algorithm and its implementation.

Possible Client System Enhancements

Using another process to present images to the user can lead to problems if this process is not

under the control of the multimedia system. This is, for instance, the case in X Windows; here,

the X server process displays the images. Even if shared memory between server and client is

used, a non-real-time X server can introduce deadline violations, especially, if it is single

threaded and several requests from other programs have to be executed.

Increasing the priority of the X server slightly, e.g., via UNIX ‘nice’ mechanism, was suffi-

cient in the test scenarios. Better solutions are either the provision of a real-time X server,

which allows the specification of processing requirements or the ‘transfer’ of CPU reservation

and the according priority to the server process as suggested in Reference 41, or a mechanism

which allows a user program to bypass the X server by writing directly to a specific area on the

screen, i.e., the display adapter memory.

For the latter, the window manager allows the user program to write to that area where its

window is mapped by attaching the memory to the program’s address space via a special sys-

tem call, other memory areas may still be protected. Any change in the visibility, size, or loca-

tion of the window is known inside the window manager which can change or withdraw the

memory from the program’s address space accordingly.

Conclusions

The inherent periodicity of continuous-media data requires operating system provided mecha-

nisms for timely operation. Simple methods, e.g., functions which only delay the execution of

certain functions, are not suitable for general-purpose multimedia systems. Information about

the programs’ time characteristics are needed to apply real-time scheduling techniques which

are a prerequisite for reliable QoS provision.

This paper discussed several approaches for time handling and described a real-time sched-

uling method and its implementation for a standard operating system kernel. Several multime-

dia applications (e.g., a video server) have been implemented successfully using the described

scheduler.

The experimental evaluation shows that real-time scheduling is indeed necessary for end-

system and video-on-demand server applications. The measurements demonstrate that the

scheduler is able to provide QoS guarantees even for highly loaded systems.

Acknowledgements

The authors would like to thank the anonymous referees for their comments and suggestions.

17

References

1 Andreas Mauthe, Werner Schulz and Ralf Steinmetz, “Inside the Heidelberg Multimedia Operat-

ing System Support: Real-Time Processing of Continuous Media in OS/2”, Technical Report

43.9214, IBM European Networking Center, Heidelberg, Germany, 1992.

2 Lars C. Wolf and Ralf G. Herrtwich, “The System Architecture of the Heidelberg Transport Sys-

tem”, ACM Operating Systems Review, vol. 28, no. 2, pp. 51-64, April 1994.

3 John Barnes, “Introducing Ada9X”, ACM Ada Letters, vol. 13, no. 6, pp. 61-132, November/

December 1993.

4 David B. Stewart, Donald E. Schmitz and Pradeep K. Kosla, “The Chimera II Real-Time Operat-

ing System for Advanced Sensor-Based Control Applications”, IEEE Transactions on Systems,

Man and Cybernetics, vol. 22, no. 6, pp. 1282-1295, November/December 1992.

5 Karsten Schwan and Hongyi Zhou, “Real-Time Threads”, ACM Operating Systems Review, vol.

25, no. 4, pp. 35-46, October 1991.

6 Hideyuki Tokuda and Clifford W. Mercer, “ARTS: A Distributed Real-Time Kernel”, ACM

Operating Systems Review, vol. 23, no. 3, pp. 29-53, July 1989.

7 Jun Nakajima, Masatomo Yazaki and Hitoshi Matsumoto, “Multimedia/Realtime Extensions for

the Mach Operating System”, Proceedings of the Summer 1991 Usenix Conference, pp. 183-198,

Nashville, Tenn., 1991.

8 Brian N. Bershad, Edward D. Lazowska and Henry M. Levy, “PRESTO: A System for Object-

oriented Parallel Programming”, Software - Practice and Experience, vol. 18, no. 8, pp. 713-732,

August 1988.

9 IEEE Standards Project P1003.4a, “Threads Extension for Portable Operating Systems, Draft 6”,

February 1992.

10 IEEE Standard for Information Technology, Std 1003.1b-1993, “System Application Program

Interface (API) - Amendment 1: Realtime Extension”, September 1993.

11 Sandeep Khanna, Michael Sebree and John Zolnowsky, “Realtime Scheduling in SunOS 5.0”,

USENIX - Winter’92.

12 R.L. Cruz, “A Calculus for Network Delay, PART I: Network Elements in Isolation”, IEEE

Transactions on Information Theory, vol. 37, no. 1, January 1991.

13 Martin Andrews, “Guaranteed Performance for Continuous Media in a General Purpose Distrib-

uted System”, Masters Project Report, University of California, Berkeley, October 1989.

14 American National Standards Institute, “Integrated Services Digital Network (ISDN) - Digital

Subscriber Signaling System No.1 (DSS1) - Signaling Specification for Frame Relay Bearer Ser-

vice”, ANSI T1.617-1991, June 1991.

15 Israel Cidon, Inder Gopal, Roch Guérin, “Bandwidth Management and Congestion Control in

plaNET”, IEEE Communications Magazine, vol. 28, no. 10, pp. 54-63, October 1991.

16 Domenico Ferrari, Anindo Banerjea, Hui Zhang, “Network Support For Multimedia: A Discus-

sion of the Tenet Approach”, TR-92-072, International Computer Science Institute, Berkeley,

CA, USA, 1992.

17 Mark Moran, Bernd Wolfinger, “Design of a Continuous Media Data Transport Service and Pro-

tocol”, TR-92-019, International Computer Science Institute, Berkeley, CA, USA, 1992.

18

18 Carsten Vogt, “Quality-of-Service Management for Multimedia Streams with Fixed Arrival Peri-

ods and Variable Frame Sizes”, ACM Multimedia Systems, vol. 3, no. 2, pp. 66-75, May 1995.

19 David P. Anderson, “Metascheduling for Continuous Media”, ACM Transactions on Computer

Systems, vol. 11, no. 3, pp. 226-252, August 1993.

20 Carsten Vogt, Ralf Guido Herrtwich and Ramesh Nagarajan, “HeiRAT: The Heidelberg Resource

Administration Technique - Design Philosophy and Goals”, Kommunikation in Verteilten Syste-

men, Munich, Germany, March 3-5, 1993.

21 Brinkley Sprunt, Lui Sha and John Lehoczky, “Aperiodic Task Scheduling for Hard-Real-Time

Systems”, Real-Time Systems, vol. 1, pp. 27-60, 1989.

22 John P. Lehoczky and Sandra Ramos-Thuel, “An Optimal Algorithm for Scheduling Soft-Aperi-

odic Tasks in Fixed-Priority Preemptive Systems”, Proceedings of the IEEE Real-Time Systems

Symposium, pp. 110-123, 1992.

23 Brinkley Sprunt and Lui Sha, “Implementing sporadic servers in Ada”, Technical Report CMU/

SEI-90-TR-6, Carnegie-Mellon University, Software Engineering Institute, Pittsburgh, PA, USA,

May 1990.

24 Samuel J. Leffler, Marshall Kirk McKusick, Michael J. Karels and John S. Quarterman, The

Design and Implementation of the 4.3-BSD UNIX Operating System, Addison-Wesley, Reading,

Mass. et al., 1989.

25 C.L. Liu and James W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-

time Environment”, Journal of the ACM, vol. 20, no. 1, pp. 47-61, 1973.

26 Hartmut Wittig, Lars C. Wolf and Carsten Vogt, “CPU Utilization of Multimedia Processes: The

HeiPOET Measurement Tool”, Proceedings of the Second International Workshop on Advanced

Teleservices and High-Speed Communication Architectures, Heidelberg, Germany, September

1994.

27 Danial I. Katcher, Hiroshi Arakawa and Jay K. Strosnider, “Engineering and Analysis of Fixed

Priority Schedulers”, IEEE Transactions on Software Engineering, vol. 19, no. 9, pp. 920-934,

September 1993.

28 John Lehoczky, Lui Sha and Ye Ding, “The Rate Monotonic Scheduling Algorithm: Exact Char-

acterization and Average Case Behavior”, Proceedings of the Tenth IEEE Real-Time Systems

Symposium, pp. 166-171, Santa Monica, CA, USA, 1989.

29 Lui Sha, Ragunathan Rajkumar, John Lehoczky and Krithi Ramamritham, “Mode Change Proto-

cols for Priority-Driven Preemptive Scheduling”, Real Time Systems, vol. 1, no. 3, pp. 243-263,

1989.

30 Ken Tindell, Alan Burns and Rob Davis, “Fixed Priority Scheduling of Hard Real-Time Multi-

Media Disk Traffic”, Proceedings of the IEEE Workshop on Real-Time Issues in Multi-Media,

November 1993.

31 David P. Andersen, Ralf G. Herrtwich, Carl Schaefer, “SRP: A Resource Reservation Protocol

for Guaranteed-Performance Communication in the Internet”, TR-90-006, International Com-

puter Science Institute, Berkeley, CA, USA, Februray 1990.

32 Gregory K. Wallace, “The JPEG Still Picture Compression Standard”, CACM, vol. 34, no. 4, pp.

30-44, April 1991.

33 ISO IEC JTC1/SC29/WG11, “Generic coding of moving pictures and associated audio

(MPEG-2)”, International Standard ISO/IEC IS 13818, November 1994.

19

34 Jane W.S. Liu, Kwei-Jay Lin, Wei-Kuan Shih, Albert Chuang-shi Yu, Jen-Yao Chung and Wei

Zhao, “Algorithms for Scheduling Imprecise Computations”, IEEE Computer, vol. 24, no. 5, pp.

58-68, May 1991

35 Ming Liou, “Overview of the px64 kbit/s Video Coding Standard”, CACM, vol. 34, no. 4, pp.

59-63, April 1991.

36 Jeffrey C. Mogul and Anita Borg, “The Effect of Context Switches on Cache Performance”, Pro-

ceedings of the Fourth International Conference on Architectural Support for Programming Lan-

guages and Operating Systems, Operating Systems Review, vol. 25, no. Special Issue, pp. 75-84,

Santa Clara, California, April 1991.

37 Ralf Steinmetz and Clemens Engler, “Human Perception of Media Synchronization”, Technical

Report 43.9310, IBM European Networking Center, Heidelberg, Germany, 1993.

38 James G. Hanko, Eugene M. Kuerner, J. Duane Northcutt and Gerard A. Wall, “Workstation Sup-

port for Time-Critical Applications”, Proceedings of the 2nd International Workshop on Network

and Operating System Support for Digital Audio and Video, Heidelberg, Germany, November

18-19, 1991.

39 Kevin Jeffay, Daniel E. Poirier, F. Donelson Smith and Donald L. Stone, “Kernel Support for

Live Digital Audio and Video”, Proceedings of the 2nd International Workshop on Network and

Operating System Support for Digital Audio and Video, Heidelberg, Germany, November 18-19,

1991.

40 Kevin Jeffay, Donald. L. Stone and Daniel E. Poirier, “YARTOS: Kernel Support for Efficient,

Predictable Real-Time Systems”, Proceedings of IFAC, Workshop on Real-Time Programming,

Pergamon Press, Atlanta, May 1991.

41 Clifford W. Mercer, Stefan Savage and Hideyuki Tokuda, “Processor Capacity Reserves: Operat-

ing System Support for Multimedia Applications”, Proceedings of the First International Confer-

ence on Multimedia Computing and Systems, Boston, MA, USA, May 17-19, 1994.

42 Hideyuki Tokuda, Tatsuo Nakajima and Prithvi Rao, “Real-Time Mach: Toward a Predictable

Real-Time System”, Proceedings of the USENIX Mach Workshop, pp. 73-82, Burlington, VT,

USA, October 4-5, 1990.

20

Tables

Scheme
Functional & Temporal

Specification Separated

Applicability of

Real-Time Methods

Hidden Timing

Adapter-Based Timing

Loop / Delay

Asynchronous Events ✓

Periodic Threads ✓ ✓

Periodic Processes ✓ ✓

Table 1: Methods to Express Time.

21

Illustrations

Figure 1: Adapter Based Timing.

do {

read_audio_buffer();

write_buffer_to_adapter();

} while (more data available);

block

unblock

write_buffer

read_buffer

needs of application 1

needs of application 2

needs of application 1

needs of application 2

reserved for
application 1

unused reserved for
application 2

reserved for
application 1

reserved for
application 2

conflict

guaranteed
QoS:

time

statistical
QoS:

unused

Figure 2: Guaranteed vs. Statistical QoS.

22

user level priority processing
start of real-time scheduling

rms_cpu_create_entry()

scheduler invocation
LBAP_poll()/LBAP_enforce()

data processing

continue?

end of real-time scheduling
rms_cpu_release_entry()

+

-

Figure 3: Processing Structure.

user level priority processing

real-time priority processing

23

Figure 4: Video Playback Application.

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

0.026

0.028

0.03

0.032

0.034

0.036

0.038

0.04

0.042

0 20 40 60 80 100 120 140 160 180 200

with real-time scheduling – 0 load processes
with real-time scheduling – 4 load processes

with real-time scheduling – 16 load processes

0 Load Processes

4 Load Processes 0, 4, and 16 Load Processes

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]
event number

la
x
it

y
 [

s]

3 Load Processes

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.05

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

Figure 5: Synthetic ‘Decompression’ Program, One Process.

0.0438

0.044

0.0442

0.0444

0.0446

0.0448

0.045

0.0452

0.0454

0.0456

0.0458

0 20 40 60 80 100 120 140 160 180 200

with real-time scheduling – 4 load processes
with real-time scheduling – 16 load processes

3 Load Processes 4 and 16 Load Processes
With Real-Time Scheduling

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

24

Figure 6: Synthetic ‘Decompression’ Program, Two Processes.

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

without real-time scheduling
with real-time scheduling

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

with real-time scheduling – 4 load processes
with real-time scheduling – 16 load processes

0 Load Processes 1 Load Process

2 Load Processes 4 and 16 Load Processes

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 20 40 60 80 100 120 140 160 180 200

25

Figure 7: Synthetic ‘Decompression’ Program, Three Processes.

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

with real-time scheduling – 4 load processes
with real-time scheduling – 16 load processes

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0 20 40 60 80 100 120 140 160 180 200

with real-time scheduling – process 1
with real-time scheduling – process 2
with real-time scheduling – process 3

0 Load Processes 1 Load Process

16 Load Processes4 and 16 Load Processes

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling
with real-time scheduling

26

Figure 8: Synthetic ‘Server’ Program, 17 respectively 19 Streams.

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0 20 40 60 80 100 120 140 160 180 200

with real-time scheduling – 0 load processes
with real-time scheduling – 4 load processes

with real-time scheduling – 16 load processes

0 Load Processes 0, 4, and 16 Load Processes
19 Streams17 Streams

event number

la
x
it

y
 [

s]

event number
la

x
it

y
 [

s]

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling

Figure 9: Synthetic ‘Server’ Program on ‘Faster’ Server,

31, 32 respectively 36 Streams.

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

0.034

0 20 40 60 80 100 120 140 160 180 200

with real-time scheduling – 0 load processes
with real-time scheduling – 4 load processes

with real-time scheduling – 16 load processes

0 Load Processes 0, 4, and 16 Load Processes
36 Streams31 Streams

event number

la
x
it

y
 [

s]

event number

la
x
it

y
 [

s]

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0 20 40 60 80 100 120 140 160 180 200

without real-time scheduling – 31 streams
without real-time scheduling – 32 streams

