
Accurate and Extensible Symbolic Execution of
Binary Code based on Formal ISA Semantics

Sören Tempel∗, Tobias Brandt†, Christoph Lüth‡§, Christian Dietrich∗ and Rolf Drechsler‡§
∗Institute of Operating Systems and Computer Networks, Technische Universität Braunschweig, Braunschweig, Germany

†Independent Researcher, Bremen, Germany
‡Cyber-Physical Systems, DFKI, Bremen, Germany

§Institute of Computer Science, University of Bremen, Bremen, Germany
tempel@ibr.cs.tu-bs.de, tobbra91@gmail.com, christoph.lueth@dfki.de, dietrich@ibr.cs.tu-bs.de, drechsler@uni-bremen.de

Abstract—Symbolic execution is an SMT-based software ver-
ification and testing technique. Symbolic execution requires
tracking performed computations during software simulation
to reason about branches in the software under test. The
prevailing approach on symbolic execution of binary code tracks
computations by transforming the code to be tested to an
architecture-independent intermediate representation (IR) and
then symbolically executes this IR. However, the resulting IR
must be semantically equivalent to the binary code, making this
process complex and error-prone. The semantics of the binary
code are specified by the targeted instruction set architecture
(ISA), commonly given in natural language and requiring a
manual implementation of the transformation to an IR. In recent
years, the use of formal languages to describe ISA semantics in
a machine-readable way has gained increased popularity. We
investigate the utilization of such formal semantics for symbolic
execution of binary code, achieving an accurate representation
of instruction semantics. We present a prototype for the RISC-V
ISA and conduct a case study to demonstrate that it can be easily
extended to additional instructions. Furthermore, we perform
an experimental comparison with prior work which resulted
in the discovery of five previously unknown bugs in the ISA
implementation of the popular IR-based symbolic executor angr.

I. INTRODUCTION

Program analysis and software testing has the goal to vali-
date, or even verify, that certain properties hold on the different
paths through a software-under-test (SUT). In comparison to
unit testing, symbolic execution (SE) [1] allows the exploration
of more, or even all, paths by interpreting the SUT in a
symbolic domain. Instead of concrete values (X = 5), we
propagate symbolic values (X > 5) through the SUT. This
requires us to bridge a semantic gap and translate the SUT
(e.g., given as C code) to symbolic expressions that manipulate
symbolic values. Later on, the SE engine can formally reason
about branches in the SUT by using a constraint solver to
check the feasibility of symbolic branch conditions.

While many translation methodologies (see Fig. 1) were
proposed [2], they all exhibit some shortcomings: (1) Direct
IR-based translation, as employed by the popular KLEE [1]
engine, first lowers the program to a compiler’s IR (i.e.,
LLVM-IR) using the existing toolchain, before symbolizing
each IR instruction to a symbolic expression. While this

This work was supported by the German Federal Ministry of Education
and Research (BMBF) within projects Scale4Edge under grant no. 16ME0127,
ECXL under grant no. 01IW22002, and VE-HEP under grant no. 16KIS1342.

Language
(C/C++)

LLVM-IR

ISA-Level
(Assembler)

Behavioral
ISA Semantic

Symbolic
Expressions

Se
m

an
tic

G
ap

Hi
gh

-L
ev

el
Lo

w-
Le

ve
l

(1) Direct
IR-Based

(2) Indirect
IR-Based

(3) Execution-
Based

(4) Proposed
Approach

co
m

pi
le

en
co

de

co
m

pi
le+

lin
k

lif
t

en
co

de

co
m

pi
le+

lin
k

en
co

de

co
m

pi
le+

lin
k

se
m

an
tic

ize
en

co
de

Fig. 1. Different translation methodologies for symbolic execution.

approach captures compiler bugs, it is unable to handle
inline assembly, compiler intrinsics, and third-party binary
code. (2) The Indirect IR-based approach [3]–[5] tackles this
by lifting the final binary code back up to the IR level
before symbolizing it down again to symbolic expressions.
This involves two semantically-rich translation steps: First,
the lifter has to capture the ISA semantic, which is often
only available as thousands of pages of informal, natural-
language specification (e.g., ARM manual [6]), making lifter
construction an erroneous endeavor [7], [8]. Second, compiler
IRs are usually implementation-defined and, even if formal
semantics exists [9], then only as a secondary artifact that is
prone to deviation. (3) The Execution-based method [10]–[13]
avoids this error-prone detour by weaving the SE engine into
execution(s) of the SUT. With an ISA-level interpreter or
by trap-stepping the actual machine, symbolic expressions
are emitted on the fly. While this avoids the IR problem,
capturing the instruction semantics correctly and completely
is still challenging, especially when confronted with feature-
rich1 or rapidly-evolving extensible ISAs.2

About this paper: Given the benefits and shortcomings of
existing methods, we argue that (a) SE engines should repre-
sent the program with a formal “intermediate representation”
but (b) that it should be located “below” the ISA level and
explicitly designed to capture ISA semantics (see Fig. 2).
This would give us build-chain coverage and the possibility
to independently verify the ISA-level “semantification” step
while retaining a strict lowering hierarchy.

1The ARMv8 Base ISA alone has 472 instructions.
2RISC-V has 41 ratified extensions, 12 of them newly ratified in 2024 [14].



2 Binary Code

foo:
// a1(z) = a0(x) / a1(y)
DIVU a1,a0,a1
// if (a0 < a1) goto fail
BLTU a0,a1,fail
...

3 Generated Solver Query in SMT-LIB

(define-fun DIVU
((regs Reg-File)
(rd Reg-Index)
(rs1 Reg-Index)
(rs2 Reg-Index)) Reg-File

(let ((rs1-val (select regs rs1))
(rs2-val (select regs rs2)))

(store regs rd
(if (= rs2-val #x00000000)

#xffffffff
(bvudiv rs1-val rs2-val)))))

(define-fun BLTU (...) Bool
(... (bvult rs1-val rs2-val)))

(assert
(BLTU (DIVU regs a1 a0 a1) a0 a1))

(check-sat) ;; --> satisfiable

1 Source Code

void
foo(uint32_t x, uint32_t y) {

uint32_t z = x / y;
if (x < z) goto fail;
...

}

4 Formal ISA Specification

1: instrSemantics DIVU = do
2: (rs1-val, rs2-val, rd) <- decodeAndReadRType
3: runIfElse (rs2-val ‘EqInt‘ 0x00000000)
4: do $ WriteRegister rd 0xffffffff
5: do $ WriteRegister rd (rs1-val ‘UDiv‘ rs2-val)
6:
7: instrSemantics BLTU = do
8: ...

...

5 Specification Language Primitives
(e.g. WriteRegister, EqInt, UDiv)

Formal
Description

Compiler

SE:Path
Exploration

se
m

an
tic

ize

Fig. 2. Generation of an SMT solver query for an exemplary branch condition in a SUT (in binary form) based on a formal ISA specification.

Fortunately, formal ISA specifications [10], [15], [16]
emerged in recent years to tackle the problem of ISA manuals
with thousands of pages of natural-language specification. In
a nutshell, these projects provide a formal, machine-readable
domain-specific language (DSL) to express ISA-level seman-
tics and come with tooling to work with these specifications
(e.g., derive theorem-prover definitions). This direction seems
so promising that RISC-V [17] and ARM [18] have recognized
their potential and provide official formal specifications.

For design automation, utilization of formal ISA specifica-
tions is advantageous as—once formally specified—a variety
of tools can be derived from the specification, reducing de-
velopment time and thereby the time-to-market. For example,
we can combine them with concurrency models [19], perform
fault-injection [20], verify binary code [21], prove security
properties [22], and derive emulators and documentation [15].

We argue that formal ISA specifications and their DSLs
are perfectly suited to make SE extensible, accurate, and
(potentially) easier to verify. With this paper, we claim the
following contributions:

• We present BINSYM, an SE engine for RISC-V binary
code that facilitates an executable formal specification.

• We conduct a case study to demonstrate the extensibility
of our approach with custom instruction set extensions.

• We validate the accuracy of BINSYM by an experimental
comparison to existing SE engines, leading to the discov-
ery of five previously unknown lifter bugs in prior work.

II. FORMAL ISA SEMANTICS FOR SYMBOLIC EXECUTION

We give a short primer on symbolic execution and discuss
the benefits of formal ISA semantics for the SE of binary code.

A. Background on Symbolic Execution

As SE is a simulation-based software verification technique,
it executes the SUT to explore its state space by enumerating
reachable execution paths. Unlike unit testing, which runs the
program with concrete values, SE replaces selected concrete
inputs with symbolic ones that represent a set of continuously
constrained concrete values. The SE engine manages this
process by tracking constraints and iteratively selecting the
next path to explore, a process referred to as path selection [2,

Sect. 2.2]. During execution of a selected path, the SE engine
collects constraints on symbolic values up to a previously
unvisited branch. The constraints are obtained by translating
the performed operations on symbolic values to symbolic
expressions, and a constraint solver checks which upcoming
branch targets are feasible under the collected constraints. Usu-
ally, we use the satisfiability modulo theories (SMT) formalism
(i.e., SMT bitvector theory) to perform constraint checking.

In a nutshell, the classical SE engine repeatedly executes
program paths with symbolic values on top of an SMT solver.
More information on SE is available in the survey [2].

To illustrate binary-based SE, we compile an example C
program 1 in Fig. 2 to binary code 2 . The C function
foo() performs division of two 32-bit unsigned integers
and ensures that the result is greater than or equal to the
dividend (failing otherwise). Since the control flow forks at the
BLTU branch instruction, the engine selects the path [DIVU,
BLTU] and translates it, including the arguments, to the SMT
expression 3 , which we show in the standard SMT-LIB [23]
format. The engine then invokes an SMT solver to check
(check-sat) if the expression is satifisfiable resp. if it
is possible to take the branch. Conceptually, an SE engine
repeatedly generates such queries for each encountered branch
in the SUT. The example demonstrates the significant semantic
gap between ISA instructions 2 and SMT expressions 3
which the SE engine has to bridge – a translation that is known
to be error-prone if done with handwritten translators [7], [8].

B. ISA Semantics and SMT Translation

The core idea of our proposed SE approach is: formal ISA
semantics, which capture the behavior of instructions in a
machine-readable specification language, are well suited as an
intermediate step between binary code and SMT expressions.
In our running example (Fig. 2), the normative ISA semantics
are provided in a machine-readable formal language 4 ,
which expresses instruction behavior using a DSL 5 (further
explained in Sect. III-A). Different DSLs have been presented
in prior work to express such semantics [10], [15], [18], [24].

By taking the specific ISA semantics into account, an
interesting edge case in the SUT becomes apparent that has
to be accounted for: in the C programming language, division



by zero is undefined behavior, and the compiler can assume
that it never happens. Therefore, no check for y ≡ 0 is
inserted before the unsigned division instruction DIVU by the
compiler. However, the formal DIVU semantics 4 show that
the unsigned division of our ISA—instead of trapping—returns
a value with all bits set if the divisor is zero. In this case, z
becomes 0xffffffff, which is larger than most 32-bit x
values, whereby the fail branch is actually reachable with
y = 0. This is contrary to the intuition of programmers reading
1 as division usually makes numbers smaller, not larger. This

emphasizes the need for a binary-based, ISA-specific SE.
To uncover such problems, the SE engine has to operate on

the binary-level and translate the binary code instruction se-
mantics to an equivalent SMT representation. As our example
suggests, the translation from 2 to 3 is not straightforward
as it requires us to capture (a) arithmetic and logic operations
as well as (b) interactions with the hardware state (e.g., the
register file). Note also how the DIVU representation in 2
advances the system state by returning a new register file, in
Fig. 2 we omit details for clarity of exposition (e.g. program
counter handling). The emitted SMT must be accurate wrt. the
ISA specification, otherwise SUT edge cases may be missed.

Instead of directly jumping from ISA to SMT, our approach
uses the primitives of a formal specification as an abstraction
layer. That is, instead of directly translating the DIVU instruc-
tion to SMT, we employ divide-and-conquer and translate the
individual language primitives 5 in which the semantics are
expressed. For example, the WriteRegister primitive is
translated as a write to an SMT array (store). By building
on these primitives, SE engines also become more extensible:
as long as new instructions can be expressed in terms of
existing specification primitives, our SE approach can be easily
extended. In Sect. IV, we will demonstrate this capability.

Our example illustrates the benefits of binary-code analysis
and affirms that even supposedly simple code is expanded to
complex SMT representations. Formal specifications of ISA
semantics help us to mitigate this complexity, reducing the
potential for errors in the translation and enabling extensibility.

III. APPLICATION TO RISC-V BINARY CODE

In this section, we present BINSYM, a prototype imple-
mentation of our proposed approach that symbolically exe-
cutes 32-bit binary code for the open standard RISC-V [25]
architecture. We chose RISC-V for our prototype as, due
to its openness, it has enabled a large body of research on
formal ISA specifications and even provides an official golden
formal specification [17]. Furthermore, RISC-V is a modular
architecture, i.e., it consists of a base instruction set and
optional extensions, which are implemented on top and can
be combined as needed. Therefore, it benefits immensely from
an extensible SE approach as the specification is constantly
expanding, requiring binary analysis tools to “catch up” to it.

A. Executable Formal Specifications

A variety of different formal ISA specifications for RISC-V
have emerged in recent years which target different use

cases [10], [15], [16], [24]. Since software execution is the
focus of our work, we make use of an executable formal
specification. Such specifications allow for the creation of
custom modular interpreters [26] which are responsible for
interpreting the language primitives used by the specification.
These interpreters are modular in the sense that the executable
specification provides generic versions of essential compo-
nents (e.g., the register file or memory) which can be reused by
the interpreter. Different executable specifications have been
presented in prior work [10], [16], [24]. For our BINSYM
prototype implementation, we build upon the open source
LIBRISCV [10] specification. Like many executable formal
specifications [16], [24], LIBRISCV describes the ISA using
a DSL that is embedded into the functional and strongly-typed
general-purpose programming language Haskell.

In order to illustrate this DSL, we discuss the formal
description of the RISC-V DIVU instruction as provided by
LIBRISCV. We have already seen this formal description in
top-right corner 4 of Fig. 2 and in the following, we describe
it in greater detail. The formal DIVU description in Fig. 2 starts
off by specifying the operands of the instruction in Line 2. As
mandated by the RISC-V specification, DIVU is an R-Type
instruction with three register operands (rs1, rs2, and rd).
The instruction semantics are described in terms of these
operands (Line 3 - Line 5). If the divisor (rs2) is zero (Line 3),
then the destination register (rd) has all bits set (Line 4).
Otherwise, standard unsigned division is performed on the
dividend (rs1) in Line 5. This description is entirely abstract
and does not assume a specific representation of operands.

B. BinSym: A Modular Symbolic Interpreter

The DIVU example serves to illustrate that LIBRISCV
abstractly describes instruction semantics in terms of several
language primitives: (1) stateful ones and (2) arithmetic/logic
primitives. Since LIBRISCV is an executable formal specifi-
cation, it takes RISC-V binary code (in the ELF format) as an
input and converts the instruction stream to a continuous, lazily
evaluated sequence of these primitives. The aforementioned
modular interpreter is then responsible for processing this
sequence. As an example, prior work has presented a concrete
interpreter and an interpreter performing dynamic information
flow tracking [10]. For BINSYM, we implemented a symbolic
modular interpreter that utilizes the language primitives as an
abstraction layer for the implementation of a binary-level SE
engine. In Fig. 1, BINSYM implements the semanticize step.

For SE, instruction operands are symbolic values (e.g.,
the value of the register x1 may be symbolic). As such,
we need variants of the register file and memory that are
capable of operating on such symbolic values. Due to the
utilization of an executable formal model, we were able to
reuse existing components from LIBRISCV for this purpose,
such as a generic implementation of a register file which is
parameterized over a value type. This significantly reduced
the effort required for our BINSYM prototype implementation
and is one major benefit of an executable formal specification.
The symbolic representation of the hardware state enables



us to symbolically interpret stateful LIBRISCV language
primitives such as WriteRegister. Additionally, we had to
map arithmetic and logic primitives to operations of an SMT
solver. We make use of the Z3 [27] SMT solver in BINSYM,
translating arithmetic and logic operations of LIBRISCV to
Z3 SMT solver operations. This is the encode step from Fig. 1.

The outlined translation enables us to propagate and track
symbolic values throughout program execution. Based on the
propagated values, we can symbolically reason about branch
points during execution of the SUT. That is, every time we
encounter a branch (denoted via the runIfElse language
primitive) that depends on a symbolic value, we can use Z3
to check if both the true and the false case are satisfiable and
if so, explore both in parallel. For example, if a SUT executes
a RISC-V DIVU instruction with a symbolic divisor operand,
we construct an SMT query to check if it is possible for the
divisor to be zero/non-zero under the current constraints. On
the technical side, BINSYM implements a so-called offline
executor, which continuously restarts execution of the SUT
with input values obtained for branch points from the solver [2,
Sect. 2.4]. Specifically, it implements dynamic symbolic exe-
cution [2, Sect. 2.1] with depth-first search path selection [2,
Sect. 2.2] and address concretization [2, Sect. 3.2]. These are
well-established SE algorithms (details in the references).

Our BINSYM prototype implements the entire SE engine
for RISC-V binary code in only 1000 LOC in Haskell with
1500 LOC of LIBRISCV specification. This reduced com-
plexity can be attributed to the utilization of an executable
formal specification and its implementation as a modular
interpreter. Please note that while our prototype focuses on
RISC-V, it is by no means limited to this architecture. Formal
semantics are available for many ISAs and prior work has
demonstrated that it is feasible to capture the semantics of
different ISAs using a common set of language primitives [15].

IV. CASE STUDY: SUPPORTING A CUSTOM INSTRUCTION

With the advent of RISC-V, custom instructions are be-
coming increasingly popular for power savings in embedded
systems or increased throughput in high-performance proces-
sors [28, Sect. 2]. Utilization of formal ISA semantics sig-
nificantly eases supporting—and experimenting with—custom
instructions during design space exploration. Once formally
described, documentation, simulators, fault-injection tooling,
et cetera can be derived [15], [20], [29]. Thereby, formal
semantics significantly reduce the effort required to support
custom instructions throughout the development process, con-
tributing to a reduced time-to-market. In the following, we
conduct a case study with an exemplary custom instruction to
demonstrate that—once formally specified—custom instruc-
tions can be easily supported in our proposed SE approach.

For our case study, we define a new non-standard MADD
instruction which takes three register operands (rs1, rs2,
rs3) and combines multiplication and addition into a single
instruction computing: (rs1× rs2) + rs3. In order to support
this custom instruction in our SE engine, we first need to
specify how it is encoded. For this purpose, LIBRISCV

1 madd:
2 encoding: ’-----01------------------1000011’
3 extension: [rv_zimadd]
4 mask: ’0x600007f’
5 match: ’0x2000043’
6 variable_fields: [rd, rs1, rs2, rs3]

Fig. 3. YAML riscv-opcodes description of a custom MADD instruction.

utilizes the existing riscv-opcodes3 instruction format
provided by the RISC-V Foundation. Fig. 3 provides the
description of the MADD encoding in this format. Essentially,
the format defines two bitmasks (Line 4 and Line 5) which can
be used to uniquely identify the instruction’s opcode. Further,
it specifies which well-known instruction operand fields are
used by the instruction (Line 6). The existing LIBRISCV
tooling automatically generates the decoding code from this
description [10, Sect. 4.1].

In addition to the instruction encoding, we also need to
specify the instruction semantics in terms of the language
primitives provided by LIBRISCV. The formal description
of our custom MADD instruction is shown in Fig. 4. The
instruction is decoded as an R4-Type instruction (Line 2),
then sign-extension and multiplication of rs1 and rs2 is
performed (Line 4 - Line 5), the lower 32-bit are incremented
by rs3 and stored in the destination register (Line 6). The se-
mantics of MADD can be expressed entirely in terms of existing
LIBRISCV language primitives. As our BINSYM prototype
already maps all of these primitives to SMT semantics, no
modifications of BINSYM are needed in order to support this
instruction. In total, we only had to integrate the 7 lines of
YAML from Fig. 3 and the 7 lines of Haskell code from Fig. 4
into the formal ISA specification to support SE with MADD.

Naturally, the formal description of the MADD instruction (as
shown in Fig. 4) can not only be used for symbolic semantics
but also for other design automation tooling. This serves to
illustrate that our approach can be easily extended to support
additional instructions and, moreover, integrates well with a
design flow centered around formal ISA semantics.

V. EVALUATION

We evaluate our approach on five programs: three real-
world modules from the RIOT operating system [30]
(base64-encode, clif-parser and uri-parser) and
two synthetic benchmark applications (bubble-sort and
insertion-sort). The latter benchmark applications have
also been used in prior work for evaluation purposes [31,
Sect. 4.2]. All programs have been compiled for the 32-bit
RISC-V architecture; we can therefore only compare against
prior SE work that supports this architecture. We are presently

3https://github.com/riscv/riscv-opcodes

1 instrSemantics MADD = do
2 (rs1, rs2, rs3, rd) <- decodeAndReadR4Type
3 let
4 multResult = (sext rs1) ‘Mul‘ (sext rs2)
5 multTrunc = extract32 0 multRes
6 WriteRegister rd $ (multTrunc ‘Add‘ rs3)

Fig. 4. Description of the custom MADD semantics in LIBRISCV.

https://github.com/riscv/riscv-opcodes


TABLE I
AMOUNT OF EXECUTION PATHS FOUND BY DIFFERENT SE ENGINES.

Benchmark angr BINSEC SYMEX-VP BINSYM

base64-encode 125 † 6250 6250 6250
bubble-sort 720 720 720 720
clif-parser 11424 11424 11424 11424
insertion-sort 5040 5040 5040 5040
uri-parser 8194 † 8240 8240 8240

aware of the following SE engines that fulfill this criterion:
angr [5], BINSEC [4], and SYMEX-VP [32].

We are interested in two evaluation aspects: (a) does our
work discover the same amount of execution paths as prior
work and (b) does our work achieve competitive SE perfor-
mance? Therefore, we symbolically executed the programs
with a fixed-size input of symbolic values. All benchmarks
are fully explorable, i.e., all engines can discover the same
amount of execution paths on all benchmarks. Additionally,
all tested SE engines have been configured to use the same
version of Z3 [27] to avoid benchmarking the solver. We focus
on path coverage here, not the detection of bugs in the SUT.

A. Exploration Results

We compare the results of the symbolic exploration in
Table I. This table contains one row for each tested program
and compares the execution paths found by the aforemen-
tioned SE engines. As evident by the gathered data, angr
fails to discover all execution paths in real-world modules
from the RIOT operating system. Specifically, angr misses
6125 paths in the base64-encode program and 46 paths in
the uri-parser program (see the cells marked with a † in
Table I). These execution paths were found by all other tested
engines, including our BINSYM prototype. Further debugging
of angr revealed that these execution paths are missed due to
implementation errors in the RISC-V lifter provided by angr.
In total, we found five previously unknown bugs which have
been reported, acknowledged, and fixed by angr developers:4

1) The arithmetic shift operation (e.g., as used in the SRA
instruction) was modeled incorrectly in the lifter.

2) The R-Type shift instructions used the lower bits of the
register index, not the register value, as a shift amount.

3) The lifted load instructions did not correctly zero- and
sign-extend the resulting register value.

4) The shift amount for I-type shift instructions was treated
as a signed, instead of unsigned, integer value.

5) The signed comparison instructions compared for un-
signed instead of signed integer equality.

All inaccuracies are caused by programming errors in the
manual implementation of the natural language ISA specifi-
cation within the lifter provided by angr. These programming
errors can result in both false-positives and false-negatives
during automated SE-based software testing. As an example,
consider the C code in Fig. 5 which causes SUT analysis
using angr to result in both a false-negative and false-positive.

4https://github.com/angr/angr-platforms/pull/64

1 void parse_word(uint32_t x) {
2 uint32_t mask = x << 31;
3 if (x == 1)
4 assert(mask == 0x80000000); // FALSE-POSITIVE
5 else
6 assert(mask != 0x80000000); // FALSE-NEGATIVE
7 }

Fig. 5. Example code which results in false-positive and false-negative when
analyzed using the existing angr SE engine due to a bug in the RISC-V lifter.

This code calculates a bitmask based on a function parameter
x, if x == 1 it expects the bitmask to be 0x80000000
and ensures that this is the case using an assertion (Line 4).
The code is compiled to use an I-type shift instruction, for
such instructions angr incorrectly treats the 5-bit shift amount
immediate as a signed integer in two’s complement. Therefore,
it ends up shifting by -1 instead of 31. This results in
a spurious assertion failure as the bitmask is not equal to
0x80000000 if x == 1 (i.e., angr finds a false-positive in
the SUT). Similarly, the code contains an additional assertion
which (incorrectly) assumes that x == 1 is the only input to
generate the bitmask value 0x80000000. However, this as-
sertion is incorrect as there are other values for x which result
in such a bitmask value (e.g., 0xffffffff). Unfortunately,
due to the issue outlined above, angr fails to find such an
input, resulting in a false-negative. In real-world code, large
amounts of false-positives and false-negatives can significantly
hinder adaption of SE [33] and must therefore be avoided.
With our approach, we can—conceptually—avoid errors in
the implementation of the ISA semantics by building on a
normative and therefore authoritative formal ISA specification.

B. Performance Comparison

Utilizing the fixed version of angr, we experimentally com-
pare SE performance. To this end, we executed all programs
five times with each engine on an Intel Xeon Gold 6240
Linux system. The arithmetic mean over all five executions
is visualized as a grouped bar chart in Fig. 6. In this figure,
the absolute execution time—as the arithmetic mean over
all five executions—is given logarithmically in seconds on
the y-axis while the x-axis lists the benchmarks. For each
benchmark, four bar charts are given which correspond to
the aforementioned SE engines; from left to right: BINSEC
(purple), BINSYM (green), SYMEX-VP (brown) and angr
(teal). Maximum standard deviation across all executions
is 5%, which we consider negligible. The results can be
reproduced using the provided evaluation artifacts [34] and
are consistent across all benchmark applications: BINSEC
is the fastest engine, followed by our BINSYM prototype
implementation and prior work on SYMEX-VP. The slowest
engine across all benchmarks is angr. This is expected and
congruent with prior work which saw similar results for angr
and attributes its “lower execution rate to the fact that its
symbolic reasoning is implemented in Python” [35, Sect. 5.4].
Similarly, SYMEX-VP executes software in a SystemC [36]
simulation environment, which enables it to support interac-
tions with hardware peripherals modeled in SystemC [36] but

https://github.com/angr/angr-platforms/pull/64


base64-encode bubble-sort clif-parser insertion-sort uri-parser

101

102

103

Ex
ec

ut
io

n 
tim

e 
(s

)

15

8

16
12 13

43

15

45
33

80

250

50

388

138

590

1527

277

989

472

2203
BinSec
BinSym
SymEx-VP
angr

Fig. 6. Total execution time as an arithmetic mean over five executions per
benchmark. The y-axis is logarithmic as results for angr constitute an outlier.

incurs a performance penalty [32, Sect. 3.2]. BINSEC is not
subject to these limitations and is one of the most mature and
optimized SE engines for binary code. Hence, it achieves better
simulation performance than BINSYM, which is a prototype
of our translation approach, and subsequently lacks advanced
optimizations in the exploration and solver components.

Nonetheless, overall, the results from Fig. 6 show that
BINSYM offers competitive execution time performance. That
is, the results indicate that the technologies and techniques
used in BINSYM (i.e., executable formal ISA semantics) do
not negatively impact performance in a way that utilization
for SE becomes infeasible. Unfortunately, as pointed out by
prior work, it remains challenging to isolate which design
decisions contribute to overall SE performance as part of
an empirical comparison [35]. Since we now know that the
overall performance is competitive, we plan to expand on
the evaluation in future work by specifically investigating the
impact of formal ISA semantics on SMT query complexity.

VI. RELATED WORK

Symbolic Execution is an active research area on which
Baldoni et al. [2] give a recent overview. As Sect. I already
categorizes different translation methodologies to SMT, we
only discuss the further SE-related work here. In contrast to
source-based SE, of which KLEE [1] is most popular, binary-
based methods, like our BINSYM, do not require access to the
source code. While initial binary-based tools [31], [37], [38]
built upon KLEE, and thus LLVM-IR, also other high-level
IRs, such as Valgrind VEX [5], [39] or DBA [4], [40] were
utilized. These methods, which all rely on binary lifting [35],
use the IR as a semantically-rich “meta”-ISA to unify the
different ISAs. We propose to use formal ISA specifications,
which were designed with verifiability in mind, to replace the
lifting process with a straightforward per-instruction lowering.

Translational Correctness requires us to show the equiv-
alence between binary code and symbolic expressions. If we
use a lifter in the process, we have to show two equivalences:
binary↔IR and IR↔symbolic expressions. Previous validation
efforts focused on the former [7], [8], [41] and revealed many
bugs in existing tools. This is in line with our findings (see
Sect. V) that manual lifter design is an error-prone process.
With our proposed approach, the ISA semantics come in the
form of an independently test- and verifiable artifact to the
process. The aforementioned prior work also acknowledges

that there are “few existing approaches to testing the correct-
ness of binary lifters” [8]. Unsurprisingly, there is even less
work that goes beyond lifter correctness and also validates the
symbolic semantics [42]–[44]. Presently, such work operates
on toy programming languages and, to the best of our knowl-
edge, there is no prior work which concerns itself with the
correctness of symbolic semantics for real-world binary code.
The formal representation of ISA semantics in BINSYM is an
ideal springboard to formally prove the equivalence between
the ISA semantics and the SMT representation in future work.

Formal Specifications of programming semantics have
already been used for SE in prior work [45]. However, formal
specifications of ISA semantics have only gained increased
relevance in recent years with Sail [15] being the most
extensive work and selected in 2019 as the official formal
RISC-V specification [17]. Utilization of such formal ISA
specifications for SE of binary code is presently limited. Goel
et al. [46] use a partial ISA model to perform automated proofs
on x86 binaries through SE based on binary decision diagrams
(BDDs) instead of SMT, limiting its applicability to general
programs. Prior work on retargetable tooling (e.g., TSL [47]
and CDT [48]) generates code for binary analysis tooling
from an informal, non-executable architecture description.
Unfortunately, maintaining a diverse set of code generators
for different analysis tasks is a laborious undertaking [16,
Sect. 1]. In contrast, our BINSYM prototype is based on an
executable specification in the lineage of prior work on mod-
ular interpreters [26], enabling reuse of existing components
and significantly reducing the SE engine’s complexity.

VII. CONCLUSION

We present BINSYM, an approach for symbolic execution
of binary code that is accurate wrt. formal ISA specifications.
Such specifications are easily extensible and increasingly
adopted by modern ISAs. The novelty of our approach is the
utilization of an executable formal specification: we derive
the SE engine as a modular interpreter for this specification,
which reduces its complexity and helps to avoid bugs during
the translation from ISA instructions to SMT expressions.

With the BINSYM prototype, we show that our approach
allows to implement a complete SE engine for RISC-V in
1000 lines of code, excluding the formal ISA specification.
We illustrate the extensibility with a custom instruction and
experimentally compare BINSYM to three existing SE engines.
Thereby, we discovered five previously unknown bugs in angr,
a popular IR-based symbolic executor, which can result in
missing or incorrect SE results. These bugs originate from the
manually-written binary-to-IR lifter in angr, highlighting the
importance of deriving all parts of the testing toolchain from a
single authoritative ISA specification. Further, our experiments
indicate that BINSYM achieves competitive SE simulation
performance in comparison to existing prior work. To stim-
ulate further research on binary-based SE with formal ISA
specifications, BINSYM is available as open source software.5

5https://github.com/agra-uni-bremen/binsym

https://github.com/agra-uni-bremen/binsym


REFERENCES

[1] C. Cadar, D. Dunbar, and D. Engler, “KLEE: Unassisted and au-
tomatic generation of high-coverage tests for complex systems pro-
grams,” in OSDI, 2008.

[2] R. Baldoni, E. Coppa, D. C. D’elia, C. Demetrescu, and I. Finocchi,
“A survey of symbolic execution techniques,” ACM Comput. Surv.,
vol. 51, no. 3, 2018. DOI: 10.1145/3182657.

[3] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz, “BAP: A
binary analysis platform,” in CAV, 2011. DOI: 10.1007/978-3-642-
22110-1 37.

[4] A. Djoudi and S. Bardin, “BINSEC: Binary code analysis with low-
level regions,” in TACAS, 2015. DOI: 10.1007/978- 3- 662- 46681-
0 17.

[5] Y. Shoshitaishvili, R. Wang, C. Salls, et al., “SOK: (state of) the art
of war: Offensive techniques in binary analysis,” in IEEE S&P, 2016.
DOI: 10.1109/SP.2016.17.

[6] ARM Limited, ARM architecture reference manual. ARMv8, for
ARMv8-A architecture profile, v8.2 Beta, 2017.

[7] S. Dasgupta, S. Dinesh, D. Venkatesh, V. S. Adve, and C. W. Fletcher,
“Scalable validation of binary lifters,” in PLDI, 2020. DOI: 10.1145/
3385412.3385964.

[8] S. Kim, M. Faerevaag, M. Jung, et al., “Testing intermediate repre-
sentations for binary analysis,” in ASE, 2017. DOI: 10 .1109/ASE.
2017.8115648.

[9] Y. Zakowski, C. Beck, I. Yoon, I. Zaichuk, V. Zaliva, and S.
Zdancewic, “Modular, compositional, and executable formal seman-
tics for LLVM IR,” Proc. ACM Program. Lang., vol. 5, no. ICFP,
2021. DOI: 10.1145/3473572.

[10] S. Tempel, T. Brandt, and C. Lüth, “Versatile and flexible modelling
of the RISC-V instruction set architecture,” in Trends in Functional
Programming, 2023. DOI: 10.1007/978-3-031-38938-2 2.

[11] I. Yun, S. Lee, M. Xu, et al., “QSYM: A practical concolic execu-
tion engine tailored for hybrid fuzzing,” in 27th USENIX Security
Symposium, 2018.

[12] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Early concolic
testing of embedded binaries with virtual prototypes: A RISC-V case
study,” in DAC, 2019. DOI: 10.1145/3316781.3317807.

[13] D. W. Currie, A. J. Hu, and S. Rajan, “Automatic formal verification
of DSP software,” in DAC, 2000. DOI: 10.1145/337292.337339.

[14] RISC-V Foundation. “Ratified extensions.” (2024), [Online]. Avail-
able: https://wiki.riscv.org/display/HOME/Ratified+Extensions.

[15] A. Armstrong, T. Bauereiss, B. Campbell, et al., “ISA semantics for
ARMv8-a, RISC-V, and CHERI-MIPS,” Proc. ACM Program. Lang.,
vol. 3, no. POPL, 2019. DOI: 10.1145/3290384.

[16] T. Bourgeat, I. Clester, A. Erbsen, et al., “Flexible instruction-
set semantics via abstract monads (experience report),” Proc. ACM
Program. Lang., vol. 7, no. ICFP, 2023. DOI: 10.1145/3607833.

[17] RISC-V Foundation, ISA Formal Spec Public Review. [Online]. Avail-
able: https://github.com/riscv/ISA Formal Spec Public Review.

[18] A. Reid, “Trustworthy specifications of ARM® v8-A and v8-M
system level architecture,” in FMCAD, 2016. DOI: 10.1109/FMCAD.
2016.7886675.

[19] A. Armstrong, B. Campbell, et al., “Isla: Integrating full-scale ISA
semantics and axiomatic concurrency models,” in Lecture Notes in
Computer Science, 2021. DOI: 10.1007/978-3-030-81685-8 14.

[20] C. Dietrich, M. Bargholz, Y. Loeck, M. Budoj, L. Nedaskowskij, and
D. Lohmann, “SailFAIL: Model-derived simulation-assisted ISA-level
fault-injection platforms,” in SAFECOMP, 2022. DOI: 10.1007/978-
3-031-14835-4 14.

[21] M. Sammler, A. Hammond, R. Lepigre, et al., “Islaris: Verification
of machine code against authoritative ISA semantics,” in PLDI, 2022.

[22] T. Bauereiss, B. Campbell, T. Sewell, et al., “Verified security for the
morello capability-enhanced prototype ARM architecture,” in ESOP,
2022.

[23] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB standard version
2.6,” Standard, May 12, 2021. [Online]. Available: https://smt- lib.
org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf.

[24] B. Selfridge, “GRIFT: A richly-typed, deeply-embedded RISC-V se-
mantics written in Haskell,” in SpISA 2019: Workshop on Instruction
Set Architecture Specification, 2019. [Online]. Available: https://www.
cl.cam.ac.uk/∼jrh13/spisa19/paper 10.pdf.

[25] RISC-V Foundation, The RISC-V instruction set manual, volume
I: User-level ISA, Document Version 20191213, 2019. [Online].

Available: https : / / github . com / riscv / riscv - isa - manual / releases /
download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

[26] S. Liang, P. Hudak, and M. Jones, “Monad transformers and modular
interpreters,” in POPL, 1995. DOI: 10.1145/199448.199528.

[27] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS, 2008. DOI: 10.1007/978-3-540-78800-3 24.

[28] E. Cui, T. Li, and Q. Wei, “RISC-V instruction set architecture
extensions: A survey,” IEEE Access, vol. 11, 2023. DOI: 10.1109/
ACCESS.2023.3246491.

[29] S. Tempel, T. Brandt, C. Lüth, and R. Drechsler, “Minimally invasive
generation of RISC-V instruction set simulators from formal ISA
models,” in FDL, 2023. DOI: 10.1109/FDL59689.2023.10272224.

[30] E. Baccelli, C. Gündoğan, O. Hahm, et al., “RIOT: An open source
operating system for low-end embedded devices in the IoT,” IEEE
Internet of Things Journal, vol. 5, no. 6, 2018. DOI: 10.1109/JIOT.
2018.2815038.

[31] N. Corteggiani, G. Camurati, and A. Francillon, “Inception: System-
wide security testing of real-world embedded systems software,” in
27th USENIX Security Symposium, 2018.

[32] S. Tempel, V. Herdt, and R. Drechsler, “SymEx-VP: An open source
virtual prototype for OS-agnostic concolic testing of IoT firmware,”
JSA, 2022. DOI: 10.1016/j.sysarc.2022.102456.

[33] S. Heckman and L. Williams, “A systematic literature review of
actionable alert identification techniques for automated static code
analysis,” Inf. Softw. Technol., vol. 53, no. 4, 2011. DOI: 10.1016/j.
infsof.2010.12.007.

[34] S. Tempel, T. Brandt, C. Lüth, and R. Drechsler, Benchmarks for
comparing binary-level symbolic execution speed, 2024. DOI: 10 .
5281/zenodo.12599534.

[35] S. Poeplau and A. Francillon, “Systematic comparison of symbolic
execution systems: Intermediate representation and its generation,” in
ACSAC, 2019. DOI: 10.1145/3359789.3359796.

[36] System C Standardization Working Group, IEEE Standard for Stan-
dard SystemC Language Reference Manual, 2012. DOI: 10 . 1109 /
SBAC-PAD.2004.8.

[37] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A platform for
in-vivo multi-path analysis of software systems,” in ASPLOS XVI,
2011. DOI: 10.1145/1950365.1950396.

[38] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on firmware:
Finding vulnerabilities in embedded systems using symbolic execu-
tion,” in 22nd USENIX Security Symposium, 2013.

[39] N. Nethercote and J. Seward, “Valgrind: A framework for heavy-
weight dynamic binary instrumentation,” in PLDI, 2007. DOI: 10 .
1145/1250734.1250746.

[40] S. Bardin, P. Herrmann, J. Leroux, R. Tabary, and A. Vincent, “The
BINCOA framework for binary code analysis,” in CAV, 2011. DOI:
10.1007/978-3-642-22110-1 13.

[41] J. Hendrix, G. Wei, and S. Winwood, “Towards verified binary
raising,” in SpISA 2019: Workshop on Instruction Set Architecture
Specification, 2019. [Online]. Available: https://www.cl.cam.ac.uk/
∼jrh13/spisa19/paper 05.pdf.

[42] A. Correnson and D. Steinhöfel, “Engineering a formally verified au-
tomated bug finder,” in Proceedings of the 31st ACM Joint European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2023. DOI: 10.1145/3611643.3616290.

[43] A. W. Appel, “Verismall: Verified smallfoot shape analysis,” in
Certified Programs and Proofs, 2011. DOI: 10 . 1007 / 978 - 3 - 642 -
25379-9 18.

[44] S. Keuchel, S. Huyghebaert, G. Lukyanov, and D. Devriese, “Verified
symbolic execution with kripke specification monads (and no meta-
programming),” Proc. ACM Program. Lang., vol. 6, no. ICFP, 2022.
DOI: 10.1145/3547628.

[45] D. Lucanu, V. Rusu, and A. Arusoaie, “A generic framework for
symbolic execution: A coinductive approach,” Journal of Symbolic
Computation, vol. 80, 2017. DOI: 10.1016/j.jsc.2016.07.012.

[46] S. Goel and W. A. Hunt, “Automated code proofs on a formal model
of the x86,” in Verified Software: Theories, Tools, Experiments, 2014.
DOI: 10.1007/978-3-642-54108-7 12.

[47] J. Lim and T. Reps, “TSL: A system for generating abstract inter-
preters and its application to machine-code analysis,” ACM Trans.
Program. Lang. Syst., vol. 35, no. 1, 2013. DOI: 10.1145/2450136.
2450139.

[48] A. Ibing, “Architecture description language based retargetable sym-
bolic execution,” in DATE, 2015. DOI: 10.7873/DATE.2015.0750.

https://doi.org/10.1145/3182657
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-642-22110-1_37
https://doi.org/10.1007/978-3-662-46681-0_17
https://doi.org/10.1007/978-3-662-46681-0_17
https://doi.org/10.1109/SP.2016.17
https://doi.org/10.1145/3385412.3385964
https://doi.org/10.1145/3385412.3385964
https://doi.org/10.1109/ASE.2017.8115648
https://doi.org/10.1109/ASE.2017.8115648
https://doi.org/10.1145/3473572
https://doi.org/10.1007/978-3-031-38938-2_2
https://doi.org/10.1145/3316781.3317807
https://doi.org/10.1145/337292.337339
https://wiki.riscv.org/display/HOME/Ratified+Extensions
https://doi.org/10.1145/3290384
https://doi.org/10.1145/3607833
https://github.com/riscv/ISA_Formal_Spec_Public_Review
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1109/FMCAD.2016.7886675
https://doi.org/10.1007/978-3-030-81685-8_14
https://doi.org/10.1007/978-3-031-14835-4_14
https://doi.org/10.1007/978-3-031-14835-4_14
https://smt-lib.org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://smt-lib.org/papers/smt-lib-reference-v2.6-r2021-05-12.pdf
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_10.pdf
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_10.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://doi.org/10.1145/199448.199528
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.1109/ACCESS.2023.3246491
https://doi.org/10.1109/FDL59689.2023.10272224
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1109/JIOT.2018.2815038
https://doi.org/10.1016/j.sysarc.2022.102456
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.1016/j.infsof.2010.12.007
https://doi.org/10.5281/zenodo.12599534
https://doi.org/10.5281/zenodo.12599534
https://doi.org/10.1145/3359789.3359796
https://doi.org/10.1109/SBAC-PAD.2004.8
https://doi.org/10.1109/SBAC-PAD.2004.8
https://doi.org/10.1145/1950365.1950396
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1145/1250734.1250746
https://doi.org/10.1007/978-3-642-22110-1_13
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_05.pdf
https://www.cl.cam.ac.uk/~jrh13/spisa19/paper_05.pdf
https://doi.org/10.1145/3611643.3616290
https://doi.org/10.1007/978-3-642-25379-9_18
https://doi.org/10.1007/978-3-642-25379-9_18
https://doi.org/10.1145/3547628
https://doi.org/10.1016/j.jsc.2016.07.012
https://doi.org/10.1007/978-3-642-54108-7_12
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.1145/2450136.2450139
https://doi.org/10.7873/DATE.2015.0750

	Introduction
	Formal ISA Semantics for Symbolic Execution
	Background on Symbolic Execution
	ISA Semantics and SMT Translation

	Application to RISC-V Binary Code
	Executable Formal Specifications
	BinSym: A Modular Symbolic Interpreter

	Case Study: Supporting A Custom Instruction
	Evaluation
	Exploration Results
	Performance Comparison

	Related Work
	Conclusion

