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Abstract
For decades, the C programming language proved to be a
cornerstone of system-software ecosystems, leaving us with
billion lines of existing source code. From today’s perspective
of object-oriented and functional languages, C itself seems
rather limited in its expressiveness and abstractive power.
However, with the C preprocessor (CPP) as its companion,
macros, which operate on the raw token stream, allow for
abstractions that are impossible to achieve within the lan-
guage itself. While its flexibility and its ease of use make
CPP attractive for programmers, its potential undisciplined
usage makes it problematic for static source-code analysis
and can slow down the on-boarding of new developers.
In this paper, we focus on a disciplined subclass of

CPP macros: the statement-like and expression-like macros,
which mimic regular C functions, with well-type C expres-
sions as arguments and, in case, a return value. We show how
to spot such macros and their arguments in the compiler’s
abstract syntax tree, whereby it becomes possible to deduct
type signatures for individual macro expansions. With our
CppSig prototype, implemented as a Clang plugin, we ex-
tract macro-type information from Linux 5.12, whereby it
becomes easier to understand even deep macro-expansion
nests. In the future, these expansion signatures could be used
to statically enforce gradually-typed CPP macro definitions.

CCS Concepts: • Software and its engineering → Pre-
processors; Data types and structures.
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1 Introduction
Due to its relative closeness to the hardware and its portabil-
ity to new platforms, the C programming language is often
chosen as substrate to grow system-software stacks on. And
although the core language itself has a rather limited fea-
ture set (simplistic type system, no modules, no classes or
objects, . . . ), it comes in good company: The C preproces-
sor (CPP). The CPP, which is used in almost all C (and C++)
projects, brings a highly flexible meta-programming model
to the table, which allows for modularization (#include),
static configurability (#ifdef), and syntactic abstractions
(#define). For this, the CPP manipulates the raw token
stream before the actual parsing happens, whereby the view
on the program can vastly diverge between developers and
the compiler. While this attracted a lot of criticism from
academia [5, 8, 16, 18, 20], and several disciplined replace-
ments where proposed [7, 12, 15, 22], developers do not
expect the CPP to disappear in the near future[13].
For operating-system developers, the CPP is especially

attractive since its abstractions are static by nature and pro-
voke no run-time overhead on their own. For example, the
Linux developers sprinkled the v5.12 source base with over
104 000 #ifdef-directives1 that, among other things, imple-
ment the chosen static Kconfig configuration on the fine-
grained source-code level [3, 11]. And although conditional
compilation, often known as the “#ifdef-hell”, has already
attracted a lot of attention [6, 8, 18, 20], it is by far not the
most commonly used CPP feature in Linux 5.12: For ev-
ery #ifdef, there are already three #include-directives, and
even 31 macro definitions (> 3 million).
These macros impose an immense burden on the read-

ability of the source code: Even if looking only at a single
configuration (x86, defconfig) and if we ignore all macro
expansions in header files, there are more than 360 000 top-
level macro expansions with on average 5 nested expansions.
Even worse, we identified macro-expansion nests below a
single top-level macro expansion with up to 637 expansions
and with a maximum nesting depth of 15 (both expansions
are found in the i915 graphics driver). With this level of
CPP usage, we should equip developers with tool support to
better understand CPP macros and their expansions.

1git grep ’#if\|#elif\|#else’ ’**/*.[ch]’ | wc -l
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With the CppSig approach, we tackle the CPP problem
by combining information from the preprocessing phase
and the semantic-analysis phase: For every macro expan-
sion, even the nested ones, we search the compiler’s abstract
syntax tree (AST) for nodes that can be traced back to the
expansion. If those nodes form unambiguously-typed AST
subtrees, we can infer the C-level types for the macro ex-
pansion and its arguments, and deduct a type signature. In
the future, we want to summarize multiple expansions and
deduct a common (possibly polymorphic) macro-definition
signature. Furthermore, we also want to allow for gradual
typing [17] of CPP macros, where strict type rules are en-
forced on some but not on all macro parameters and/or the
return type.
The contributions of this paper are as follows:
1. With the CppSig approach, we identify statement-like and

expression-like macro expansions in the abstract syntax
tree and deduct (even nested) expansion signatures.

2. We provide a CppSig prototype as a Clang plugin, which
can be applied to unmodified C source-code bases.

3. We demonstrate our approach on Linux v5.12.
The rest of the paper is structured as following: In Sec. 2,

we briefly explain CPP macros, before we describe our ap-
proach in Sec. 3. After evaluating our prototypical imple-
mentation in Sec. 4 with Linux 5.12, we discuss the related
work in Sec. 5, and conclude this paper in Sec. 6.

2 Background
The C preprocessor (CPP) is part of the C compilation process
and provides three main features: file inclusion (#include),
conditional compilation (#ifdef), and macros definition/ex-
pansion (#define). To perform its duties, the CPP filters and
manipulates the raw token stream that is produced by the
lexer. On the expanded token stream, the parser executes the
syntactic analysis and conceptually builds up a parse tree,
which covers all preprocessed tokens as leafs, to check the
syntactic validity of the input program. Nowadays, instead of
actually building a full-blown parse tree, modern compilers
directly produce the condensed abstract syntax tree (AST),
which only contains the relevant program elements, which
the following semantic analysis enriches with type informa-
tion and cross-tree references (usage→ declaration). While
file inclusion [1] and conditional compilation [6, 8, 20, 21]
are important topics on their own, this paper puts a focus
on CPP macros.
Each macro definition begins with the keyword #define

(see Fig. 1, line 1), followed by the macro name (e.g., inner).
After the name, an optional parameter list of untyped iden-
tifiers enclosed in parentheses follows. Such parameterized
macros are called function-like since their later usage looks
like a function call. The rest of the definition contains the
macro body, which is a list of regular tokens and parameter
identifiers.

1: #define inner(I) I / 100

2: #define middle(M) inner(M * 1.0) - 20

3: #define outer(O) 1 + middle(O)

5: .... = outer(23);

. . . = outer(23)

middle(23)

inner(23*1.0)
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Token Stream

. . . = 1 + 23 * 1.0 / 100 - 20
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double inner(double); // at source.c:5, nesting:2

double middle(int); // at source.c:5, nesting:1

double outer(int); // at source.c:5, nesting:0

CppSig: Pseudo C Signatures for CPP Macro Expansions

Figure 1. Example of Nested Macro Expansion. During
macro expansion, the C preprocessor replaces tokens in the
lexer’s token stream, whereby argument tokens are directly
inserted or passed on to nested macros. The parser builds
up the parse tree from the expanded token stream, performs
type and other semantic checks, and produces a binary. If
expansion tree and parse tree align, CppSig can deduct type
information for individual macro expansions.

Later on, if the CPP encounters an identifier in the token
stream, it consults an internal table of currently active macro
definitions and starts, in case, the macro-expansion process:
For function-like macros, the CPP consumes the arguments
as token lists and replaces all parameter references in the
macro body with the corresponding argument token list. In
the pre-expanded body, it furthermore searches for further
macro identifiers and performs nested macro expansions
until the top-level macro is fully expanded. Please note that
the CPP does not support recursive macro definitions and
that arguments are not necessarily used in the expansion.
In Fig. 1, the macro outer() has middle() as a nested

macro, which by itself uses inner() within its macro body.
We also see that outer() passes on its parameter O to
middle(), which then passes it on, after appending “∗ 1.0”,
to inner(). It is noteworthy that CPP macros can only pre-
or append tokens to their arguments if passed on to nested
expansion, but regular argument-token lists cannot be split
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up again. Therefore, the arguments of deeper-nested macro
expansions can only cover more tokens in the expanded token
stream than their parent expansions (see M vs. I in Fig. 1).
Another important aspect for the analysis of macro ex-

pansions is the distinction between spelling location and
expansion location as tokens are copied during the expansion
process. The spelling location of a token identifies where
the lexer encountered a token originally. If a token is copied
during an expansion, we attach the invocation point of the
macro as another expansion location. Therefore, each token
has one spelling location and a stack of expansion locations
whose height corresponds to the macro-nesting depth. For
example, in Fig. 1, the token “/” in the expanded token stream
has its spelling location in line 1, and three expansion loca-
tions in line 2, line 3 and line 5.

3 Macro-Expansion Types
The goal of CppSig is to deduct return and parameter types
for CPP macros to foster the understanding of macro-heavy
source bases. Furthermore, inferring these types is a nec-
essary precondition for gradually typing [17] CPP macros,
which would increase the confidence in complex macros
constructs.
First, it is important to understand that CPP macros defi-

nitions have no type on their own, but they only gain typing
information in an expansion context for a specific set of
arguments. One could even say that the CPP language is
symbiotic with the C language as it enriches the later one
with flexibility but relies on the C parser to validate its output.
Therefore, we can only look at individual macro expansions
and infer their typing information. In a later step, one could
automatically combine the inferred expansion signatures to
a more general definition signature. But this is a point for
further research.

The second important observation is that CPP is a gener-
ator in the language-theoretical sense, while the C parser
is an acceptor. As both languages, CPP and C are context
free2, preprocessor and parser result in derivation trees: the
macro-expansion tree and the parse tree. As both operate on
the same linear token stream, we can attach those trees on
opposite sides of the token stream (Fig. 1 and Fig. 2). By
folding one side over, we can match both tree structures
and infer which AST nodes and subtrees stems from which
macro expansion.

For the type extraction, we have to look at the AST’s typ-
ing information: For expression nodes, the semantic analysis
calculates and propagates types from the AST leaves up-
wards to inner nodes (see I and D in Fig. 1). Therefore, if
the root of a subtree is an expression node, the whole subtree
has a “result” type, which we assign to its counterpart in the
macro-expansion tree.

2If we ignore such ugly details like typedef for the moment, which requires
the usage of a context-sensitive lexer.
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Example:
#define M(x) (x)
int x = M(23+3);
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Example:
#define M(x) 3+x+4
int x = 1 * M(3) * 4;

(c) Unaligned Argument
Example:
#define M(x) 3*x*4
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Figure 2. (Mis-)Alignment of Macro-Expansion and Parse
Tree. We deliberately use latent buggy macro definitions
here to briefly demonstrate misaligned tree structures.

3.1 Expansion-Tree Alignment
However, due to the lexical nature of CPP, the matching
between both trees can be incomplete in the sense that
an expansion corresponds to multiple (neighboring) AST
subtrees (see Fig. 2). While the literature calls this undisci-
plined [5, 10, 16] CPP usage, we argue that such mismatches
might be intentional3 and we should gracefully handle such
misalignments and extract as much useful typing informa-
tion as possible: For example, in Fig. 2 b, we still can match
the macro argument unambiguously with a subtree, even
if the rest of the expansion is unaligned. Fig. 2 c shows the
inverse situation, where the expansion as a whole aligns but
its argument expansion remains unaligned.
For the matching, we extend the preprocessor to record

the expansion tree with one node for each macro-expansion.
We also save the invocation location for each macro and for
each macro arguments we record the spelling location of all
passed tokens.
First, we find AST subtrees that correspond to a macro

expansion (see Fig. 3): For each AST node, we walk the
expansion-location stack from the outermost macro invo-
cation location to the innermost one and thereby narrow
down the forest of macro-expansion trees to a single expan-
sion node. At this expansion node, we collect all matched
nodes in a subtree collector (collect_subtrees()), which
only records the parent node if both the parent and the child
3For example, Protothreads [4] use undisciplined CPP macros to extend C
with rudimentary co-routine support.
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def match_expansions(ast : AST, exp_roots : List[Expansion]):

for node in ast.nodes:

expansion = None

exp_nodes = exp_roots

# Narrow down to an expansion node

for loc in node.expansion_loc_stack

for exp in exp_nodes:

if exp.invocation_loc == loc:

expansion = exp

break

if not expansion:

break

exp_nodes = expansion.children

# Collect the AST nodes at the found expansion nodes

# and arrange them in AST subtrees

if expansion is not None:

collect_subtrees(expansion, node)

Figure 3. Matching of AST with the Expansion-Tree Forest

node are collected. As a result we have one (or multiple) AST
subtrees per macro expansion.

In order to identify the macro arguments for an expansion,
we visit the found AST nodes and match them with their
spelling location against the list of recorded argument-token
spelling locations. Again, we arrange the matching nodes
in one or multiple AST subtrees with a subtree collection.
Thereby, we collect one (or multiple) subtrees for eachmacro-
expansion argument.
By relying on source-location information, instead of

tracking the actual lexer tokens, CppSig not only works
with a parse tree, where all tokens are actual leaf nodes, but
also on the condensed abstract syntax tree (AST). As long as
the compiler tracks not only the spelling location of an AST
node, but also an expansion-location stack, our matching
method can be applied. Since this information is useful to
provide macro-aware error messages, it should already be
available in modern compilers.

Result of the matching process is a forest of AST subtrees
for each macro expansion and for each of their arguments.
From these subtrees, we infer language-level types for the
expansion itself (return type) and its arguments: If the forest
is a single expression subtree or if all subtree roots have the
same type, we infer an unambiguous macro type. If we find
multiple subtrees with different root-node types, the macro
type was ambiguous (see Fig. 4, example 1). In situations,
where we have found one (or multiple) statement nodes, we
infer void as a return type. If no subtrees were found or if we
only found declarations, we cannot deduct type information
on the C level. In Fig. 4, we show three challenging macro
expansions that are already supported by CppSig.

3.2 Prototypical Implementation in Clang
We have implemented the described approach as a plugin
for the Clang compiler [9], which already tracks spelling

// 1. Ambiguous Macro-Argument Type

#define with_ctx(var) (var + ctx.var)

struct ctx_t { double a; } ctx;

int a;

with_ctx(a)

// CppSig: double with_ctx({int, double} a)

// 2. Macros Names as Arguments

#define outer(macro) { macro(0x00), macro(0x80) }

#define inner(i) (i ^ 0x7f)

int table[] = outer(inner);

// CppSig: int[2] outer(? macro)

// CppSig: int inner(int i)

// 3. Polymorphic Macro Parameter

#define lock(lockable) do { (lockable)->nesting++; } while(0)

struct foo_t { int nesting; } foo_obj;

struct bar_t { int nesting; } bar_obj;

lock(&foo_obj);

lock(&bar_obj);

// CppSig: void lock(struct foo_t * lockable)

// CppSig: void lock(struct bar_t * lockable)

Figure 4. Examples of Challenging Macro Expansions

locations and stacks of expansion locations at its AST nodes.
We use the callback interface of Clang’s preprocessor to
record a macro-expansion tree and search for AST nodes
with the ASTMatcher interface. Our plugin is available4 and
we provide a Docker image for easy exploration of CPP code.

4 Evaluation
We ran our approach against the Linux kernel in version
5.125. We chose Linux as this source base makes heavy use
of macros to support variability and portability to different
architectures. We used the defconfig configuration for the
x86 architecture but had to disable a few features to make
the kernel compile with Clang. Our evaluation machine was
equipped with an AMD Ryzen 7 PRO 5850U octa-core CPU
with 16 hardware threads and 48GiB of RAM.We only looked
at macros expansions in source files and skipped all expan-
sions in header files, as these are potentially included by
multiple source files.

4.1 Time Overhead for the AST Matching
We recorded the time required to match the AST against
expansion tree, which is the main source of run-time over-
head that the CppSig prototype induced the for the 2554
compilation units. On average, the matching took 2.7 s with
a standard deviation of 63 s. As the median run time, we
observed 366ms per compilation unit.

4https://collaborating.tuhh.de/e-exk4/projects/cpp-macro-types
5Git Hash: 9f4ad9e425a1d3b6a34617b8ea226d56a119a717

https://collaborating.tuhh.de/e-exk4/projects/cpp-macro-types
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The large mean matching time and the large standard
deviations stems from some files that took very long
to process. 82 percent of the processed files took less
than 1 second to complete, while the longest-running file
(net/mac80211/airtime.c) took 53 minutes. After inspec-
tion, we can attribute this to deeply nested expansion trees
that cover a large number of AST nodes. Since our proto-
type relies on Clang’s ASTMatcher, which does not allow
cutting off subtrees in the depth-first search, our current
implementation has at least a quadratic run time.
In the future, we plan to improve CppSig’s overhead by

implementing a specialized AST-matching visitor that avoids
inspecting subtrees if they certainly stem from the same ex-
pansion. Together with optimized source-location–indexing
data-structures, this should bring CppSig’s overhead closer
to linear run time.

4.2 Example: raw_spin-Macros
As an exemplary output of CppSig, Tab. 1 shows the inferred
types for all expansions (top-level and nested) of macros that
begin with “raw_spin”. We see that CppSig inferred the same
type signature for most macro definitions. For example, all
1422 expansions of raw_spin_lock_irqsave were detected
to have the same signature. This shows that our existing pro-
totype provides insightful and unambiguous type signatures
for most macro expansions.
However, in a few cases, CppSig reported different sig-

natures for the same definition: For raw_spin_{un,}lock_-
rcu_node, expansions with and without const were found,
which is an example of (valid) polymorphic macro usage.
The other anomaly was detected for raw_spin_lock_init,
where CppSig reported an ambiguous signature for a single
expansion site. Manual inspection revealed that this hap-
pened in a nested expansion, where our argument matching
algorithm failed to identify the correct subtree. Nevertheless,
grounded in our experience with applying CppSig to Linux,
we believe that this is only a problem with our prototype
and not inherent to the CppSig approach.

Another interesting inference happened for the parameter
subclass of raw_spin_lock_irqsave_nested, where Cpp-
Sig did not report a type. In our kernel configuration, this
argument is not used in the expansion, whereby it cannot
be found in the AST and it actually has no C type.

4.3 Top-Level Macro Expansions
In the following, we will only look at top-level macro expan-
sions as these are of special importance for the vast majority
of kernel developers. For Linux 5.12, we found 363 269 top-
level expansions that originate from 43 018macro definitions.
Of these expansions, 142 861 stem from 7519 function-like
macro definitions. 58 percent of the function-like macro ex-
pansions matched with a single expression subtree. 32 per-
cent matched with multiple nodes, which can, for example,

#Exp. Expansion Signature
#def raw_spin_lock(lock) (172 exps.)
172 void macro(struct raw_spinlock *)
#def raw_spin_unlock(lock) (201 exps.)
201 void macro(struct raw_spinlock *)
#def raw_spin_trylock(lock) (18 exps.)
18 int macro(struct raw_spinlock *)
#def raw_spin_lock_irq(lock) (138 exps.)
138 void macro(struct raw_spinlock *)
#def raw_spin_is_locked(lock) (67 exps.)
67 int macro(struct raw_spinlock *)
#def raw_spin_lock_init(lock) (47 exps.)
46 void macro(struct raw_spinlock *)
1 void macro({struct raw_spinlock * |struct raw_spinlock **})
#def raw_spin_unlock_irq(lock) (168 exps.)
168 void macro(struct raw_spinlock *)
#def raw_spin_lock_nested(lock, subclass) (39 exps.)
39 void macro(struct raw_spinlock *, int)
#def raw_spin_lock_irqsave(lock, flags) (1422 exps.)
1422 void macro(struct raw_spinlock *, unsigned long)
#def raw_spin_lock_rcu_node(p) (8 exps.)
7 void macro(struct rcu_node *)
1 void macro(struct rcu_node *const)
#def raw_spin_trylock_irqsave(lock, flags) (11 exps.)
11 int macro(struct raw_spinlock *, unsigned long)
#def raw_spin_unlock_rcu_node(p) (11 exps.)
10 void macro(struct rcu_node *)
1 void macro(struct rcu_node *const)
#def raw_spin_trylock_rcu_node(p) (2 exps.)
2 void macro(struct rcu_node *)
#def raw_spin_unlock_irqrestore(lock, flags) (306 exps.)
306 void macro(struct raw_spinlock *, unsigned long)
#def raw_spin_lock_irq_rcu_node(p) (6 exps.)
6 void macro(struct rcu_node *)
#def raw_spin_lock_irqsave_nested(lock, flags, subclass) (2 exps.)
2 void macro(struct raw_spinlock *, unsigned long, ?)
#def raw_spin_unlock_irq_rcu_node(p) (10 exps.)
10 void macro(struct rcu_node *)
#def raw_spin_lock_irqsave_rcu_node(p, flags) (12 exps.)
12 void macro(struct rcu_node *, unsigned long)
#def raw_spin_unlock_irqrestore_rcu_node(p, flags) (19 exps.)
19 void macro(struct rcu_node *, unsigned long)

Table 1. Expansion Signatures for all “raw_spin” macros.
Signatures are noted as “ret-type macro(arg-types)”, void
indicates that themacro expanded to one ormultiple untyped
statements, ambiguously inferred types are noted as {T1|T2},
and missing argument subtrees as “?”.

Parameter Type #Parms. Parameter Type #Params.

int 1412 unsigned char 143
unsigned int 712 struct device * 102
unsigned long 320 unsigned short 88
unsigned long long 279 void * 71
struct drm_i915_private * 165 struct tty_struct * 64

Table 2. Top-10 Inferred Macro Parameter Types
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happen, if the macro expands to more than one statement.6
For the remaining 10 percent, we cannot infer whether they
have an empty expansion, they expanded to a (type) dec-
laration, or if they are an indicator for a problem with our
prototype. This uncertainty is rooted in our prototype, which,
due to limitations of the ASTMatcher, only searches for ex-
pression and statement nodes, but not declaration or type
nodes.

Of the 7519 function-like top-level definitions, 53 percent
were shown to have a unique C-type as a return type and
31 percent resulted in one or multiple untyped C statements
(void). For 55 percent of the 11 368 formal macro parameters,
we could infer an unambiguous C type; the top-10 of those
are shown in Tab. 2.

Over all top-level expansions, CppSig reports an ambiguous
argument type in 2.77 percent of the cases. Whether these
are valid ambiguities (as shown in Fig. 4) or whether these
instances of the described argument-matching problem (see
Sec. 4.2) is unclear at this point.

5 Related Work
The main academic criticism with the CPP is its potential
to produce not only syntactic invalid code but its ability
to result in unexpected behavior (see Fig. 2). Ernst et.al [5]
analyzed the usage of preprocessor macros in 26 software
packages and they estimate that the average C program con-
tains 0.28 macros per line of code and that 23 percent of
all macro definitions contain latent bugs, which could be
activated with adversely-chosen arguments or expansion
contexts. Sæbjørnsen et.al. [16] propose a method to detect
such expansion bugs: For each top-level macro expansion,
they extract the corresponding subtree from the parse tree
and produce a normalized syntax tree by stripping all nodes
that stem from expanded macro arguments. For each macro
definition, they compare the normalized syntax trees for
similarity and, thereby, detect macros that result in syntacti-
cally different expansions. In contrast to CppSig, they ignore
nested expansions by folding them into the enclosing top-
level expansion and they only look at the tree structure, but
ignore the type information. Liebig et.al [10] investigated
on the usage of conditional compilation in 30 million lines
of code and find that 84% of all #ifdefs are disciplined and
respect boundaries between declarations, statements, and/or
expressions. From the extent of the CPP problem, which
these empirical studies document, and the persistence of
developers to use the CPP [13], it is important to provide
easy-to-use tools, like CppSig, that analyze CPP usage.
As another take on the CPP problem, researchers have

proposed different syntactic preprocessors as replacements
for the CPP, which respect the AST structure and cannot lead
to syntax errors or unexpected behavior: With Ace [7], the
developer uses directives to describe AST transformations

6For example: #define locked(seq) lock(); seq; unlocked()

to request code optimizations, like loop hoisting or time/s-
pace tradeoffs. Inspired by LISP macros [19], Weise et.al.[22]
proposed a syntactic macro system, where all macros are
“well-typed” with regard to the underlying parse tree. While
their macros define their syntactic return and parameter
types (e.g., statement, expression), they do not constraint
the used language-level types (e.g., int, pointer). In contrast,
ASTEC [12] supports syntactic macros with language-level
type annotations and enforces the expressed constraints
in the semantic analysis. As a transition path from CPP
to ASTEC, they presented the semi-automatic MacroScope
source-to-source transformation tool: Similar to CppSig,
MacroScope inspects macro expansions, matches them with
the respective parse-tree nodes, and finally translates them to
ASTEC macros. Besides having a different goal than CppSig,
MacroScope operates on the parse tree, where the availability
of all lexer tokens eases the matching but makes extraction
of expansion signatures impossible as typing information
is not yet available. Németh et.al. [15] proposed another re-
placement strategy for CPP: they translate a limited subset
of Haskell 𝜆-Expressions to C-preprocessor macros, which
makes the definition of disciplined macros less cumbersome
but results in an immense increase in preprocessing time.
Another aspect of CPP, which was not the focus of this

work, is its capability to express variability in terms of condi-
tional compilation. In our own work [14, 21], we searched for
#ifdef-blocks that are never seen by the parser and used a
sampling-based approach to compile all other blocks at least
once. PCp3 [2] is an early integrated preprocessor and parser,
which provides various hooks and a scripting facility, that
could be used make CppSig at least heuristically variability
aware. A sound variant is variability-aware parsing [6, 8],
where all conditionally-compiled blocks are combined into a
single, variability-aware AST. In contrast to CppSig, these
techniques parse C in the presence of the CPP, while we see
CPP more as a language on its own that “rides” on top of
C. Furthermore, the overheads of variability-aware parsing,
which either involves SAT solving [8] or handling of binary-
decision diagrams [6], hinder its adoption in everyday use.

6 Conclusion
We have presented CppSig, an approach to extract type sig-
natures for C preprocessor macros from their respective
expansion sites. For this, we match the macro-expansion
tree against the abstract syntax tree by using source-location
information that modern compilers already track to provide
good error messages. We provide a prototypical implemen-
tation of our approach as a Clang plugin, which is publicly
available, and we applied it to the Linux 5.12 source base. In
this evaluation, we could infer unambiguous return types
for 53 percent of the macro definitions that were used as
top-level expansions. For 55 percent of their parameters, we
could provide an unambiguous C type.
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